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The NeuroCognitive Performance Test (NCPT) is a brief, repeatable, web-based cognitive

assessment platform that measures performance across several cognitive domains. The

NCPT platform ismodular and includes 18 subtests that can be arranged into customized

batteries. Here we present normative data from a sample of 130,140 healthy volunteers

for an NCPT battery consisting of 8 subtests. Participants took the NCPT remotely

and without supervision. Factor structure and effects of age, education, and gender

were evaluated with this normative dataset. Test-retest reliability was evaluated in a

subset of participants who took the battery again an average of 78.8 days later. The

eight NCPT subtests group into 4 putative cognitive domains, have adequate to good

test-retest reliability, and are sensitive to expected age- and education-related cognitive

effects. Concurrent validity to standard neuropsychological tests was demonstrated in

73 healthy volunteers. In an exploratory analysis the NCPT battery could differentiate

those who self-reported Mild Cognitive Impairment or Alzheimer’s disease from matched

healthy controls. Overall these results demonstrate the reliability and validity of the NCPT

battery as a measure of cognitive performance and support the feasibility of web-based,

unsupervised testing, with potential utility in clinical and research settings.

Keywords: neuropsychological assessment, web-based, reliability, concurrent validity, normative data, memory,

fluid reasoning, psychomotor speed

INTRODUCTION

Neuropsychological assessments are designed to measure cognitive functions in both healthy and
clinical populations and remain important tools for research studies, clinical diagnoses, patient
outcomes, and intervention monitoring (Wild et al., 2008; Bauer et al., 2012; Kueider et al., 2012;
Lampit et al., 2014; Zygouris and Tsolaki, 2014). The current standard for testing an individual’s
cognitive functioning is through conventional validated pencil-paper neuropsychological tests that
are administered one-on-one in a clinic or lab setting by a trained psychometrician. The high cost
and time commitment associated with this type of testing may serve as a barrier to optimized
patient care and more efficient research.

Computerized administration of clinical instruments is not an entirely new phenomenon and
the application of computers to the evaluation of cognition has been studied previously (Wild
et al., 2008; Bauer et al., 2012; Kueider et al., 2012; Zygouris and Tsolaki, 2014). With advances
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in technology, computerized neuropsychological tests (cNPTs)
have been able to address several shortcomings of conventional
testing methods (Wild et al., 2008; Lampit et al., 2014; Zygouris
and Tsolaki, 2014). Key advantages of cNPTs over pencil-
paper assessments include: (1) consistency in administration
and scoring, (2) ability to generate numerous alternate forms
for repeated testing, (3) precise stimulus control, (4) ability
to record multiple components of a participant’s response,
(5) adaptability of difficulty levels, (6) decreased cost of
administration, (7) increased access for a broader population
which can lead to greater diversity among subjects, patients,
and normative databases, and (8) ability to run larger validation
and reliability studies leading to larger, more accurate normative
databases (Kane and Kay, 1992; Gualtieri and Johnson,
2006; Kueider et al., 2012; Nakayama et al., 2014). In their
relatively short history, cNPTs have proven advantageous
compared to pencil-paper neuropsychological tests, lowering
the cost of testing, and expanding their utility and potential
applications.

During recent years many cNPTs have been developed
(for a recent review see Zygouris and Tsolaki, 2014). At a
minimum, cNPTs should provide a set of tests with a range
of assessment capabilities that are consistent with a well-
defined purpose (Schlegel and Gilliland, 2007). In addition,
cNPTs must have supporting data to demonstrate response
characteristics, reliability, and validity similar to traditional
pencil-paper assessments or other validated cNPTs (Schlegel
and Gilliland, 2007). Data from several peer-reviewed, published
reports have supported the validity, reliability, and feasibility of
the use of cNPTs in both clinical and research settings (e.g.,
Robbins et al., 1998; Maruff et al., 2004; Gualtieri and Johnson,
2006; Gur et al., 2010).

The NeuroCognitive Performance Test (NCPT; Lumos Labs,
Inc.) is a brief, repeatable, web-based platform of cognitive
assessments intended to measure functioning across several
cognitive domains including working memory, visuospatial
memory, psychomotor speed, fluid and logical reasoning,
response inhibition, numerical calculation, and selective and
divided attention. To date, the platform includes 18 subtests
that are online adaptations of widely used conventional
neuropsychological tests. The NCPT is being developed as an
assessment tool applicable to a broad population. In clinical
research, the NCPT could have specific utility as a screening tool
for entering participants into trials, or as an outcome measure to
support efficacy; in clinical settings it could aid in the diagnosis
of cognitive impairment and monitor cognitive change over
time.

The NCPT platform is modular and the subtests can be
arranged into customized batteries. Here we present normative
data for more than 130,000 individuals aged 13–89 years from
a NCPT battery that includes 8 subtests and several analyses
to demonstrate reliability and validity of the NCPT battery as
a measure of cognitive performance. In addition, data from
participants who self-reported cognitive impairment was used
to test the ability of the NCPT battery to differentiate clinical
populations from healthy ones, demonstrating potential utility in
research and clinical settings.

METHODS AND RESULTS

Ethical Statement
Since these studies evaluated performance on cognitive
assessments and did not include an intervention they were
exempt from IRB review. Participants were informed prior to
starting the assessment (see Section Participants and Normative
Data below) that their data would be used for research purposes,
and opted in by choosing to take the assessment or not. Data
included in all analyses were de-identified and analyzed in
aggregate in accordance with Lumos Labs’ Privacy Policy
(www.lumosity.com/legal/privacy_policy).

Participants and Normative Data
Data used to generate the normative database were derived in
aggregate from Lumosity subscribers who took the NCPT as
part of their user experience. The majority of these users had
paid for a premium Lumosity subscription. Within 1 week of
their initial sign-up, Lumosity users were invited via email and
an in-app prompt to take the NCPT battery (time 1). Taking
the NCPT was optional and not required for continued use
of Lumosity. Normative data were derived from a sample of
130,140 individuals aged 13–89 years who were generally healthy
(as assessed via self-report survey) and had taken the NCPT
battery at least once (Normative Sample). Participants in the
Normative Sample represented 187 countries, with the majority
from the United States (68.0%), Canada (9.1%), and Australia
(8.6%) (representation from all other countries was <5%, or
14.3% combined). Following completion of the NCPT battery
at time 1, participants were asked to report if they had ever
been diagnosed with a variety of clinical conditions. Anyone
reporting a clinical diagnosis was excluded from the Normative
Sample. Assessment scores were grouped into 5-year age bins
(except for 13–19 and 80–89) and scaled as described below
(see Section Scoring). Analyses to evaluate inter-assessment
correlations, factor structure, and effects of age, education, and
gender were performed using the Normative Sample. Lumosity
users who took the NCPT battery at time 1 were then invited 70
days later via a follow-up email and an in-app prompt to take the
NCPT battery a second time (time 2). Throughout this period,
participants could freely play a variety of cognitive training
games as part of their Lumosity subscription. The cognitive
training games are distinct from the NCPT battery, and none
of the NCPT subtests were presented during this period. A total
of 35,779 users (Pre-Post Sample) took the NCPT battery at
both time points and these data were used to evaluate test-
retest reliability. In order to generate a complete normative
database and conduct the appropriate analyses, only data for
participants who completed all subtests of the NCPT in a single
session were included in the Normative and Pre-Post Samples.
Finally, in a separate study that included 73 young healthy
adults, concurrent validity for five of the eight NCPT subtests
to their corresponding pencil-paper neuropsychological tests was
evaluated. All analyses were conducted in R (R Core Team, 2015).
Demographic characteristics for all participants are summarized
in Table 1.
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TABLE 1 | Demographic characteristics of the groups studied.

Normative

sample

Pre-post sample Concurrent

validity study

Number 130,140 35,779 73

Mean age (range) 46.3 (13.01–89.78) 50.7 (13.01–89.78) 29.0 (21–43)

% Female/Male/ND 53.3/40.1/6.6 58.3/34.4/7.6 38.3/61.7

Years of education (%)

0–12 years 14.4 12.8 0

13–16 years 45.4 44.6 54.8

17+ years 30.2 31.5 23.3

ND 9.9 11.1 21.9

The Normative Sample includes Lumosity users who were generally healthy (as assessed

via self-report survey) and took the NCPT battery at least once; the Pre-Post Sample

includes a subset of the Normative Sample who took the NCPT at time 2; The Concurrent

Validity Study includes individuals from a separate study who took the NCPT and

corresponding pencil-paper assessments.

ND = No Data.

The Neurocognitive Performance Test
Development
In general, NCPT subtests are based on existing pencil-paper
assessments where shifting to computerized administration
would not negatively impact the test mechanic. The process for
developing NCPT subtests consists of six stages, as follows:

1. A specific cognitive function or domain is highlighted as

an area of focus for a new subtest. Based on review of
the neuroscience and neuropsycology literature, a team of
scientists at Lumos Labs evaluates existing neuropsychological
assessments in the designated area to identify a currently
existing assessment, or the fundamental components required
for testing in the designated area. The resulting NCPT subtest
may be a direct computerized, web-based replication of an
existing paper-pencil test (assuming it is open-access), like the
Trail Making Test; or it may based on an existing test but not
an exact replication, like Progressive Matrices.

2. A software engineer develops a beta version of the subtest.

A Lumos Labs scientist will write the subtest specification
for an engineer to follow as he/she develops the beta
version. The specification includes background information,
objective, design mockups, including for a tutorial, copy for
instructions, test mechanics (e.g., 12 objects are presented,
subject responds via arrow buttons), data and metadata
to be stored, and scoring mechanism. The development
process includes several rounds of back and forth between
the developer and the scientist in an iterative process of
development and quality assurance (QA) testing.

3. The beta version undergoes quality assurance testing. When
the final beta version of the subtest is approved by the
scientist, QA testing proceeds, which may result in suggested
changes. Suggested changes are reviewed by the scientist and
implemented, if applicable. QA testing is deemed complete
when no further suggestions are received.

4. The beta version then undergoes user testing. When the beta
version of the subtest is ready, it undergoes user testing in one
of two ways:

4.1. The subtest is included in an online test-retest reliability
study: A subset of Lumosity users are invited via email to
take the new subtest twice, approximately 2 weeks apart.
These experiments run for a few months, with hundreds
of users completing the subtest at both timepoints.

4.2. The subtest is included in the default NCPT battery for
all Lumosity subscribers to take as part of an ongoing
research study of the NCPT. Beta versions of subtests
are not included in the calculation of the Grand Index
score. This testing method generates vast amounts of
performance data quickly, as all Lumosity subscribers are
invited to take the NCPT within the first week of their
subscription and then again 70 days later. Typically this
default NCPT is taken about 400–500 times per day by
Lumosity subscribers.

5. User test data is analyzed. After enough data is gathered,
Lumos Labs scientists analyze score distributions and
psychometric properties such as test-retest reliability. Finally,
the subtest’s correlation with other NCPT subtests and its
position within the factor structure of the full NCPT battery
are examined, as evidence that it is assessing the target
cognitive function.

6. The subtest is released. If the subtest shows good score
distribution, test-retest reliability, and correlation with other
subtests, then it is considered complete and made available
for inclusion in NCPT batteries. If any of these metrics
are unsatisfactory, scientists and developers will work to
make improvements; it will then be tested again in Step 4.
If the improvements do not address the shortcomings, the
assessment is dropped.

Content for the NCPT is algorithmically generated. The
algorithm for each subtest is based on individual subtest
specifications resulting in numerous, randomly generated
alternate forms and offering the possibility of retesting any
number of times without repeating the exact content. The
NCPT subtests are currently published with Adobe Flash 10.1
compatibility. The target frame rate is 30 frames per second. The
Flash file for each subtest loads individually before beginning
the subtest and data is sent at the conclusion of each subtest.
The NCPT is optimized for administration in an unsupervised
environment on desktop or laptop computers with Internet
connectivity. Internet connectivity is required for subtest loading
and data transmission, but not for the active test taking. For each
subtest, users must successfully complete a tutorial and practice
session before they are able to move on to the assessment to
ensure they understand the task requirements.

Scoring
Each NCPT subtest is scaled following a percentile rank-
based inverse normal transformation, a protocol used in well-
accepted measures of cognitive ability such as the Wechsler
Adult Intelligence Scale (Wechsler, 1955). Normative tables are
created for each NCPT subtest. Each of these tables provides the
corresponding scaled score for each observed raw score by 5-year
age bin. To create these age-binned normative tables, the raw
score from each subtest (e.g., the number of correct responses,

Frontiers in Psychology | www.frontiersin.org 3 November 2015 | Volume 6 | Article 1652

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Morrison et al. Reliability and validity of the NeuroCognitive Performance Test

completion time, etc.) is ranked within each age bin to obtain a
percentile for each raw score. The position of that percentile on
a normal distribution is used to convert the raw score to a scaled
score where the distribution has a mean of 100 and a standard
deviation of 15. An example of normalization using the Trail
Making A subtest is shown in Figure 1.

After normative tables are created for each subtest, they are
used to transform an individual’s raw scores to scaled scores
for each subtest included in the battery. These scaled subtest
scores are then summed and the same rank-based inverse normal
transformation is applied to the sum of the scaled subtest scores
for all individuals to calculate an aggregate measure called the
“Grand Index,” which can be interpreted as an overall measure
of cognitive performance for the domains tested. These scaling
procedures provide the benefit of having all scaled scores derived
from an NCPT battery (each subtest scaled score and the Grand
Index) on the same normal distribution that has a mean of 100
and a standard deviation of 15.

Subtests
The NCPT battery used in these analyses is relatively brief, taking
between 20 and 30min to complete, and includes 8 subtests, as
follows:

(1) Arithmetic Reasoning is designed to assess numerical
problem solving ability and requires the participant to
respond as quickly and accurately as possible to arithmetic
problems written in words (e.g., “Four plus two = ”)
(Deloche et al., 1994). The primary measure is number of
correct responses minus number of incorrect responses in
45 s.

(2) Digit Symbol Coding is based on the Digit Symbol
Substitution Task (Royer, 1971) and assesses processing
speed. The subtest lasts 90 s and participants are required
to match a series of numbers that correspond to
randomly generated symbols. The primary measure is
number of correct responses minus number of incorrect
responses.

(3) Forward and (4) Reverse Memory Span assess visual short-
term and working memory, respectively, and are based on
the Corsi Blocks tasks (Milner, 1971). These subtests require
participants to recall a sequence of randomized spatial
locations in either forward or reverse order. The subtest
concludes when three consecutive errors on one sequence
length are made. The primary measure is number correct.

(5) Grammatical Reasoning is based on Baddeley’s Grammatical
Reasoning Test (Baddeley, 1968) and is designed to assess
cognitive flexibility and reasoning. The subtest lasts 45 s
and requires participants to rapidly and accurately evaluate
potentially confusing grammatical statements. The primary
measure is number of correct responses minus number of
incorrect responses.

(6) Progressive Matrices is based on established matrix
reasoning assessments (Raven, 2000) and is designed to
assess problem solving and fluid reasoning. The subtest
lasts up to 17 trials, or concludes when three consecutive
errors are made. The primary measure is number of correct
responses.

(7) Trail Making A and (8) Trail Making B assess attention
and processing speed and are based on the Army Individual
Test Battery (Army Individual Test Battery, 1944) and the
Halstead-Reitan Battery (Reitan andWolfson, 1995). In Trail
Making A participants are required to click on a sequential
series of encircled numbers from 1 to 24. Task requirements
are similar for Trail Making B except the circles include
both numbers and letters and the participant must alternate
sequentially between numbers and letters. For both Trail
Making A and B, the primary measure is completion time
(there is no time limit).

A more detailed description of the NCPT subtests used in these
analyses is provided in Supplementary Data Sheet 2.

Normative Sample
Supplementary Table 1 describes the gender, race, education
level, household income level, and handedness for each 5-year
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FIGURE 1 | NCPT normalization. Score distributions for Trail Making A before (left) and after (right) the normalization procedure. Each NCPT subtest is scaled

following a percentile rank-based inverse normal transformation. The position of that percentile on a normal distribution is used to convert the raw score to a scaled

score where the distribution has a mean of 100 and a standard deviation of 15.
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age bin in the Normative Sample. Participants who took the
NCPT battery at time 1 had a mean age of 46.3 years (range
13–89; 53.3% female). Raw scores for each NCPT subtest in the
battery were normed as described above to calculate the NCPT
Grand Index. The overall mean (SD) for the Grand Index was
100.73 (15.39). Raw scores for each subtest by 5-year age bins
(except 13–19 and 80–89) are provided in Supplementary Table
2. Normative tables by age, education, and gender are provided
in Supplementary Data Sheet 1.

Performance on the NCPT is Sensitive to
Age, Education, and Gender
To examine the effects of demographic variables on baseline
NCPT scores, we performed a multiple linear regression analysis
to predict the non-age-normed sum score from age, education,
and gender. Non-age-normed overall scores were used as the
predicted variable in the model in order to measure the effects
of age as a continuous variable. Non-age-normed scores for each
subtest were generated by the same scaling procedure on the
entire Normative Sample (i.e., without age-binning the scores
first). The non-age-normed subtest scores were then summed
to generate an overall score. Age and education (years) were
continuous numeric variables and gender was a factor with males
as the reference group. Themodel also included interaction terms
for age X gender, age X education, and gender X education.
Included in the model were 110,551 participants for whom
complete demographic data were available.

The predictors in the model explained 36.1% of the variance
in the NCPT score [R2 = 0.361, F(6, 110544) = 104100, p <

0.001] (Table 2). The effect of age was significant (β = −0.797,
p < 0.001) with peak performance occurring at approximately
age 25 and then declining linearly (Figure 2A). The effect of
age on the individual subtests was further explored and the
same general trend observed: performance peaks in the 20 s and
then steadily declines with increasing age (Salthouse, 1996). The
decline in performance with age after 25 years appears linear
for most subtests with the exception of Arithmetic Reasoning,
Grammatical Reasoning, and Trail Making B (Figure 2B).

The effect of education was also significant (β = 13.291,
p < 0.001) with Grand Index scores increasing with number
of years of education (Figure 3A). The same trend was observed

TABLE 2 | Linear regression model for age, education, gender.

Estimate Std. Error t-value Pr(>|t|)

Intercept 748.073001 2.925407 255.716 <2e-16**

Gender (female) −11.766653 2.465341 −4.773 1.82e-06**

Education 13.290844 0.193952 68.526 <2e-16**

Age −0.797219 0.062988 −12.657 <2e-16**

Education X Age −0.139730 0.003975 −35.151 < 2e-16**

Gender X Education −0.342012 0.150970 −2.265 0.0235*

Gender X Age 0.201607 0.024660 8.176 2.98e-16**

Modeling the effects demographic of demographic variables on baseline NCPT score.

Age and education are continuous variables, and gender is a factor with males as the

reference. The overall model had an R2 of 0.36 [F(6, 110544) = 1.041e4, p < 2.2e−16 ].

Significance codes: **p < 0.001, *p < 0.01.

for each subtest, with increasing years of education correlated
to higher subtest scores (Figure 3B). The interaction between
age and education was also significant (β = −0.139, p <

0.001) suggesting the positivemain effect of education diminishes
with age.

The mean (SD) Grand Index scores for males was 100.99
(14.62) and for females was 99.54 (14.62). Themodel showed that
the effect of gender was significant (β = −11.767, p < 0.001),
as were the interaction between age and gender (β = 0.202,
p < 0.001) (Figure 4A) and education and gender (β = −0.342,
p = 0.024) (Figure 4B). The positive interaction between age
and gender suggests that the negative main effect of gender
diminishes with age, whereas the negative interaction between
education and gender suggests that education has a greater
positive impact on males compared to females.

NCPT Subtests Are Positively Correlated
Yet Capture Distinct Cognitive Abilities
Pearson correlations were calculated for each pair of subtests in
the battery using the scaled subtest scores of the N = 130,140
participants who took the NCPT at time 1. Subtest scores were
scaled based on the age-normed tables from time 1 as described
above.

Pearson correlations comparing each of the NCPT subtests
to the other subtests in the battery showed that each NCPT
subtest was significantly correlated with performance on more
than one other subtest (p < 0.0001 for all correlations). Seven
of the 8 subtests correlated at least r = 0.3 with at least one
other subtest, suggesting reasonable factorability. Correlations
ranged from r = 0.14 (Trail Making A:Progressive Matrices) to
r = 0.52 (Forward Memory Span:Reverse Memory Span). The
correlations are depicted in a heat map in Figure 5. The heat
map suggests three groupings that share higher correlations, as
follows: (1) Arithmetic Reasoning, Grammatical Reasoning, and
Digit Symbol Coding; (2) Forward and Reverse Memory Span;
and (3) Trail Making A and Trail Making B. Progressive Matrices
does not appear to correlate strongly with any other subtest. This
was further supported using a Euclidian distance matrix to create
a dendrogram of the NCPT subtests (Supplementary Image 1).
Initially, each subtest was assigned to its own cluster and then
the algorithm proceeded iteratively, at each stage joining the
two most similar clusters, continuing until there was just a
single cluster. Using this methodology, the right-most position
of the dendrogram nodes appears to support the three groupings
derived from the subtest correlation matrix.

To further understand construct validity, factor analysis was
performed in order tomaximize the ability to explain the variance
of the observed subtest scores (Ford et al., 1986). To determine
the number of factors, we first performed parallel analysis with
10,000 iterations using the psych package for R (Revelle, 2015),
which resulted in a four-factor structure. In parallel analysis,
the eigenvalues of factors from the observed data are compared
with those of a random data matrix of the same size and
factors with eigenvalues greater than zero are retained. Factor
analysis was performed on the normalized subtest scores from
the Normative Sample using the factanal function from the stats
package in R (R Core Team, 2015) for a four-factor solution
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FIGURE 2 | Effect of age on individual NCPT subtest scores and overall sum score. (A) The effect of age on the Grand Index was significant with peak

performance occurring around age 25 and then declining in a linear fashion. (B) The effect of age on the individual subtests followed the same general trend. The

decline in performance with age after 25 years appears linear for most subtests with the exception of Arithmetic Reasoning, Grammatical Reasoning, and Trail Making

B. The curves were smoothed with a General Additive Model (GAM), a type of general linear model in which the linear predictor depends on linear smoothed functions

(Wood, 2011). GAM was selected over a simple linear smoother because we observed that the effect of age on NCPT scores was non-linear. TA, Trail Making A; TB,

Trail Making B; DSC, Digit Symbol Coding; FMS, Forward Memory Span; RMS, Reverse Memory Span; PM, Progressive Matrices; AR, Arithmetic Reasoning; GR,

Grammatical Reasoning.

FIGURE 3 | Effect of education on NCPT Grand Index score and individual NCPT subtest scores. (A) The effect of education on the Grand Index was

significant with scores increasing with number of years education. (B) The same trend was observed for each subtest, with increasing years of education correlated to

higher subtest scores. The curves were smoothed with a GAM function. GAM was selected over a simple linear smoother because we observed that the effect of

education on NCPT scores was non-linear. TA, Trail Making A; TB, Trail Making B; DSC, Digit Symbol Coding; FMS, Forward Memory Span; RMS, Reverse Memory

Span; PM, Progressive Matrices; AR, Arithmetic Reasoning; GR, Grammatical Reasoning.

with varimax rotation (Table 3). The four-factor solution was
significant [χ2

(2)
= 19.01, p < 0.001] indicating the model is

not satisfactory; however, because the sample size is large it does
not automatically result in rejecting the model. The root mean
square error of approximation (RMSEA) = 0.0081 (95% CI =
0.004, 0.012) indicative of acceptable model fit (Hu and Bentler,
1999).

The four factors explained a total of 44.7% of the
variance in the subtest scores. Based on the cognitive domains
captured by the subtests, the factors can be grouped with the
following labels: (1) Mental Flexibility: Digit Symbol Coding,
Arithmetic Reasoning, and Grammatical Reasoning (Baddeley,
1968; Prabhakaran et al., 2001), (2) Memory: Forward Memory
Span and Reverse Memory Span (Richardson, 2007), and (3)
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FIGURE 4 | Effect of gender on NCPT Grand Index score. (A) The interaction between age and gender was significant and suggests that the negative main effect

of gender diminishes with age. The y axis is the non-age-normed NCPT sum score. (B) The interaction between education and gender was significant and suggests

that education has a greater positive impact on males compared to females. The y axis is the non-age-normed NCPT sum score. The curves were smoothed with a

GAM function. GAM was selected over a simple linear model because we observed that the effect of gender on NCPT scores was non-linear.

FIGURE 5 | Inter-assessment correlations. Heat map showing that each NCPT subtest was significantly correlated with performance on more than one other

subtest. The heat map suggests three groupings that share higher correlations, as follows: (1) Arithmetic Reasoning (AR), Grammatical Reasoning (GR), and Digit

Symbol Coding (DSC); (2) Forward (FMS) and Reverse Memory Span (RMS); and (3) Trail Making A (TA) and Trail Making B (TB). Progressive Matrices (PM) does not

appear to correlate strongly with any other subtest.

Attention and Speed of Processing: Trail Making A and Trail
Making B (Army Individual Test Battery, 1944). Progressive
Matrices, which did not group under these labels, is a measure

of fluid intelligence (Prabhakaran et al., 1997). Progressive
Matrices did not contribute to a simple factor structure,
loading equally to Factors 1, 2, and 4, and failed to meet a
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minimum criteria of having a primary factor loading of 0.4
or above, and no cross-loading of 0.3 or above (Ford et al.,
1986).

The NCPT Grand Index is Repeatable and
Reliable
Participants included in the Pre-Post Sample (N = 35,779)
took the NCPT battery at time 1 and time 2 and were included
in the analysis of test-retest reliability. The mean age of the
Pre-Post Sample was 50.7 years (range 13–89; 50.7% female).
Participants were invited to take the NCPT 70 days after the first
administration, yet they had the ability to navigate directly to the
NCPT and take the second test at any time. Due to this variability,
the mean Inter-test Interval (ITI) was 78.8 days, ranging from
29 to 235 days. Scores at time 2 were scaled using the original
normative tables from the Normative Sample (N = 130,140).
Test-retest reliability of the NCPT battery was calculated with
Pearson correlations and 95% CIs for each subtest and for the
Grand Index at time 1 and time 2. The correlation between
NCPT Grand Index scores at time 1 and time 2 demonstrated

TABLE 3 | Factor analysis.

Factor 1 Factor 2 Factor 3 Factor 4

Trail Making A 0.186 0.178 0.671

Trail Making B 0.376 0.228 0.455 0.300

Forward memory span 0.179 0.621 0.196

Reverse memory span 0.158 0.731 0.158 0.112

Digit symbol coding 0.450 0.260 0.388

Progressive matrices 0.219 0.217 0.211

Arithmetic reasoning 0.754 0.154 0.211

Grammatical reasoning 0.442 0.160 0.160 0.218

Proportion of total variance 0.156 0.146 0.118 0.026

Cumulative variance 0.302 0.420 0.447

Factor loadings for the 4-factor model of scaled NCPT subtest scores. Loadings greater

than 0.4 are bolded.

strong test-retest reliability for the Grand Index (r = 0.831; 95%
CI [0.829, 0.832]; p < 0.001). Reliability of the Grand Index
was good for all ages and ranged from 0.756 in participants
age 80–89 to 0.848 in participants aged 13–19 (Supplementary
Table 3).

Test-retest reliabilities for each of the 8 subtests were
statistically significant (p < 0.001) and ranged from 0.388
for Progressive Matrices (95% CI 0.383, 0.393) to 0.738 for
Digit Symbol Coding (95% CI 0.735, 0.740). A non-parametric
bootstrapping procedure with 10,000 iterations was performed
to calculate the median, inter-quartile range (IQR), and non-
parametric 95% CI (i.e., based on the 2.5 and 97.5% of
the distribution) test-retest reliabilities for each subtest and
the Grand Index. Pearson correlations, IQR, and 95% CIs
for each NCPT subtest in the battery are listed in Table 4.
Published reliabilities for the traditional pencil-paper correlates
are provided in Supplementary Table 5.

To explore whether the low reliability for ProgressiveMatrices
had an effect on the overall reliability of the Grand Index, Pearson
correlations for the Grand Index scores at time 1 and time 2 were
repeated without including Progressive Matrices. The reliability
for the Grand Index without Progressive Matrices was nearly
identical (r = 0.833; 95% CI [0.830, 0.836]), and a Fisher r-
to-z transformation comparing correlation coefficients showed
that they were not statistically significantly different (z = 0.95,
p = 0.342).

Because of the wide range in ITI, the interaction of ITI
duration and test-retest reliability was evaluated. Based on a
mean (SD) ITI of 78.8 (19.86) days, ITI range was divided into
four bins based on 0.5 standard deviations of the mean ITI: <

0.5 SD (29–68 days), mean ITI ± 0.5 SD (69–88 days), 0.5–1.5
SD (89–108 days), and >1.5 SD (109–235 days). Because the
sample size in the two extreme bins was small with large standard
deviations for reliability of the mean Grand Index (0.55 and 0.28,
respectively) Pearson correlations and 95% CIs for the median
Grand Index were calculated for each of the bins and found to
be highest for an ITI of 29–68 days (r = 0.87 [0.50, 0.78])
and relatively indistinguishable for the other ITI groups (0.83

TABLE 4 | NCPT test-retest correlations.

NCPT subtest Pearson’s r 95% CI Bootstrap statistics

Median 95% CI IQR

Grand index 0.831 [0.829, 0.832] 0.831 [0.827, 0.834] 0.0024

Trail Making A 0.570 [0.566, 0.574] 0.570 [0.561, 0.579] 0.0058

Trail Making B 0.529 [0.525, 0.533] 0.529 [0.521, 0.538] 00057

Digit symbol coding 0.738 [0.735, 0.740] 0.738 [0.732, 0.743] 0.0039

Forward memory span 0.530 [0.526, 0.533] 0.529 [0.522, 0.537] 0.0054

Reverse memory span 0.510 [0.506, 0.514] 0.510 [0.502, 0.518] 0.0056

Progressive matrices 0.388 [0.383, 0.393] 0.388 [0.379, 0.397] 0.0062

Arithmetic reasoning 0.734 [0.732, 0.737] 0.735 [0.729, 0.740] 0.0036

Grammatical reasoning 0.533 [0.529, 0.537] 0.533 [0.526, 0.541] 0.0055

Pearson’s correlations and 95%CIs for test-retest reliability for each of the subtests and the Grand Index as measured from the Pre-Post Sample. Correlations between NCPT Grand

Index scores at time 1 and time 2 (mean ITI = 78.8 days, range 29–235 days) demonstrated strong test-retest reliability for the Grand Index. Test-retest reliabilities for scaled scores for

each subtest were all statistically significant (p < 0.001). A non-parametric bootstrapping procedure with 10,000 iterations was performed to calculate the median, 95%CI, and IQR.
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[0.83, 0.84], 0.84 [0.81, 0.84], and 0.85, [0.78, 0.81] respectively;
Supplementary Table 4).

Participants were also free to play Lumosity between testing at
time 1 and time 2. The number of unique days a user played at
least one Lumosity game was used as the measure of engagement
and the effect of unique days played on test-retest reliability was
evaluated. Participants played at least one game a mean (SD) of
36.7 (19.2) days, ranging from 0 to 185 days. Because the number
of unique days played was skewed to the left, Pearson correlations
and 95% CIs for each quartile of unique days playing Lumosity
were calculated for the Grand Index score and were found to
be highest for the shortest number of unique days: 0–22 days:
r = 0.906 (0.902–0.910); 23–37 days: r = 0.830 (0.824–0.837);
38–51 days: r = 0.831 (0.824–0.837); 51–185 days: r = 0.835
(0.829–0.842).

To evaluate the effect of days played on test-retest reliability,
we first constructed a linear model predicting Grand Index score
at time 2 from the number of days playing Lumosity, controlling
for Grand Index at time 1 (Grand Index 2 ∼ Grand Index
1 + unique days played). The R2 for this model was 0.6947
[F(2, 35776) = 4.071E4, p < 0.001]. The R2 for this model is a
combination of the variance explained by score at time 1, which
can be interpreted as a measure of test-retest reliability, and the
variance explained by the linear effect of the number of days the
participant played. The proportion of variance remaining (1–R2),
is equal to the sum of the squared residuals from this model
divided by the total sum of squares for the scores at time 2 and
to the mean of the squared residuals from the model divided by
the variance of the scores at time 2.

The squared residuals, whose mean based on the equalities
noted above, is equal to (1–R2) ∗ s2, where s2 is the variance
in scores at time 2 and R2 is the proportion of that variance
accounted for by the model. In order to address whether
the remaining variance might be due to differences in test-
retest reliability at different amounts of days playing Lumosity,
the squared residuals from the first model were used as the
outcome measure for a second model using days played as
the predictor (square residuals from model 1 ∼ unique days
playing). If reliability were lower for participants who played
more often, the average value of the squared residuals from
the first model would be greater at higher values of number of
days played, resulting in a positive coefficient for days played
in the second model, whereas if reliability were higher for
participants who played more often, the average value of the
squared residuals would be smaller at these values, resulting in
a negative coefficient for days played in the second model. In
the second model, the effect of number of days played was not
significant (β = 0.042, p = 0.163) nor was the overall model
[R2 = 5.427E−5, F(1, 35777) = 1.942, p = 0.1635], suggesting
that the residuals don’t grow or shrink linearly with increasing
number of days playing Lumosity, though there is a slight trend
toward increasing variance, and thus decreasing reliability, with
more days played.

Since the prescribed ITI was 70 days, test-retest reliability for
those who did not play Lumosity (0 unique days; N = 161)
were compared to those who played 70 days (N = 177). Pearson
correlations and 95% CIs for those who did not play Lumosity

between testing was r = 0.846 (0.796–0.885) and for those who
played 70 days was r = 0.836 (0.785–0.875). A Fisher r-to-z
transformation was used to compare correlation coefficients and
found not to be significant (z = 0.32, p = 0.749) confirming no
effect of unique days played on reliability.

The number of games played during the ITI was also evaluated
for its effect on test-retest reliability. Participants played a mean
(SD) 353.7 (432.2) Lumosty games during the ITI (range 0–
8997). Pearson correlations and 95% CIs for each quartile of
number of Lumosity games played were calculated for the Grand
Index score and were found to be similar for each quartile: 0–
135 games: r = 0.830 (0.823–0.836); 136–240 games: r = 0.834
(0.827–0.840); 241–395 games: r = 0.834 (0.828–0.840); ≥ 396
games: r = 0.830 (0.823–0.837). Repeating themodel above using
number of games played instead of unique days played revealed a
small, yet significant effect on the squared residuals (β = 0.0064,
p < 0.0001) and the model was significant [R2 = 0.00062,
F(1, 35777) = 22.1, p < 0.0001], indicating that the number of
games played has a greater effect on test-retest reliability than
does number of days at least one game was played.

The NCPT Demonstrates Good
Concordance to Comparator Pencil-paper
Neuropsychological Tests
Concurrent validity of NCPT subtests to corresponding pencil-
paper assessments was determined in a study in which
participants were equally randomized (i.e., 1:1) to receive the
NCPT followed by a pencil-paper neuropsychological test battery
of corresponding assessments (or vice versa) in a single session.
Assessments were administered in a lab setting by a trained rater.
Both assessment batteries were performed once within a session
that took approximately 1 h to complete.

A shortened NCPT battery with 5 subtests was used in
this study; Arithmetic Reasoning, Grammatical Reasoning, and
Progressive Matrices were excluded in order to focus on subtests
with well-known, widely used pencil-paper correlates that could
be administered in the allotted time for each participant. The
corresponding pencil-paper assessments were HRB Trail Making
Test, Parts A and B, BACS Digit Symbol Coding, and Wechsler
Memory Scale III Forward and Reverse Spatial Span (see
Table 5).

The study enrolled 73 adults with a mean age of 29 years
(range 21–43; 38.3% female) who reported being in good general
health with no known cognitive impairment or visual or hearing
impairment that could affect testing. Participants had a mean
(SD) 16.95 (2.0) years education at the time of participation.
All participants reviewed and signed informed consent prior to
participating in the study.

Pearson correlations between raw scores on NCPT subtests
and comparator pencil-paper assessments were calculated to
determine the extent to which performance on each NCPT
subtest correlated with performance on the comparator
assessment. Correlations between NCPT subtests and
corresponding pencil-paper assessments were moderate to
large. Individual correlations (Pearson’s r) are provided in
Table 5.
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Ability to Differentiate Individuals with
Cognitive Impairment
NCPT scores for 1493 individuals 50 years of age and older
who self-reported Mild Cognitive Impairment (MCI) and for
105 individuals who self-reported Alzheimer’s Disease (AD)
were compared to age, education, and gender matched healthy
controls (HC) from the Normative Sample (i.e., those who
reported no clinical diagnoses). Matching was performed using
the Matching package in R (Sekhon, 2011). For each individual
in the MCI or AD groups, an individual who exactly matched
on all three factors—age, gender, and education—was identified
from the Normative Sample without replacement until a matched
group of equal size was generated (i.e., N = 1493 for MCI-
matched healthy control group and N = 105 for AD-matched
healthy control group). The mean (SD) age for those who self-
reported MCI (and the MCI-matched HC) was 65.2 (8.53) years
and those who self-reported AD (and the AD- matched HC) was
68.8 (8.31) years (Table 6).

As this procedure can be sensitive to the order in which MCI
or AD participants are selected for the matching, it was repeated

TABLE 5 | NCPT subtests and corresponding pencil-paper assessments

for concurrent validity.

NCPT subtests Pencil-paper assessments Pearson’s r

Trail Making A HRB Army Trail Making Test Part A

(Reitan and Wolfson, 1995)

0.47**

Trail Making B HRB Army Trail Making Test Part B

(Reitan and Wolfson, 1995)

0.58**

Digit symbol

coding

BACS Symbol Coding (MATRICS)

(Keefe et al., 2004; Nuechterlein et al., 2008)

0.71**

Forward

memory span

Wechsler Memory Scale (WMS-III) Forward

Spatial Span Board (MATRICS)

(Wechsler, 1945; Nuechterlein et al., 2008)

0.48*

Reverse memory

span

Wechsler Memory Scale (WMS-III) Reverse

Spatial Span Board (MATRICS)

(Wechsler, 1945; Nuechterlein et al., 2008)

0.55**

Concordance between NCPT subtests and corresponding pencil-paper tests were

significant.

Significance codes: **p < 0.01; *p < 0.05.

TABLE 6 | Demographic characteristics for self-report MCI and AD

diagnoses.

MCI AD All HC ≥50

Number 1493 105 60,191

Mean (SD) age 65.2 (8.53) 68.8 (8.31) 62.1 (7.76)

% Female/Male 58.9/41.1 51.4/48.6 71.8/28.2

Years of education (%)

0–12 years 10.2 13.3 13.9

13–16 years 48.3 43.8 44.2

17+ years 34.1 36.2 32.1

ND 7.6 6.7 9.7

Summary data for individuals 50 years of age and older who self-reported Mild Cognitive

Impairment (MCI) or Alzheimer’s Disease (AD) are presented along with summary data for

healthy controls (HC) 50 years of age and older from the Normative Sample.

ND = No Data.

1000 times in order to obtain a range of estimates. After each
run, a paired Student’s t-test was performed to determine if the
MCI and AD groups’ mean Grand Index scores were significantly
different from those of thematched healthy controls. For theMCI
group, the mean difference (HC—MCI) in Grand Index scores
ranged from 10.00 to 12.41 (mean 11.00). The t-test showed a
significant difference between MCI and HCs in all 1000 datasets
(T-statistic range [−22.42, −17.57], all p < 10−63). For the AD
group, the mean difference (HC—AD) in Grand Index scores
ranged from 12.19 to 19.92 (mean 16.18). The t-test showed a
significant difference between AD and HCs in all 1000 datasets
(T-statistic range [−10.12,−5.44], all p < 10−6).

As verification for the comparisons, a One-Way analysis
of variance (ANOVA) was calculated comparing Grand Index
scores for all HC participants 50 years of age or older from the
Normative Sample (N = 60, 191) to those who self-reported
MCI or AD and was found to be significant, F(2,61,967) = 567.76,
p < 0.001. Compared to HC participants, the Grand Index score
was 0.78 SD (p < 0.05) lower for those who self-reported MCI
and 1.17 SD (p < 0.05) lower for those who self-reported AD
(Figure 6). These results suggest that in this group of older adults,
those indicating a diagnosis of MCI or AD performed worse
on the NCPT battery compared to age, gender, and education
matched controls (Table 7) as well as the entire sample of healthy
adults over 50.

Further, a Welch unpaired, two-sample t-test comparing
Grand Index scores for those who self-reported MCI to those
who self-reported AD was performed. The Welch t-test is an
adaptation of the Student’s t-test and considered more reliable
when the two samples have unequal variance and unequal sample
size. The results of the Welch t-test were significant; t(116.83) =

2.98, p = 0.0035, suggesting that mean Grand Index scores can
be differentiated between these two self-report diagnoses.

FIGURE 6 | Box plots of NCPT Grand Index scores for self-report MCI,

AD, and healthy controls. Compared to all healthy controls in the Normative

Sample, the Grand Index score was 0.78 SD (p < 0.05) lower for those who

self-reported MCI and 1.17 SD (p < 0.05) lower for those who self-reported

AD suggesting the NCPT is able to differentiate those who self-report MCI or

AD from those who don’t.
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TABLE 7 | NCPT grand index and subtest scores for self-report MCI and

AD and matched controls.

Healthy Controls (HC) MCI AD

N 60,191 1493 105

Grand index 100.2 (14.49) 89.2 (15.82) 84.1 (17.12)

Trail Making A 100.0 (14.97) 92.2 (14.79) 90.3 (15.06)

Trail Making B 100.0 (14.97) 91.9 (15.46) 88.0 (16.39)

Forward memory span 103.0 (15.04) 96.5 (15.24) 95.5 (16.12)

Reverse memory span 103.2 (14.97) 96.5 (15.65) 93.8 (16.19)

Digit symbol coding 101.2 (14.94) 90.7 (16.12) 83.9 (18.27)

Progressive matrices 102.5 (15.49) 98.9 (14.80) 98.5 (14.47)

Arithmetic reasoning 101.8 (14.97) 94.3 (15.88) 89.8 (16.18)

Grammatical reasoning 102.2 (14.37) 97.7 (13.58) 93.3 (12.47)

Mean (SD) Grand Index and subtest scores for individuals 50 years of age and older who

self-reported Mild Cognitive Impairment (MCI) or Alzheimer’s Disease (AD). Compared to

healthy controls age 50 and older, the Grand Index score was 0.78 SD (p< 0.05) lower for

those who self-reportedMCI and 1.17 SD (p< 0.05) lower for those who self-reported AD.

DISCUSSION

The NCPT is being developed as an online, repeatable, and
customizable cognitive assessment tool that has a range of
potential utilities in clinical and research settings. In order to
serve these purposes it is important to demonstrate psychometric
properties relevant for the intended use cases, including
normative properties, reliability, concordance to well-accepted
tests, and ability to discriminate. The data presented are derived
from a normative sample of 130,140 generally healthy individuals
aged 13–89 years, representing one of the largest published
normative datasets for a computerized cognitive battery. By
comparison, Gualtieri et al. report normative data for CNS
Vital Signs for 1069 individuals (Gualtieri and Johnson, 2006)
and CANTAB includes an internal normative database of 3000
healthy volunteers (Zygouris and Tsolaki, 2014).

The data demonstrate the validity and reliability of the tested
NCPT battery as ameasure of cognitive performance and support
the feasibility of web-based, unsupervised testing of large cohorts
within the general population.

NCPT subtests were designed to be replications of
standard pencil-paper assessments used in neuropsychological
evaluations; however, it cannot be assumed that the NCPT
subtests have the same response characteristics, reliability, and
validity as traditional pencil-paper assessments simply because
the tests were designed as “look-alikes” (Bauer et al., 2012). In a
study in young healthy adults the NCPT subtests demonstrated
good concordance with corresponding pencil-paper assessments,
supporting concurrent validity. The observed concordance
in this study is likely to be a conservative estimate of true
concordance because the study was restricted to a sample of
young, highly educated adults. Reliability coefficients have been
shown to be lower inmore homogeneous populations (Gulliksen,
1950) so it is reasonable to assume that in a more heterogeneous
sample spanning wider age and education brackets, concordance
between the NCPT subtests and pencil-paper correlates would
be higher. Nevertheless, the moderate to high correlation
coefficients observed supports the feasibility of implementing

the NCPT as an alternative to traditional pencil-paper testing.
Overall, these data supply several “different lines of validity
evidence” which are “all in service of providing information
relevant to a specific intended interpretation of test scores”
(American Educational Research Association, 1999).

All of the subtests in the NCPT battery were found to
positively correlate with one another and factor analyses
indicated that four distinct factors explained the correlational
structure. We observed the following groupings of more
strongly correlated subtests and applied factor labels accordingly:
Arithmetic Reasoning, Grammatical Reasoning, and Digit
Symbol Coding, which assess cognitive flexibility (Baddeley,
1968; Prabhakaran et al., 2001) and loaded most on Factor
1; Forward Memory Span and Reverse Memory Span, which
assess short-term and working memory (Richardson, 2007) and
loaded most strongly on Factor 2; and Trail Making A and
Trail Making B, which are measures of attention and speed
of processing (Army Individual Test Battery, 1944), and load
most strongly on Factor 3 These groupings are in line with the
specific cognitive functions targeted by the standard pencil-paper
neuropsychological assessments on which the NCPT subtests are
based. Progressive Matrices, a measure of fluid reasoning and
problem solving (Prabhakaran et al., 1997), loaded equally on
Factors 1, 3, and 4 and did correlate strongly with other subtests
in this battery. This may not be unexpected since Progressive
Matrices is the only measure of fluid intelligence included in the
tested battery.

A battery with good test-retest reliability increases the
likelihood of obtaining the same scores under multiple
administrations and supports its use as a longitudinal measure of
cognitive performance. Good test-retest reliability indicates that
the battery has minimal measurement error related to random
variance (Anastasi and Urbina, 1997). Neuropsychological tests
have been shown to have good to high test-retest reliability
in the range of r = 0.70–0.90 (Bird et al., 2003; Williams
et al., 2005), with the exception of memory tests, where lower
reliability coefficients have been consistently observed (Dikmen
et al., 1999). The NCPT battery used in these analyses has good
test-retest reliability of r = 0.83 for the Grand Index score with
a mean inter-trial interval of approximately 78.8 days. In general,
reliability of the NCPT battery was highest with the shortest
inter-trial interval and age had no effect until age 50, where
reliability then decreased with increasing age (see Supplementary
Tables 3, 4). The age effects may be due to the interaction of
age-related decline in performance on the NCPT and inter-trial
interval (Lemay et al., 2004).

Overall, the reliability values for each of the NCPT
subtests were within the range reported for other computerized
neurocognitive tests (see Appendix E of Gualtieri and Johnson,
2006). With the exception of Progressive Matrices (r = 0.388),
correlations for the individual subtests at time 1 and time 2 were
moderate ranging from r = 0.510 for Reverse Memory Span to
r = 0.738 for Digit Symbol Coding. These values do trend lower
compared to the original published data (see Supplementary
Table 5). In particular, the relatively low correlation coefficient
for Progressive Matrices observed in the NCPT battery was
in contrast to the high test-retest correlation for pencil-paper
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versions reported by Burke (r = 0.96) (Burke, 2010) and a
computerized version of Raven’s Progressive Matrices reported
by Williams (r = 0.95) (Williams and McCord, 2006). However,
the low reliability for Progressive Matrices had little effect on
the overall reliability of the NCPT Grand Index score; reliability
of the Grand Index without Progressive Matrices was near
identical to the Grand Index reliability including Progressive
Matrices. Digit Symbol Coding, which had the highest correlation
coefficient of the NCPT subtests, was also lower than its pencil
paper correlate, theWAIS Digit Symbol Substitution subtest (r =
0.82) (Wechsler, 1981).

One hypothesis for the lower reliability is that participants
were free to engage with Lumosity during the inter-trial interval;
the range in number of unique days engaging with Lumosity
between testing was broad (0–185 days), as was the total
number of game played (0–8997). Lumosity cognitive training
has been demonstrated to increase NCPT scores (Hardy et al.,
2015). Consistent with this finding, there was a small, but
significant effect on test-retest reliability when number of games
played was the measure of engagement; however, when test-
retest reliability is limited to those participants with no days
playing Lumosity between time 1 and time 2, the correlation
coefficients are nearly identical to those who played 70 unique
days (the prescribed ITI). The low correlation coefficients for
the NCPT subtests compared to their pencil-paper correlates
demonstrates that there is room for improvement in the
reliability of some of the subtests currently in use and highlights
one of the challenges for remote computerized cognitive testing
compared to testing in a controlled, and supervised environment.
It is perhaps, not unexpected that remote, unsupervised,
cognitive testing produces lower test-retest reliability than
testing in a controlled, supervised environment. Despite the
many advantages for remote computerized cognitive testing,
administering neuropsychological tests in the absence of a trained
test administrator is likely to produce more measurement error.
In this particular case, not only was there the opportunity to play
Lumosity between testing, but due to the nature of remote testing
there is also uncertainty around consistent administration. A
simple lack of consistent administration, for example taking the
test in two different rooms or on two different computers, may
lead to lack of consistent measurement results; thus, negatively
impacting reliability.

Practice effects are distinct from day-to-day fluctuations in
performance (i.e., reliability) and refer to a bias that is introduced
at subsequent test sessions, due to familiarity with the test
procedure and also specific test items. It is theoretically possible
for a test to be very reliable and yet show large effects of practice
(Bird et al., 2003). Practice effects have the ability to alter the
interpretation of change in cognitive performance (Collie et al.,
2003). Individual practice effects vary according to age, ability,
and the complexity of the task (Rabbitt et al., 2001). An important
variable influencing practice effects is whether or not alternative
versions or forms of the test are available (Bird et al., 2003).
The ability to customize the NCPT with dynamically generated
content results in a battery with a virtually unlimited number
of versions available making them more repeatable, which may
serve to reduce practice effects related to content. Practice effects

for the tested NCPT battery were minimal; the mean (SD) change
from baseline for those who did not play between testing was
1.1 (8.47) points. Due to the limited alternate forms or versions
for standard pencil-paper assessments, the same cannot be stated
as these standard assessments are prone to practice effects with
repeated applications of the same forms over brief inter-trial
intervals (Wild et al., 2008).

Internal consistency reflects the coherence (or redundancy)
of the components of an assessment and is conceptually
independent of test-retest reliability (McCrae et al., 2011). The
components of the NCPT (i.e., subtests) loaded onto three
distinct factor groupings (in addition to Progressive Matrices)
and while they each contribute to the aggregated score, they
are measuring different cognitive domains. Given the intended
use of the NCPT (measuring longitudinal stability or change in
cognition) test-retest reliability is more relevant than internal
consistency (McCrae et al., 2011). To this end, we report
Pearson’s correlation coefficients to measure test-retest reliability
of each subtest, capture consistency across items within a subtest,
and capture the effects of time and practice on each subtest.

Observed performance on the NCPT subtests demonstrated
expected changes with age, replicating well-known trajectories of
cognitive decline in healthy aging that show lower performance
with increasing age (Salthouse, 1996). Notably for Arithmetic
Reasoning, Grammatical Reasoning, and Trail Making B,
performance peaked in the 20 s and then plateaued (or declined
slowly) until about age 50 before declining in a linear fashion.
In general the pattern of decline as an interaction of age may
be reflective of fluid and crystallized intelligence (Cattell, 1987).
Fluid intelligence is independent of acquired knowledge and
reflects the capacity to think logically and solve problems in
novel situations, whereas crystallized intelligence is the ability to
use skills, knowledge, and experience. Progressive Matrices is an
example of a non-verbal measure of fluid intelligence that does
not rely on crystallized knowledge (Prabhakaran et al., 1997) and
shows the expected approximately linear decline in performance
with increased age (Salthouse, 1996). This is also evident for
subtests such as Trail Making A and Digit Symbol Coding that
include a speeded component, which is known to be highly
susceptible to age (Salthouse, 1996). Arithmetic Reasoning, on
the other hand, is a complex task that requires numerical
calculation (Prabhakaran et al., 2001) and may be more protected
from age-related decline because it relies on components of
crystallized intelligence, including accessing information from
long-termmemory, such as general mathematical knowledge and
reading ability (Prabhakaran et al., 1997, 2001).

Participants with more years of education obtained higher
scores on each of the NCPT subtests and on the Grand Index.
Further investigation on the interaction of age and education
revealed that the decline with age appears less steep for those with
≤ 12 years of education (see Supplementary Image 2). Capitani
et al. (1996) proposed three different patterns of association that
could be expected between age-related decline and education:
(a) Parallelism: The age-related decline runs the same course in
different educational groups, that is, no interaction is observed;
(b) Protection: The age-related decline is attenuated in well-
educated participants; and (c) Confluence: The initial advantage
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of well-educated groups in middle age is reduced in later life.
Using a set of five neuropsychological tests in a group of Italian
subjects aged 40–85 they report differential effects depending on
the test: parallelism was observed for some tests (verbal fluency,
spatial memory, progressive matrices) and protection for others
(visual attention and verbal memory). They did not observe
confluence. In contrast to these findings, visual inspection of the
interaction between age and education for each of the NCPT
subtests (see Supplementary Image 2) suggests that parallelism is
observed for Grammatical Reasoning and Progressive Matrices,
whereas confluence is observed for all other subtests and the
Grand Index score; we do not see any protection.

Differences in Grand Index scores by ethnic groups were not
compared since variability cannot be attributed to ethnicity per
se; rather, they are likely the result of other factors (Rossetti
et al., 2011). Acculturation, quality of education, literacy, and
racial socialization play a more meaningful role in many of
the differences in cognitive functioning that were previously
interpreted as race-related than race/ethnicity in adjusting
expectations for cognitive test scores and improving specificity
of cognitive tests (Manly, 2008).

A validated, unsupervised, web-based cognitive assessment
could have several wide-reaching benefits for measuring
cognitive performance. First, in the medical space, it could
facilitate longitudinal patient monitoring, leading to increased
preventative care and decreased cost of screening and care for
a vast number of medical conditions in which cognition is
affected. Second, for clinical trials, it could serve as a fast and
easy screening tool to evaluate potential clinical trial participants,
creating “trial-ready cohorts” with specific cognitive profiles,
or as an outcome measure, detecting cognitive change due to
intervention. Finally, in research, the ease of deployment of
unsupervised, web-based neurocognitive assessments provides
the opportunity for more large-scale studies that would yield
a better understanding of intervention efficacy and better
characterization of cognitive profiles of healthy and clinical
populations. The initial data reported here may support the use
of the NCPT for all of these applications.

Additionally, as an initial test of the clinical utility of the
NCPT for differentiating those with cognitive impairment from
those who are cognitively normal, an exploratory analysis found
that NCPT Grand Index scores for the tested battery were
found to be 0.78 standard deviations (p < 0.05) lower than
those of age, gender, and education matched healthy adults 50
years and older for those who self-reported a diagnosis of MCI.
Similarly, those who self-reported a diagnosis of AD were 1.17
standard deviations (p < 0.05) lower than older individuals
from the Normative Sample. These data are encouraging given
that the diagnoses were self-reported online and not clinically
confirmed. However, given the basic functional skills needed
to navigate the NCPT subtest tutorials before proceeding to
take the assessment without assistance, this group of self-report
individuals is probably not fully representative of a clinically
confirmed cohort. Follow-up, well-controlled studies in patients
with clinically confirmed diagnoses are needed to establish the
sensitivity and specificity for discriminating those with cognitive
impairment from those who are cognitively normal.

The studies presented do have limitations. First, the data
for the Normative Sample are derived from Lumosity users,
the majority of which have paid for a premium account. These
individuals present a sample that is skewed toward more highly
educated and computer-competent individuals, which is not
fully representative of the general population. It is possible that
normative data from a computer-competent population may be
different compared to a computer-naïve population (Feldstein
et al., 1999). Presumably individuals signed-up for Lumosity
with the intention of participating in computerized cognitive
training. This could introduce bias as the study population is
based largely on computer-literate individuals who may have
been motivated to improve their NCPT scores between testing
at time 1 and time 2. The motivation to improve on their scores
may have resulted in the long inter-trial interval between testing
and impacted the test-retest reliability. However, the effect on
unique days playing Lumosity between testing had no statistically
significant impact on reliability. Second, data for the Normative
Sample were collected using unsupervised remote administration
in which users typically took the assessment at home on their
personal computers. This method of administration presents
challenges that are both common to computerized testing in
general, and specific to the NCPT. Invariably, the method of test
administration for an unsupervised computerized assessment
removes observation by a trained examiner and therefore control
over the test environment. Testing in the absence of an examiner
may result in important information not being collected, for
example level of task engagement, display of emotion, frustration,
or tendency to give up easily when confronted with more
challenging test items (Bauer et al., 2012). Significant changes in
test environment may include testing at different times of day, or
increased distraction during one test compared to the other, that
are likely to impact reliability. Unsupervised, remote testing also
introduces the opportunity to “cheat” the system, for example,
by having someone else take the test. However, with aggregated
analyses as presented, the numbers of users who would have
had to cheat would be extremely large to have any impact on
the quality of the data. Lastly, simply translating or adapting
existing standardized tests to computerized administration does
not assume that these “new” computerized tests have the same
response characteristics, reliability, and validity as traditional
paper-and-pencil tests (or even other computerized assessment
tests) (Schlegel and Gilliland, 2007; Wild et al., 2008). While
we report data to support the reliability and validity of the
current NCPT battery of eight subtests, additional NCPT subtests
have been developed and now total 18. Future plans include
building on the current data to further support validity (face,
content, construct, concurrent, and discriminative), reliability
and stability, and specificity and sensitivity of the NCPT by
running large-scale online and in-clinic studies to generate data
for all NCPT subtests.
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