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Quantum models of concept combinations have been successful in representing various

experimental situations that cannot be accommodated by traditional models based

on classical probability or fuzzy set theory. In many cases, the focus has been on

producing a representation that fits experimental results to validate quantum models.

However, these representations are not always consistent with the cognitive modeling

principles. Moreover, some important issues related to the representation of concepts

such as the dimensionality of the realization space, the uniqueness of solutions, and

the compatibility of measurements, have been overlooked. In this paper, we provide

a dimensional analysis of the realization space for the two-sector Fock space model

for conjunction of concepts focusing on the first and second sectors separately. We

then introduce various representation of concepts that arise from the use of unitary

operators in the realization space. In these concrete representations, a pair of concepts

and their combination are modeled by a single conceptual state, and by a collection of

exemplar-dependent operators. Therefore, they are consistent with cognitive modeling

principles. This framework not only provides a uniform approach to model an entire

data set, but, because all measurement operators are expressed in the same basis,

allows us to address the question of compatibility of measurements. In particular, we

present evidence that it may be possible to predict non-commutative effects from partial

measurements of conceptual combinations.

Keywords: concept combination, quantum cognition, data representation, unitary transformation, conjunction

1. INTRODUCTION

1.1. Concept Combinations in Quantum Cognition
The application of quantum models to cognitive phenomena is an emergent field known as
quantum cognition (Aerts, 2009; Pothos and Busemeyer, 2013). One of the areas in quantum
cognition that has received much attention is the study of concepts and their combinations (Aerts
and Gabora, 2005a,b; Aerts, 2007a,b; Aerts and Sozzo, 2011; Aerts et al., 2013). In a general setting,
a cognitive situation might include multiple concepts forming aggregated structures (Rips, 1995;
Fodor, 1998). For example, the concepts “Fruit” and “Vegetable” can be combined to form a
new concept “Fruit And Vegetable” (Hampton, 1988a). This example of a concept combination

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.01734
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2015.01734&domain=pdf&date_stamp=2015-11-12
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tveloz@gmail.com
http://dx.doi.org/10.3389/fpsyg.2015.01734
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01734/abstract
http://loop.frontiersin.org/people/243982/overview
http://loop.frontiersin.org/people/260394/overview


Veloz and Desjardins Unitary transformations and data representation

is built with the connective “And,” which is also an operation
mathematically defined in logic and probability. The question
becomes, is it possible to apply the mathematical definition of the
connective “And” to build the structure of “Fruit And Vegetable”
from the structures of “Fruit” and “Vegetable”? Cognitive
scientists have performed several experiments measuring various
semantic estimations including typicality, membership, and
similarity of concept combinations built with connectives such
as “And,” and “Not” (Hampton, 1997a, 1988a,b), and adjective-
noun compounds such as “Red Apple” (Medin and Shoben, 1988;
Medin, 1989; Kamp and Partee, 1995). The evidence collected
during two decades of research suggests that it might not be
possible to represent all the experimental data for concept
combinations using the mathematical structures of fuzzy logic or
probability theory. Quantum cognition proposes an alternative
approach.

While traditional models based on classical logic, probability,
or fuzzy set theory have failed to properly account for cognitive
phenomena exhibiting non-classical probabilistic features,
quantum models have consistently provided a framework
that easily encompasses these and other so-called cognitive
biases (Gilovich et al., 2002; Busemeyer et al., 2011) or
paradoxical phenomena (Aerts et al., 2011a). Quantum inspired
models have been successfully developed in the areas of decision
making (Aerts et al., 2011b, 2012b; Busemeyer et al., 2011;
Busemeyer and Bruza, 2012), psychology of categorization
(Aerts and Aerts, 1995; Blutner et al., 2013; Sozzo, 2014), human
memory (Bruza and Cole, 2005; Bruza et al., 2009, 2012), and
finances (Khrennikov, 2009; Haven and Khrennikov, 2013).
In this paper we will focus on the phenomena of concept
conjunction. However, since our analysis and methodology is
based on pure mathematical notions of the quantum mechanical
framework, the results presented in this paper can be extended
to other concept combinations (Veloz, 2015).

Aerts (2009) formally states the conditions that characterize
the existence of a classical probability model for concept
conjunction:

Definition 1. Let µ(A), µ(B), and µ(AB) be the membership
weights of an exemplar p with respect to a pair of conceptsA and B
and their conjunction AB. We say that these membership weights
are classical conjunction data if there exists a Kolmogorovian
probability space (�, σ (�), P), and events EA,EB ∈ σ (�) such
that

P(EA) = µ(A),

P(EB) = µ(B),

P(EA ∩ EB) = µ(AB).

(1)

Classical conjunction data characterizes the membership values
of the conjunction of concepts that can be modeled in a
classical probabilistic framework. It is therefore important to
characterize the notion of classical conjunction data in terms of
the membership weights.

Corollary 1. The membership weights µ(A), µ(B), and µ(AB) of
an exemplar p with respect to conceptsA, B, and their conjunction

AB are classical conjunction data if and only if

0 ≤ µ(AB) ≤ µ(A), (2)

0 ≤ µ(AB) ≤ µ(B), (3)

0 ≤ µ(A)+ µ(B)− µ(AB) ≤ 1. (4)

A large body of experimental evidence and a considerable
amount of data analysis indicate that the membership of
exemplars with respect to concept combinations does not form
classical conjunction data (Fodor and Lepore, 1996; Hampton,
1997a,b; Aerts and Gabora, 2005a,b). Namely, the membership
with respect to the conjunction of concepts is generally larger
than the membership of one of the former concepts, and thus
violates either conditions (2) or (3). This phenomenon is called
single overextension. When conditions (2) and (3) are violated
simultaneously, it is called double overextension. The violation
of condition (4) is called the Kolmogorovian factor violation.
We refer to (Pitowsky, 1989; Aerts, 2009) for an explanation of
this phenomenon.

In Supplementary Table 1, we show two cases reported in
Hampton (1988b). In the first case, the membership weight
µ1(AB) of the item p1 =“coffee table” with respect to the
conjunction A1B1 =“Furniture And Household Appliances”
is single overextended with respect to the membership
weights µ1(A) and µ1(B) of concepts A1 =“Furniture,”
and B1 =“Household Appliances,” respectively. In the second
case, membership weight µ2(AB) of the item p2 =“tree house”
with respect to the conjunction A2B2 =“Building And Dwelling”
is doubly overextended with respect to the membership
weigths µ2(A) and µ2(B) of the concepts A2 =“Building,” and
B2 =“Dwelling,” respectively.

The phenomenon of overextension has also been
demonstrated not only for membership estimations, but
also in typicality (Smith and Osherson, 1981; Hampton, 1996;
Storms et al., 1998), property relevance (Fodor and Lepore, 1996;
Hampton, 1997a,b; Aerts and Gabora, 2005a,b), and probability
estimations (Tversky and Kahneman, 1983; Moro, 2009).

1.2. The Quantum Approach to Concept

Combination
The quantum approach to concepts introduces two fundamental
assumptions that depart from classical approaches:

A1 Concepts are not represented by a set of instances. Instead,
a concept is assumed to exist in a state. A Hilbert space H is
introduced, and a unit vector |ψ〉 ∈ H represents the state of
the concept.

A2 Semantic estimations are not functions over the set of
instances. Instead, a semantic estimation is a measurement
operator,M : H → H, that projects onto a subspace ofH.

Concepts A and B are represented by the states |A〉 and |B〉,
respectively. When we consider the conjunction AB of these
two concepts, there are two different ways to combine the
concepts (Aerts, 2009). The first considers the conjunction of
concepts from an intuitive perspective in the sense that the
connective And does not play a logical role in the combination
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AB; instead the conjunctionAB is viewed as an emergent entity.
In particular, the quantum model assumes that the state of the
combined concept |AB〉 ∈ H is given by a superposition of the
states of conceptsA and B as follows:

|AB〉 = 1√
2
(|A〉 + |B〉). (5)

The second way considers the conjunction of concepts from a
logical perspective, in the sense that And does play a logical
role in the combination AB. In particular, the quantum model
assumes that the state of the combined concept |C〉 is modeled
in the tensor product space H ⊗ H, where each space in
the product captures the representation of the concepts in the
combination, while the entire space represents the conjunction.
The two quantum models of concept combination are presented
in Supplementary Material. These two modes can be unified in
a mathematical framework developed in quantum mechanics
called Fock space (Aerts, 2007a, 2009).

A Fock space is a direct sum of tensor products of Hilbert
spaces, where each space in the sum represents the state space
of a system having different numbers of particles (Meyer, 1995).
For the case of concepts, we model the state of the combination
of two concepts in the two-sector Fock space:

F = H⊕ (H⊗H). (6)

The first space, H, also called the first sector, represents the
concept combination as an emergent entity. The second space,
H ⊗ H, called the second sector, represents the concept
combination as a logical entity. The state of the combined
concept in the two-sector Fock space is hence a superposition of
the two modes of combination.

For example, when |C〉 = |A〉 ⊗ |B〉, the state |ψ〉 of the
concept combination is

|ψ〉 = ne θ1√
2
(|A〉 + |B〉)+

√

1− n2e θ2 |A〉 ⊗ |B〉, (7)

and the membership formula is given by

µ(AB) = n2
(

µ(A)+ µ(B)
2

+ℜ(〈A|M|B〉)
)

+
√

1− n2µ(A)µ(B),

(8)
for 0 ≤ n ≤ 1.

When n = 1, the membership weight µ(AB) corresponds to
the sum of the average of µ(A) and µ(B), plus an interference
term ℜ(〈A|M|B〉) bounded by

−
√

µ(A)µ(B) ≤ ℜ(〈A|M|B〉) ≤
√

µ(A)µ(B).

In the absence of interference, i.e., when ℜ(〈A|M|B〉) = 0,
the membership weight is simply the average of the former
membership weights. This particular case, which has been shown
to provide a good first approximation to exemplars of conceptual
conjunction (Aerts et al., 2012a), is overextended, and therefore
non-classical. When n = 0, the membership weight corresponds

to the productµ(A)µ(B),which is equivalent to the probability of
two joint classical events that are independent. When 0 < n < 1,
the state of the concept is in the superposition of the two modes
of combination.

Finally, the membership operator for a certain exemplar with
respect to the conjunction of two concepts is given by

M
F = M⊕ (M⊗M), (9)

where M is the operator that measures membership of the
exemplar in the first sector, andM⊗Mmeasures themembership
of the exemplar with respect to the two concepts simultaneously
in the second sector.

In addition to providing a suitable mathematical framework
for cognitive models, quantum cognition also offers a different
perspective on cognitive phenomena: uncertainty is described
by means of superposed states (Aerts et al., 2011b), non-logical
coherence involves interference (Aerts, 2009), order effects are
revealed by incompatible measurements (Wang and Busemeyer,
2013), and certain “verb-noun” conceptual combinations mimic
the structure of physically entangled particles (Aerts and Sozzo,
2014).

1.3. The Representation of Data
One of the reasons why quantum models of concept
combinations have not been widely used is that the issue
of data representation has been overlooked. Scholars have
studied the capacity of quantum models to fit semantic
estimations of concept combinations, and have presented
concrete representations of the different estimations to validate
the models (Aerts, 2007a,b, 2009; Aerts et al., 2012a; Sozzo,
2014); these concrete representations, however, model the data
in an exemplar-based fashion, where one operator is used for all
exemplars, but the conceptual state varies with exemplars.

For example, Aerts (2009) builds a quantum model in the
Hilbert space C

3 to consider the exemplars “filing cabinet” and
“heated waterbed” with respect to concepts A =“Furniture,
B =“Household Appliances,” and their conjunction AB. For the
first exemplar, we have µ(A) = 0.97, µ(B) = 0.31, and µ(AB) =
0.53. This case is represented by the vectors

|A〉 = (−0.57+ 0.40 , 0.29− 0.63 , 0.13+ 0.11 ),

|B〉 = (0.39, 0.39, 0.83).
(10)

For the second exemplar, µ(A) = 1, µ(B) = 0.49, and
µ(AB) = 0.78, and the state vectors are given by

|A〉 = (0.71, 0.71, 0),

|B〉 = (0.49, 0.49, 0.71).
(11)

In both casesM is defined by the projection operator

M(x, y, z) → (x, 0, 0). (12)

Such concrete representations are useful to validate models, but
unwieldy if one seeks to build a model that can be used for
studying and comparing large amounts of data. Because the
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state is independent of the exemplar, it must remain the same
for all measurements. But if we require the state representing
the concept to remain fixed, then the number of measurement
operators is restricted by the dimension of the Hilbert space H.
In fact, because the membership operator is usually represented
by the identity projector restricted to a smaller subspace, and
the identity operator of the entire space and the null operator
entail trivial measurements, the number of projectors available
to represent membership measurements is restricted to n −
1, for n = dim(H). This implies that, if we consider n or
more exemplars, then some exemplars will not have a unique
membership operator. These issues become crucial in real-
world situations involving concepts that entail thousands of
exemplars (Tenenbaum et al., 2011).

In Section 2, we take a close look at the concrete
representations of quantum models on each sector of the Fock
space to identify the minimal dimensionality required to reach
the modeling capacity of each of the sectors. In Section 3, we
introduce the notion of unitary transformation for the first and
second sectors of the Fock space separately, and propose concrete
representations for concepts in these two models that require a
single conceptual state, and a collection of exemplar-dependent
operators. In Section 4, we use these representations to advance a
conjecture concerning compatibility of measurements.

2. DIMENSIONALITY ANALYSIS OF THE

TWO-SECTOR FOCK SPACE MODEL

In what follows we determine the dimension of H required to
model concept combinations in the first and second sectors of
the two-sector Fock space model. To explore this question, we
assume H = C

n equipped with the standard inner product, and
analyze how n relates to the representation of concepts.

2.1. First Sector Dimension Analysis
The Hilbert space model for concept conjunction requires two
vectors, |A〉, |B〉 ∈ H, and an orthogonal projector,M : H → H,
such that

〈A|A〉 = 〈B|B〉 = 1, (13)

〈A|B〉 = 0, (14)

〈A|M|A〉 = µ(A), 〈B|M|B〉 = µ(B), (15)

µ(AB) = 1

2
(µ(A)+ µ(B))+ℜ(〈A|M|B〉). (16)

The next theorem shows that n = 3 is sufficient to build a model
that satisfies conditions (13–16).

Theorem 1. Letµ(A), µ(B), andµ(AB) denote the membership of
an exemplar with respect to concepts A, B, and their conjunction
AB. The membership weights are compatible with a complex
Hilbert space modelH = C

3 if and only if

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], (17)

where

ave(AB) = 1

2
(µ(A)+ µ(B)), and

dev(AB) =
√

min(µ(A)µ(B), (1− µ(A))(1− µ(B)).
(18)

Proof. We derive Equation (17) by applying conditions (13–16).
First, ifM is a zero- or three-dimensional projector, then

µ(A) = µ(B) = µ(AB) = 0, or

µ(A) = µ(B) = µ(AB) = 1,
(19)

respectively. Thus, Equation (17) holds, and Equations (13–16)
are satisfied by choosing |A〉 and |B〉 to be any two mutually
orthogonal unit vectors.

Next, we consider the cases where M is either a one- or two-
dimensional projector. We apply conditions (13–16) to vectors
|A〉 and |B〉 in these two cases separately, and combine the results
to obtain (Equation 17).

If M is a one-dimensional projector, then without loss of
generality, we can choose

M(x, y, z) → (x, 0, 0), and

|A〉 = (a1e
iα1 , a2e

iα2 , a3e
iα3 ),

|B〉 = (b1e
iβ1 , b2e

iβ2 , b3e
iβ3 ).

(20)

Note that conditions (13) and (15) are satisfied by choosing the
coefficients in |A〉 and |B〉 as follows:

a1 =
√

µ(A); a2 =
√
λ
√

1− µ(A) ; a3 =
√
1− λ

√

1− µ(A),
b1 =

√

µ(B); b2 =
√
κ
√

1− µ(B) ; b3 =
√
1− κ

√

1− µ(B),
(21)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, Equation (16) implies
that µ(AB) is given by

µ(AB) = 1

2
(µ(A)+ µ(B))+

√

µ(A)µ(B) cos(α1 − β1). (22)

We then apply condition (14) to obtain

−
√

µ(A)µ(B) cos(γ1)

=
√

(1− µ(A))(1− µ(B))F(λ, κ, cos(γ2), cos(γ3)), (23)

−
√

µ(A)µ(B) sin(γ1)

=
√

(1− µ(A))(1− µ(B))F(λ, κ, sin(γ2), sin(γ3)), (24)

where

F(λ, κ, f (x), f (y)) =
(√
λκf (x) +

√

(1− λ)(1− κ)f (y)
)

.

(25)
Since F(λ, κ, cos(γ2), cos(γ3)) is a convex combination of

√
λκ

and
√
(1− λ)(1− κ), we have

|F(λ, κ, cos(γ2), cos(γ3))| ≤ |
√
λκ| + |

√

(1− λ)(1− κ)|. (26)
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We set
√
λ = cos(θ1),

√
κ = cos(θ2), (27)

for θ1, θ2 in [0, π2 ]. Then

√
1− λ = sin(θ1),√
1− κ = sin(θ2).

(28)

Substituting Equations (27) and (28) in Equation (26), we obtain

|F(λ, κ, cos(γ2), cos(γ3))| ≤ | cos(θ1 − θ2)| ≤ 1. (29)

Then Equation (23) implies that

|
√

µ(A)µ(B) cos(γ1)| ≤
√

(1− µ(A))(1− µ(B)). (30)

Therefore, the interference term is bounded as follows:

|
√

µ(A)µ(B) cos(γ1)| ≤ min(
√

µ(A)µ(B),
√

(1− µ(A))(1− µ(B)))
= dev(AB).

(31)

Next, combining Equations (23) and (24), we obtain

µ(A)µ(B) = (1− µ(A))(1− µ(B))F̂(λ, κ, γ2, γ3), (32)

where

F̂(λ, κ, γ2, γ3) = F2(λ, κ, cos(γ2), cos(γ3))

+F2(λ, κ, sin(γ2), sin(γ3)). (33)

Hence,

µ(A)+ µ(B) = 1+ µ(A)µ(B)
(

1− 1

F̂(λ, κ, γ2, γ3)

)

. (34)

We use the parametrization for λ and κ given by Equation (27),
and apply Equations (29–33), to obtain

0 ≤ F̂(λ, κ, γ2, γ3) ≤ cos(θ1 − θ2)2 + sin(θ1 − θ2)2 = 1. (35)

Combining Equations (35) and (34) yields

µ(A)+ µ(B) ≤ 1. (36)

Therefore, when M is a one-dimensional projector,
conditions (13–16) imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], and

µ(A)+ µ(B) ≤ 1.
(37)

Next, consider the case in which M is a two dimensional
projector. Without loss of generality, we can assume

M(x, y, z) → (x, y, 0).

The requirements Equations (13) and (15) are satisfied by
choosing the coefficients in |A〉, |B〉 as follows

a1 =
√
λ
√

µ(A); a2 =
√
1− λ

√

µ(A) ; a3 =
√

1− µ(A),
b1 =

√
κ
√

µ(B); b2 =
√
1− κ

√

µ(B) ; b3 =
√

1− µ(B),
(38)

with 0 ≤ λ ≤ 1, and 0 ≤ κ ≤ 1. Moreover, Equation (16) implies
that µ(AB) is given by

µ(AB) = 1

2
(µ(A)+µ(B))+

√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2)).

(39)
We apply condition (14) to obtain

√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2))

= −
√

(1− µ(A))(1− µ(B)) cos(γ3). (40)

Since F(λ, κ, cos(γ1), cos(γ2)) ≤ 1, Equation (40) implies that

|
√

µ(A)µ(B)F(λ, κ, cos(γ1), cos(γ2))| ≤ min(
√

µ(A)µ(B),
√

(1− µ(A))(1− µ(B)))
= dev(AB).

(41)

We repeat the procedure used in the one-dimensional case to
obtain

µ(A)µ(B)F̂(λ, κ, γ1, γ2) = (1− µ(A))(1− µ(B)). (42)

Since 0 ≤ F̂(λ, κ, γ1, γ2) ≤ 1, Equation (42) yields

1 ≤ µ(A)+ µ(B). (43)

Therefore, when M is a two-dimensional projector,
conditions (13–16) imply

µ(AB) ∈ [ave(AB)− dev(AB), ave(AB)+ dev(AB)], and

1 ≤ µ(A)+ µ(B).
(44)

We complete the proof by merging Equations (37) and (44).

The general case, H = C
n for n > 3, doesn’t provide additional

modeling power since the condition given by Equation (17)
remains. Also, the caseH = C

2 is more restrictive than theH =
C
3 case. In fact, membership data compatible with conditions

(13–16) forH = C
2 must satisfyµ(A)+ µ(B) = 1 (Veloz, 2015).

2.2. Second Sector Dimension Analysis
The second sector of the two-sector Fock space requires a concept
combination state |C〉 ∈ C

n⊗C
n and an operatorM : C

n → C
n,

such that |C〉 restricted to the first sector represents the concept
A, and |C〉 restricted to the second sector represents the concept
B. However, |C〉 cannot in general be decomposed as a tensor
product of the type |CA〉 ⊗ |CB〉, for |CA〉, |CB〉 ∈ C

n. Therefore,
|C〉 is usually a non-separable state.
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To recover the probabilistic structure of the former concepts
in the combination, the operators M ⊗ 1 and 1 ⊗M are applied
to |C〉 to obtain µ(A) and µ(B), respectively. Moreover, since
|C〉 as a whole represents the concept combination AB, then the
operatorM⊗M is applied to |C〉 to obtain µ(AB).

The following definition summarizes how data is represented
in the second sector.

Definition 2. Let µ = {µ(A), µ(B), µ(AB)} be a triplet denoting
the membership of concepts A, B, and their conjunction AB. We
say that the triplet µ admits a representation in C

n ⊗ C
n if there

exists a unit vector |C〉 ∈ C
n⊗C

n, and an operatorM : C
n → C

n

such that

〈C|MA|C〉 = 〈C|M⊗ 1|C〉 = µ(A), (45)

〈C|MB|C〉 = 〈C|1⊗M|C〉 = µ(B), (46)

〈C|M∧|C〉 = 〈C|M⊗M|C〉 = µ(AB). (47)

Let {|i〉}ni=1 be the canonical basis of C
n. Without loss of

generality, we can take M to be an orthogonal projector on the
subspace of C

n spanned by the basis elements |1〉, ..., |r〉, with
r < n. Hence,

M(x1, ..., xn) → (x1, ..., xr, 0, ..., 0).

Next, let |C〉 be a unit vector in C
n ⊗ C

n. That is,

|C〉 =
n

∑

i=1

n
∑

j=1

cije
γij |i〉 ⊗ |j〉, (48)

and

〈C|C〉 =
n

∑

i,j=1

cije
γij〈i| ⊗ 〈j|

n
∑

k,l=1

ckle
γkl |k〉 ⊗ |l〉

=
n

∑

i,j,k,l=1

cijckle
(−γij+γkl)〈i|k〉〈j|l〉

=
n

∑

i,j=1

c2ij = 1.

(49)

We now prove that the operator M and the vector |C〉 above
satisfy Equations (45–47) if and only if µ(A), µ(B), and µ(AB)
are classical conjunction data.

Theorem 2. Let µ = {µ(A), µ(B), µ(AB)} be a triplet denoting
the membership of concepts A, B, and their conjunction AB. The
triplet µ is classical conjunction data if and only if it admits a
representation in C

n ⊗ C
n with n = 2.

Proof. Ifµ admits a representation in C
2⊗C

2, there exists a unit
vector |C〉 ∈ C

2 ⊗ C
2 and an operator M such that Equations

(45–47) are satisfied. If µ(A) = µ(B) = µ(AB) = 0 or 1, we can
choose |C〉 to be any unit vector inC

2⊗C
2, andM to be a zero- or

two-dimensional projector, respectively. Otherwise, let {|1〉, |2〉}

be the canonical basis for C
2. Without loss of generality, we can

define |C〉 by

|C〉 = c11e
γ11 |1〉 ⊗ |1〉 + c12e

γ12 |1〉 ⊗ |2〉 + c21e
γ21 |2〉 ⊗ |1〉

+c22e
γ22 |2〉 ⊗ |2〉,(50)

and M by the one-dimensional projector into the subspace
determined by |1〉. Note that

µ(A) = 〈C|M⊗ 1|C〉 = c211 + c212,

µ(B) = 〈C|1⊗M|C〉 = c211 + c221,

µ(AB) = 〈C|M⊗M|C〉 = c211.

(51)

Then, clearly µ(AB) ≤ µ(A), µ(AB) ≤ µ(B), and since |C〉 is a
unit vector,

µ(A)+ µ(B)− µ(AB) = c211 + c212 + c221 ≤ 1. (52)

Therefore, µ is classical conjunction data. The other implication
is proven by takingM to be the same one-dimensional projector,
and |C〉 such that

c11 =
√

µ(AB),

c12 =
√

µ(A)− µ(AB),
c21 =

√

µ(B)− µ(AB),
c22 =

√

1− µ(A)− µ(B)+ µ(AB),

and γij = 0, for i, j = 1, 2.

Theorem 2 proves the strict equivalence between classical
conjunction data and the model of conjunction built in C

2 ⊗C
2.

3. UNITARY TRANSFORMATIONS AND

DATA REPRESENTATION

We now investigate how multiple exemplars can be concretely
represented using a single concept state. To do so, we use unitary
transformations to identify a basis of the realization space where
multiple exemplars can be represented simultaneously. In this
new framework, concrete representations are consistent with the
cognitive principles of the quantum model of concepts. Namely,
a concept exists in a single state for all exemplars, and the
measurement of membership of an exemplar depends on the
exemplar to be measured rather than on the concept state.

3.1. Data Representation in the First Sector
The following definition and theorem introduce the notion of
data representation in the first sector that is consistent with the
cognitive principles of the quantum model of concepts in C

3.

Definition 3. Let µ = {µi(A), µi(B), µi(AB)}ki=1 be a set of
experimental data, where µi(x) is the semantic estimation of an
exemplar pi with respect to concepts A, B, and their conjunction
AB. A representation of µ in C

3 is defined as a pair of unit vectors
|A〉, |B〉 ∈ C

3, and a collection of orthogonal projectorsMi :C
3 →

C
3 such that conditions (13–16) are satisfied for i = 1, ..., k. We

say (|A〉, |B〉, {Mi}ki=1) is a representation of µ in C
3.
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Theorem 3. Let µ = {µi(A), µi(B), µi(AB)}ki=1 be a set of
experimental data, where µi(x) is the semantic estimation of
exemplar pi with respect to concepts A, B, and their conjunction
AB. The set of data µ has a representation in C

3 if and only if for
all i = 1, ..., k

µi(AB) ∈ [avei(AB)− devi(AB), avei(AB)+ devi(AB)]. (53)

Proof. Let |A〉 = (1, 0, 0), |B〉 = (0, 1, 0), and |C〉 = (0, 0, 1)
be the canonical basis for C

3. We prove that, if Equation (53)
is satisfied for each i = 1, ..., k then there exists an orthogonal
projector Mi such that conditions (13–16) are satisfied for |A〉,
|B〉, andMi.

Since µi(A), µi(B) and µi(AB) satisfy (Equation 53), by
Theorem 1 for each i ∈ {1, ..., k} there exist two vectors,

|Ai〉 = (a1e
α1 , a2e

α2 , a3e
α3 ), |Bi〉 = (b1e

β1 , b2e
β2 , b3e

β3 ),
(54)

and an orthogonal projector M̂i such that Equations (13–16) are
satisfied. Thus, the pair of vectors |Ai〉 and |Bi〉, as constructed
in the proof of Theorem 1, are orthonormal. We set |Ci〉 =
|Ai〉 × |Bi〉 so that the set {|Ai〉, |Bi〉, |Ci〉} forms an orthonormal
basis for C

3 for any i ∈ {1, ..., k}. Next, we define the operator Ui

by

Ui =





〈Ai|A〉 〈Ai|B〉 〈Ai|C〉
〈Bi|A〉 〈Bi|B〉 〈Bi|C〉
〈Ci|A〉 〈Ci|B〉 〈Ci|C〉



 . (55)

Ui is a unitary matrix whose action induces a change from
the basis {|Ai〉, |Bi〉, |Ci〉} to the basis {|A〉, |B〉, |C〉}. Note that
Ui|Ai〉 = |A〉, Ui|Bi〉 = |B〉, and Ui|Ci〉 = |C〉.

We can also use the operator Ui to represent M̂i in the
canonical basis {|A〉, |B〉, |C〉} as follows:

Mi = UiM̂iU
−1
i . (56)

We use the fact that I = U−1
i Ui = UiU

−1
i to show that the

remaining conditions are satisfied. That is, for each i = 1, ..., k,

µi(A) = 〈Ai|M̂i|Ai〉 = 〈AiU
−1
i |UiM̂iU

−1
i |UiAi〉 = 〈A|Mi|A〉,

µi(B) = 〈Bi|M̂i|Bi〉 = 〈BiU−1
i |UiM̂iU

−1
i |UiBi〉 = 〈B|Mi|B〉,

(57)

and

µi(AB) =
1

2
(µ(A)+ µ(B))+ℜ(〈Ai|M̂i|Bi〉)

= 1

2
(µ(A)+ µ(B))+ℜ(〈AiU

−1
i |UiM̂iU

−1
i |UiAi〉)

= 1

2
(µ(A)+ µ(B))+ℜ(〈A|Mi|B〉).

(58)

Theorem 3 provides a data representation in terms of a single pair
of vectors |A〉 and |B〉, and a set of projectorsMi, for i = 1, ..., k,
corresponding to the membership operator for each exemplar.
Since the unitary transformations preserve the inner product

between vectors and operators, the values of the membership
estimations µi(A), µi(B), and µi(AB) are preserved.

Consider for example the exemplars p =“filing cabinet” and
q =“heated waterbed” mentioned in Section 1.3. These can now
be represented by the states |A〉 = (1, 0, 0), |B〉 = (0, 1, 0) and
the following measurement operators

Mp =





0.97 −0.11+ 0.09 0.09+ 0.01
−0.11− 0.09 0.31 0.28+ 0.34
0.09− 0.01 0.28− 0.34 0.72



 ,

Mq =





1 0 0
0 0.49 0.499
0 0.499 0.51



 .

(59)

From a geometric perspective, the operators Mp and Mq

correspond to rotations of the one-dimensional projector
M(x, y, z) → (x, 0, 0) in C

3.

3.2. Data Representation in the Second

Sector
We now apply unitary transformations in the concrete
representations of the tensor product model in C

n⊗C
n. We first

define different types of representations for multiple exemplars,
and then provide explicit representation theorems for the cases
n = 2 and 3.

Definition 4. A zero-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a unit vector |C〉 ∈ C
n ⊗ C

n, and a
collection of orthogonal projectors {MA

i ,M
B
i }ki=1 from C

n ⊗ C
n

to C
n ⊗ C

n, such that conditions (47)–(49) are satisfied with
M

∧
i = M

A
i M

B
i , for i = 1, ..., k. We say (|C〉, {MA

i ,M
B
i }ki=1) is a

zero-type representation of µk
i=1 in C

n ⊗ C
n.

The zero-type representation is, mathematically speaking, the
most general representation in the tensor product model
that is consistent with the modeling principles of quantum
cognition because it assumes a single concept state |C〉, and
a collection of measurements that represent the membership
weight estimations. However, this representation cannot be
appropriately interpreted because MA

i and M
B
i can be entangled

measurements, for i = 1, ..., k.
A more reasonable representation of data assumes thatMA

i =
Mi ⊗ 1, and M

B
i = 1 ⊗ Mi, for i = 1, ..., k. Therefore, these

operators are not entangled because they act on different sides of
C
3 ⊗ C

3.

Definition 5. A first-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a unit vector |C〉 ∈ C
n ⊗ C

n,
and a collection of orthogonal projectors Mi from C

n to C
n, for

i = 1, ..., k, such that (|C〉, {Mi ⊗ 1,1 ⊗ Mi}ki=1) is a zero-type

representation of µk
i=1 in C

n ⊗ C
n.

The first-type representation is a direct extension of the
representation of individual exemplars in Definition 2, and thus
it is interpreted according to such representation: The state
|C〉 describes the situation of having two concepts and their
combination, and Mi represents the semantic estimation of
exemplar pi, i = 1, ..., k.
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The zero- and first-type representations require different
conditions to model a collection of exemplars for a pair of
concepts and their conjunction. While the first-type corresponds
to the natural way to represent a pair of systems in
quantum physics, and thus is the natural way to define a
representation in the tensor product model for concepts, the
zero-type provides a more general way to build concrete
representations because it does not impose a product structure
on the concept state or on the membership operators for the
exemplars.

In fact, from Definitions 4–5 it is trivial to deduce
that a first-type representation is also a zero-type
representation.

The following theorem characterizes the cases when a set of
data has a zero-type representation in C

2 ⊗ C
2.

Theorem 4. The set of data µk
i=1 has a zero-type representation

in C
2 ⊗ C

2 if and only if µi is classical conjunction data for
i = 1, ..., k.

Proof. For each i = 1, ..., k, we use the construction in the proof
of Theorem 2 to obtain a tensor |C̃i〉 and a one-dimensional
projector M̃ such that M̃A

i = M̃ ⊗ 1, M̃B
i = 1 ⊗ M̃, and M̃

∧
i =

M̃⊗ M̃. This gives the tensor product representation of µi. Next,
we use unitary transformations to change this representation so
that |C̃i〉 is a vector in the canonical basis of C2⊗C

2. To facilitate
the notation, we will make use of the isomorphism I between
C
2 ⊗ C

2 and C
4. Let

(1, 0, 0, 0) = |e1〉,
(0, 1, 0, 0) = |e2〉,
(0, 0, 1, 0) = |e3〉,
(0, 0, 0, 1) = |e4〉.

(60)

We define

I(|1〉 ⊗ |1〉) = |e1〉,
I(|1〉 ⊗ |2〉) = |e2〉,
I(|2〉 ⊗ |1〉) = |e3〉,
I(|2〉 ⊗ |2〉) = |e4〉.

(61)

The isomorphism I allows us to represent |C̃i〉 by a vector |Ci〉 in
C
4.
We can prove the theorem by building a unitary

transformation that takes |Ci〉 to one of the canonical basis
vectors of C

4, and use this transformation to represent the
operators M̃A, M̃B, and M̃

∧ by the operators MA, MB, and M
∧

in C
4. Next, we apply the the inverse isomorphism I

−1 to map
these new representations to C

2 ⊗ C
2.

Let |Di〉, |Ei〉, |Fi〉 be three vectors in C
4 such that

〈Di|Di〉 = 〈Ei|Ei〉 = 〈Fi|Fi〉 = 1,

〈Ci|Di〉 = 〈Ci|Ei〉 = 〈Ci|Fi〉 = 0,

〈Di|Ei〉 = 〈Di|Fi〉 = 〈Ei|Fi〉 = 0.

(62)

The vectors |Ci〉, |Di〉, |Ei〉, and |Fi〉 form an orthonormal basis
for C

4.

Let

Ui =









〈Ci|e1〉 〈Ci|e2〉 〈Ci|e3〉 〈Ci|e4〉
〈Di|e1〉 〈Di|e2〉 〈Di|e3〉 〈Di|e4〉
〈Ei|e1〉 〈Ei|e2〉 〈Ei|e3〉 〈Ei|e4〉
〈Fi|e1〉 〈Fi|e2〉 〈Fi|e3〉 〈Fi|e4〉









. (63)

Note that Ui is a unitary matrix whose action induces a change
from the basis {|Ci〉, |Di〉, |Ei〉, |Fi〉} to the basis {|ej〉}4j=1. In fact,

Ui|Ci〉 = |e1〉, Ui|Di〉 = |e2〉, Ui|Ei〉 = |e3〉, and Ui|Fi〉 = |e4〉.

The operator Ui can now be used to change the basis in which
M

A
i ,M

B
i , andM

∧
i are represented, to the basis {|ej〉}4j=1:

M̄
A
i = UiM

A
i U

−1
i ,

M̄
B
i = UiM

B
i U

−1
i ,

M̄
∧
i = UiM

∧
i U

−1
i .

(64)

Since 1 = U−1
i Ui = UiU

−1
i , we obtain

µi(A) = 〈Ci|MA
i |Ci〉 = 〈CiU

−1
i |UiM

A
i U

−1
i |UiCi〉 = 〈e1|M̄A

i |e1〉,
µi(B) = 〈Ci|MB

i |Ci〉 = 〈CiU
−1
i |UiM

B
i U

−1
i |UiCi〉 = 〈e1|M̄B

i |e1〉,
µi(AB) = 〈Ci|M∧

i |Ci〉 = 〈CiU
−1
i |UiM

∧
i U

−1
i |UiCi〉 = 〈e1|M̄∧

i |e1〉.
(65)

We then use the inverse isomorphism I
−1 to obtain a zero-type

representation in C
2 ⊗ C

2:

|C〉 = I
−1(|e1〉) = |1〉 ⊗ |1〉,

M̃
A
i = I

−1
M̄

A
i I,

M̃
B
i = I

−1
M̄

B
i I,

M̃
∧
i = I

−1
M̄

∧
i I.

(66)

We have constructed a zero-type representation (|1〉 ⊗
|1〉, {MA

i ,M
B
i }ki=1) from a collection of representations (|Ci〉,M)

for the exemplars pi with M(x, y) → (x, 0) obtained from
Theorem 2.

In the construction of Theorem 4, note that when
Equation (66) entails operators M

A
i and M

B
i that are of the

form M
i
A = M̌i ⊗ 1 and M

i
B = 1 ⊗ M̌i, then the representation

is also of the first-type.
Stating the necessary and sufficient conditions required for

a set of data to have first-type representation is out of the
scope of this paper. However, we now introduce another type of
representation that is mathematically simpler, and can be used to
obtain sufficient conditions for a first-type representation.

Definition 6. A second-type representation of µk
i=1 on the tensor

product space C
n ⊗ C

n is a pair of unit vectors |A〉,B〉 ∈ C
n,

and a collection of orthogonal projectors Mi from C
n to C

n, for
i = 1, ..., k, such that (|A〉⊗|B〉, {Mi⊗1,1⊗Mi}ki=1) is a zero-type

representation of µk
i=1 in C

n ⊗ C
n.
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The second-type is a mathematical simplification of the first-type
representation that assumes |C〉 to be a product state.

Lemma 1. The set of dataµk
i=1 has a second-type representation in

C
2⊗C

2 if and only if for each i = 1, ..., k there exist |Ai〉, |Bi〉, M̌A
i ,

and M̌B
i such that Equations (45–47) are satisfied.

Proof. Let Ui(A),Ui(B) : C
2 → C

2 be the unitary
transformations that map |Ai〉 to |1〉 and |Bi〉 to |1〉 respectively,
for i = 1, ..., k. Then, it is straightforward to show that
(|1〉⊗ |1〉, {MA

i ⊗1,1⊗M
B
i }ki=1) is a second-type representation

of µk
i=1 with

M
A
i = Ui(A)

−1
M̌

A
i Ui(A),

M
B
i = Ui(B)

−1
M̌

B
i Ui(B).

(67)

Theorem 4 and Lemma 1 characterize the sets of data that
have a zero- and second-type representations. Since the first-type
representation is less general than the zero-type representation,
but more general than the second-type representation, these
results can be applied to obtain an upper and lower bound for
the number of exemplars that have a first-type representation in
a given set of data.

Note that Theorem 4 is built in C
2 ⊗ C

2. We now extend
our results to C

3 ⊗ C
3 so they become compatible with the

representation analysis developed in Section 3.1 for a Hilbert
space model in C

3. The next corollary extends the proof of
Theorem 4 to the space C

3 ⊗ C
3.

Corollary 2. If the set of data µk
i=1 has a zero-type representation

in C
2 ⊗ C

2, then µk
i=1 has a zero-type representation in C

3 ⊗ C
3.

Proof. Let (|C〉, {MA
i ,M

B
i }ki=1) be a zero-type representation of

µk
i=1 in C

2 ⊗ C
2. We can create a vector

|C∗〉 =
3

∑

i,j=1

c∗ij|i〉 ⊗ |j〉 (68)

such that it is the trivial embedding of

|C〉 =
2

∑

i,j=1

cij|i〉 ⊗ |j〉 (69)

in C
3 ⊗ C

3 by choosing

c∗ij =
{

cij i, j ∈ {1, 2}
0 else.

(70)

Similarly, we can also create operatorsMA∗
i andMB∗

i by using the
trivial embedding in such a way that the actions of the operators
M

A
i andMB

i on C
2 ⊗C

2 are preserved. This completes the proof.

Since second-type representations are also first- and zero-type
representations, we can apply Corollary 2 to obtain a first- and
second-type representation in C

3 ⊗ C
3.

4. A CONJECTURE ABOUT

COMPATIBILITY OF EXEMPLARS

In quantum theory, measurement operators can be incompatible.
That is, when we consider two different observables, the result of
their sequential application can depend on the order in which
they are applied. The fact that quantum measurements can be
incompatible is related to fundamental differences between the
quantum and classical realms, such as the observer phenomena,
and the Heisenberg uncertainty principle (Heisenberg, 1927;
Isham, 2001).

Definition 7. Given two operators M1 and M2 represented in
the same basis. We say that M1 and M2 represent compatible
observables if and only if the commutator operator

[M1,M2] = M1M2 −M2M1 = 0. (71)

Otherwise, the operators represent incompatible observables.

In terms of cognitive phenomena, sequential measurements
could be interpreted as consecutive cognitive actions where the
previous action serves as a context for the next action (Busemeyer
and Wang, 2007; Wang and Busemeyer, 2013). Since in our
concrete representations membership operators are represented
in the same basis for all exemplars pi = 1, ..., k, it is now possible
to test whether or not these measurement operators commute. If
we find exemplars whose operators are non-commutative, then
we can conjecture the existence of a fundamental limit to the
precision with which the membership of these exemplars can be
known simultaneously.

Note that we would expect that classical probabilistic
models should be compatible, and because the classical
probabilistic model and the tensor product model are equivalent,
tensor product operators obtained from the data should also
be compatible for the vector representing the conceptual
situation. However, Hilbert space models could exhibit
incompatible measurements for certain data on concept
combination, as the Hilbert space model represents non-classical
measurements.

We introduce the following definitions to characterize the
compatibility of exemplars in C

3 and in C
3 ⊗ C

3:

Definition 8. Let |A〉 = (1, 0, 0), |B〉 = (0, 1, 0), and {M1,M2}
be a representation in C

3 of {(µi(A), µi(B), µi(AB))}2i=1, and set

cA = 〈A|[M1,M2]|A〉,
cB = 〈B|M1,M2]|B〉,

cAB = 1

2
(〈A| + 〈B|)[M1,M2](|A〉 + |B〉).

(72)

We say p1 and p2 are compatible with respect to the concepts A,
B, and AB if and only if cA = 0, cB = 0, and cAB = 0,
respectively.

For simplicity, we will study compatibility for zero-type
representations in C

3 ⊗ C
3.
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Definition 9. Let |C〉 = (1, 0, 0) ⊗ (1, 0, 0), {MA
1 ,M

B
1 ,M

∧
1 }, and

{MA
2 ,M

B
2 ,M

∧
2 } be a zero-type representation of data in C

3⊗C
3 of

{(µi(A), µi(B), µi(AB))}2i=1, and set

c′A = 〈C|[MA
1 ,M

A
2 ]|C〉,

c′B = 〈C|[MB
1 ,M

B
2 ]|C〉,

c′AB = 〈C|[M∧
1 ,M

∧
2 ]|B〉).

(73)

We say p1 and p2 are compatible with respect to concepts A, B,
andAB if and only if c′A = 0, c′B = 0, and c′AB = 0, respectively.

We have verified the compatibility of exemplars for each
conceptual combination that can be modeled in C

3 and in
C
3 ⊗ C

3 using the data in Hampton (1988a,b). The results
support our predictions. We have found that the tensor product
model always leads to compatible measurements, and that the
Hilbert space model leads to incompatible measurements in most
cases.

For example, consider the concepts A = “Machine”
and B =“Vehicle,” and the exemplars p5 =“sailboat” and
p12 =“skateboard.” For the case of conceptual conjunction, we
have

µ5(A) = 0.56, µ5(B) = 0.8, µ5(AB) = 0.42, and

µ12(A) = 0.28, µ12(B) = 0.84, µ12(AB) = 0.34.
(74)

Note that exemplar p5 satisfies the conditions of Theorems 1
and 2. Thus, it can be represented in both C

3 and in C
3 ⊗ C

3.
However, the exemplar p12 is singly overextended. Therefore, we
can only represent the two exemplars simultaneously in C

3.
When we apply Theorems 1 and 3, and Definition 8, on these

data sets, we obtain

cA = 0.084 , cB = 0.097 , and cAB = 0.137 . (75)

Thus, exemplars p5 and p12 are incompatible. Moreover, note
that the incompatibility is larger for the conjunction of the
concepts than for each of the former concepts.

As a second example, consider the concepts A =“Building,”
and B =“Dwelling,” and the exemplars p2 =“cave,” and
p10 =“synagogue,” whose memberships are given by

µ2(A) = 0.28, µ2(B) = 0.85, µ2(AB) = 0.28, and

µ10(A) = 0.93, µ10(B) = 0.49, µ10(AB) = 0.45.
(76)

Both exemplars satisfy the conditions of Theorem 2. Applying
Theorems 2 and 4, and Definition 9, we obtain

c′A = c′B = c′AB = 0.

This is consistent with our expectations because
the representation in the second sector C

3 ⊗ C
3

correspond to classical (and thus compatible)
measurements.

Since our data was collected presenting the exemplars in
only one specific order (Hampton, 1988b), these computations

demonstrate that we can predict order effects by determining
the exemplars that are incompatible. The results presented
here are, however, speculative since there is no experimental
data where order effects have been recorded that could be
used to contrast our computations. While our data set does
not allow us to make a strong claim, we conjecture that
order effects are predictable, and suggest that the concrete
representations proposed in this paper could be used to
develop Heisenberg-like uncertainty relations in the context of
conceptual combinations.

5. CONCLUSION AND FUTURE WORK

In this paper, we have made some advances on the
representational aspects of the quantum model for concept
combinations. First, we proved that the first and second sectors
of the two-sector Fock space model of concept conjunctions
can be concretely represented in C

3 and C
3 ⊗ C

3, respectively.
Next, we introduced unitary transformations to provide
concrete representations that are consistent with the cognitive
principles of the quantum model of concepts, and used these
concrete representations to study the question of measurement
compatibility.

The representations introduced here could be an important
tool for future applications. First, since they are consistent
with the cognitive principles of the quantum model of
concepts, the model could easily be introduced to a wider
audience, and extended to produce concrete representations
in the two-sector Fock space model. Second, they can be
adopted as a representational standard for different groups
who seek to develop their own computational implementations
of the model. Third, the fact that all the measurements
are represented in a single basis constitutes a tremendous
mathematical advantage for studying the probabilistic structure
of concepts.

The evidence obtained in the application of our
representations to the issue of exemplar compatibility is
consistent with the assumptions of the model. Since the second
sector entails logical reasoning, measurements in the tensor
product model should be compatible. However, incompatible
measurements are likely to be found in the Hilbert space model,
since the first sector is associated with non-logical or intuitive
reasoning. Moreover, this line of enquiry invites us to explore
possible relations between the projector operator structure and
the meaning of the exemplar.

In summary, the introduction of unitary transformations
and the subsequent application to develop concrete
representations of concepts and their combinations seems
to be a promising line of research that has the potential to
expand both theoretical and applied research in quantum
cognition.
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