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Speech requires precise motor control and rapid sequencing of highly complex vocal
musculature. Despite its complexity, most people produce spoken language effortlessly.
This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic
loops that control speech–motor output. Understanding the neuro-genetic mechanisms
involved in the correct development and function of these pathways will shed light on
how humans can effortlessly and innately use spoken language and help to elucidate
what goes wrong in speech-language disorders. FOXP2 was the first single gene
identified to cause speech and language disorder. Individuals with FOXP2 mutations
display a severe speech deficit that includes receptive and expressive language
impairments. The neuro-molecular mechanisms controlled by FOXP2 will give insight
into our capacity for speech–motor control, but are only beginning to be unraveled.
Recently FOXP2 was found to regulate genes involved in retinoic acid (RA) signaling and
to modify the cellular response to RA, a key regulator of brain development. Here we
explore evidence that FOXP2 and RA function in overlapping pathways. We summate
evidence at molecular, cellular, and behavioral levels that suggest an interplay between
FOXP2 and RA that may be important for fine motor control and speech–motor output.
We propose RA signaling is an exciting new angle from which to investigate how
neuro-genetic mechanisms can contribute to the (spoken) language ready brain.
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SPEECH AND SPOKEN LANGUAGE

Speech is the primary modality by which humans use language, and human orofacial morphology
is uniquely suited to the production of intricate vocalizations needed for spoken language
(Lieberman, 2007). The orofacial musculature is one of the most complex muscle systems in the
body and in order to successfully produce meaningful speech these muscles must be controlled
and coordinated in rapid sequences involving distributed neuronal circuitry. This motor activity
is generated in several neural loops that select appropriate actions and generate the necessary
motor patterns. One crucial circuit, the cortico-basal ganglia loop, sends activity from the
motor cortex to the striatum (a component of the basal ganglia) where activity is integrated.
Subsequently, outputs from here modulate activity in several thalamic nuclei. Activity from
the thalamus is then sent back to the motor cortex, where a specialized population of output
neurons organizes the complex thalamocortical inputs (Kravitz and Kreitzer, 2012; Calabresi
et al., 2014). These cortical output neurons send the information, via the pyramidal tract,
to motor neurons directly controlling muscle tissue. These neurons are either located in the
spinal cord (controlling limb and body movements), or in the brainstem’s cranial nerve nuclei
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FIGURE 1 | Foxp2 and retinoic acid receptors (RARs) show overlapping expression patterns in motor associated circuitry. (A) An overview of the direct
and indirect pathways represented in the sagittal view showing connectivity between different regions. Dopamine receptor type 1 (D1R) and Dopamine receptor type
2 (D2R) expressing cells in the striatum are separated to highlight direct and indirect pathways. (B) Sagittal Schematic of the mouse brain showing that Foxp2,
RARα, and RARβ are all expressed in motor associated circuitry. RARα and RARβ are expressed in distinct regions, but each receptor partially overlaps with Foxp2.
RARα and Foxp2 can be found in deep layers of the cortex, thalamus, subthalamic nucleus (STN), the internal (GPi) and external (GPe) globus pallidus, cerebellum,
and olfactory bulbs (OB). Foxp2 and RARβ overlap in the striatum. RARα shows non-overlapping expression in the hippocampus (hi.), RARβ in the hypothalamus
(hy), and Foxp2 in the substantia nigra (SN). Connectivity between regions involved in motor processing (including outputs to brain stem nuclei and spinal cord) is
shown by solid lines. The direct (excitatory) and indirect (inhibitory) pathways, which are the two outputs from the striatum, are shown by dashed lines.

(controlling facial and vocal tract movements). An illustration of
the cortico-basal ganglia loop (in the rodent brain) is given in
Figure 1A. Proper connectivity within this pathway is necessary
to enable the precise outputs needed for orofacial muscle
control.

The striatum can be seen as a central hub within the motor
pathway, making it one of the most intriguing regions in which
to investigate properties of motor circuitry and orofacial control.
Striatal activity is especially important for fine motor behavior
and motor skill learning (Doyon et al., 2003) and cortical and
subcortical circuitry, including the striatum, has been established
as highly important for speech–motor control (Lieberman,
2002). Furthermore, increased activation of the basal ganglia
(which incorporates the striatum) has been shown via functional
brain imaging (fMRI) in specific speech–motor language tasks
(Wildgruber et al., 2001; Booth et al., 2007). Lastly, morphological
changes in the striatum have been described in individuals with
speech problems such as stuttering (Craig-McQuaide et al., 2014)
and non-fluent aphasia (Ogar et al., 2007).

The principal cell type in the striatum is the medium spiny
neuron (MSN), which makes up approximately 98% of all striatal
cells (Kemp and Powell, 1971; Huang et al., 1992; for review,
see Kreitzer and Malenka, 2008). MSNs can be further divided
into two categories of neurons that have different connectivity
and opposing functions: dopamine receptor type 1 (D1R) and
dopamine receptor type 2 (D2R) expressing cells (Figure 1A).
D1R expressing MSNs connect to thalamic nuclei via the “direct
pathway” which results in excitation of the motor cortex. D2R
expressing MSNs form an “indirect pathway” that connects to the
thalamus via multiple subcortical regions leading to inhibition of
the thalamus and thus reduced cortical input (Figure 1A), (Albin
et al., 1989; Kravitz and Kreitzer, 2012; Calabresi et al., 2014).

This balance between excitation (resulting in more movement)
and inhibition (less movement) is crucial for coordinated motor
function (Calabresi et al., 2014) including fine orofacial motor
control.

In order to unravel the fundamental components that
enable humans to effortlessly use spoken language, we will
need to understand the neuro-genetic mechanisms involved
in establishment, function, and maintenance of speech–motor
pathways.

SPOKEN LANGUAGE AND FOXP2

A breakthrough in speech and language genetics came with
the identification of the first gene to cause a speech/language
disorder: FOXP2 (Lai et al., 2001). Mutations in FOXP2 were
found in a large pedigree known as the KE family (Hurst
et al., 1990; Fisher et al., 1998; Lai et al., 2001). Affected family
members were diagnosed with a severe speech impairment
known as developmental verbal dyspraxia (also known as
childhood apraxia of speech; OMIM: 602081) and carried a
mutation in one copy of their FOXP2 gene. In addition to
speech impairments, affected family members demonstrated
receptive and expressive language problems (Watkins et al.,
2002a). Although rare, FOXP2 mutations have been found in
a number of unrelated families and individuals with similar
speech/language phenotypes (MacDermot et al., 2005; Feuk et al.,
2006; Shriberg et al., 2006; Lennon et al., 2007; Palka et al.,
2012; Rice et al., 2012; Zilina et al., 2012; for review, see Bacon
and Rappold, 2012). In depth investigations of the KE family
phenotype indicated a severe impairment in orofacial praxis
tasks (Vargha-Khadem et al., 1995; Lai et al., 2001; Watkins
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et al., 2002a). In addition, impairments in language production
tasks (e.g., phoneme addition, word repetition) were found
between control and affected individuals (Vargha-Khadem et al.,
1995). Different aspects of speech are thus impaired in KE
family members (Watkins et al., 2002a). Orofacial praxis deficits
underlie impaired lexicon building and subvocal (internal)
speech representations which can affect irregular verb grammar
(Doyon et al., 2003) and rule based grammar learning (Ullman,
2001). Thus, some of the language impairments in the KE
family could be related to the core speech production deficits
observed.

FOXP2, and its murine homolog Foxp2, are found across
many regions of the developing and postnatal brain (FoxP2
will be used when referring to both species). Intriguing is the
high expression of FoxP2 throughout the mouse and human
cortico-striato-thalamic motor circuitry (Lai et al., 2003). During
early development FoxP2 is broadly expressed in these regions,
but in later developmental and postnatal stages expression
becomes more restricted (Figure 1B depicts Foxp2 expression
in the postnatal mouse brain). In adults, Foxp2 is limited to
deep layer cortical neurons (layer 5 motor cortex and layer
6 throughout; Ferland et al., 2003; Morikawa et al., 2009;
Hisaoka et al., 2010; Tomassy et al., 2010; Reimers-Kipping
et al., 2011; Tsui et al., 2013). Within the striatum, Foxp2
is highly expressed in both types of MSN, though more
commonly in D1R MSNs compared to D2R neurons (Vernes
et al., 2011). Corresponding with its expression pattern, imaging
studies have shown humans with FOXP2 mutations display
structural and functional differences in motor areas. Affected
members of the KE family showed structural gray matter volume
differences in the motor cortex and striatum (Watkins et al.,
2002b). Furthermore, functional imaging studies showed an
underactivation of the striatum and altered cortical activation
(including speech/motor areas such as the left anterior insular
cortex) during word generation and word repetition tasks
(Liegeois et al., 2003).

Converging evidence from FoxP2 expression pattern studies
and phenotypic characterization of human mutations suggests
that FOXP2 may play an important role in the development of
the speech–motor pathway. The high expression of Foxp2 in a
specific subset of neurons (D1RMSNs) in the striatum indicates a
functional specificity related to motor tasks requiring the striato-
thalamic connections of the direct pathway. Malfunctions within
this pathway could ultimately affect aspects of the motor circuitry
related to fine motor control and contribute to the observed
speech–motor deficit in humans.

FOXP2 AS A MOLECULAR ENTRY POINT
INTO SPEECH–MOTOR PATHWAYS

FoxP2 is a transcription factor; its molecular function is to
regulate the expression of other genes, switching them on or
off in a temporally and spatially controlled manner. FoxP2 has
been shown to regulate 100s of different genes involved in
processes crucial to brain development and function, ranging
from neurogenesis and migration, to neurite outgrowth and

synaptic activity (Spiteri et al., 2007; Vernes et al., 2007, 2011;
Konopka et al., 2009; Devanna et al., 2014). Recently, evidence
has suggested that FOXP2 regulates a number of genes involved
in the retinoic acid (RA) signaling pathway (Devanna et al.,
2014). RA is a vitamin-A derivative essential to mammalian
development. Disruption of the RA signaling pathway (caused
by genetic disruptions or dietary deficiencies) can have severe
consequences during development and adulthood (Holson et al.,
1997; Krezel et al., 1998)

Retinoic acid induces genetic and morphological changes in
cells. When neuronal precursors (cells that generate neurons
during development) differentiate into neurons they switch on
genes normally found in mature neurons, stop dividing and
grow long processes known as neurites (Siegenthaler et al., 2009;
Korecka et al., 2013). We previously compared how neuron-
like cells with or without FOXP2 responded to RA and found
that cells showed stronger genetic and morphological changes
in response to RA if FOXP2 was present (Devanna et al.,
2014). In addition we discovered that FOXP2 changed the
expression of RA receptors – proteins that directly control the
cellular response to RA (Devanna et al., 2014). Of particular
interest, FOXP2 upregulated retinoic acid receptor β (RARβ)
and a number of other genes involved in transport or
modification of RA were also transcriptionally regulated (e.g.,
RORβ, CRABPII, and ASCL1). These experiments suggest an
intriguing link between FOXP2 and the RA pathway, in which
FOXP2 seems to contribute to or modify the cellular response
to RA.

Given the importance of the RA pathway for development,
this raises new questions about how FOXP2 might mediate
its effects on brain and neural circuit development. Could the
relationship between FOXP2 and the RA pathway be relevant
for (1) normal motor circuitry development and function, and/or
(2) effects of FOXP2 dysfunction in patients? To address these
questions, we need to understand how FoxP2 and the RA
pathway might interact, and in what way FoxP2 mutations might
affect the RA pathway on a cellular, functional and behavioral
level.

RA, FOXP2, AND MOTOR BEHAVIOR

Retinoic acid is a key compound during embryogenesis, affecting
amultitude of critical developmental pathways. Precise control of
RA levels is essential for normal brain development as either an
excess or a deficiency of RA results in widespread adverse effects
on the brain.

Gestational treatment of rats with excess RA results in
behavioral deficits in learning, memory and motor function
(Holson et al., 1997). Rats treated with excess RA displayed poor
generalized motor control including impairments in the ‘righting
reflex’ (the ability to return to upright position), and the ability
to sit only on the back paws. In addition, gestationally treated
adult rats showed problems with learning and memory, such as
decreased learning rates in a water filled T maze (Butcher et al.,
1972; Holson et al., 1997). Rats lacking dietary vitamin A (of
which RA is a metabolite) also perform poorly on motor learning
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and motor performance tasks (Carta et al., 2006). Furthermore,
mice engineered to lack a key facilitator of RA signaling (RARβ)
develop severe locomotion deficits and are highly impaired on
motor learning tasks (Krezel et al., 1998).

The displayed motor deficits are similar to phenotypes
observed in mouse models of Foxp2 dysfunction. Mouse models
of two well characterized patient mutations of FOXP2 have been
created that have comparable phenotypes. One mouse model
reflects the R553H missense mutation found in the KE family
(Lai et al., 2001). The second mouse model mirrors an early
stop codon in exon 7 introduced by a non-sense mutation that
leads to a loss of FOXP2 protein in an independent family
with speech/language disorder (MacDermot et al., 2005; Groszer
et al., 2008). Mice that have a homozygous Foxp2 mutation
show severe general motor impairments, reminiscent of animals
treated with excess RA. However these Foxp2 homozygous
mutants do not survive beyond 3–4 weeks after birth, possibly
due to a requirement for Foxp2 in other organs such as the
lungs or heart (Groszer et al., 2008). In mice where a single
copy of Foxp2 is affected (as per the heterozygous state of the
mutations observed in patients) general motor control is normal
but motor learning is impaired (Groszer et al., 2008; French
et al., 2012). This more subtle phenotype closely resembles
the motor learning phenotype observed in RA deprived rats
(Carta et al., 2006). For an overview of the different phenotypes
exhibited by Foxp2 mutation, RAR mutation, and RA treatment,
see Table 1.

FOXP2 AND RA SIGNALING AFFECT
NEURONAL FUNCTION

In addition to the behavioral deficits, vitamin A depri-
vation/supplementation adversely affects striatal development
and function. Cells in the developing lateral ganglionic eminence
(the precursor region of the striatum) do not differentiate
into the appropriate neuronal subtypes when RA signaling is
blocked (Toresson et al., 1999; Chatzi et al., 2011). However
restoring RA levels rescued this phenotype and resulted in
normal differentiation into appropriate neuronal cell types
(Chatzi et al., 2011). Separately, mice engineered to knockout the
RARβ gene display gross morphological striatal defects including
impaired neurogenesis and deficits in acquiring proper neuronal
identities (Liao et al., 2008). Lastly, chronic postnatal vitamin A
supplementation has been linked to oxidative cell toxicity in the
striatum (de Oliveira et al., 2007).

Foxp2 also contributes to striatal cell morphology and
function. Foxp2 mutant neurons exhibit reduced neurite growth
and branching in primary striatal cultures (Vernes et al., 2011)
and the in vivo striatum displays aberrant neuronal activity.
Mice with a heterozygous Foxp2 mutation showed unusually
high activity in the dorsomedial striatum during active motor
behavior (French et al., 2012). This suggests striatal cells can
no longer properly modulate their activity following input
from motor areas when lacking Foxp2. Moreover, the increased
striatal activity normally seen when animals perform motor
learning tasks was absent in mutant mice. Instead, a decrease

in firing rate was seen, again suggesting aberrant modulation
of responses to cortical and/or thalamic input (French et al.,
2012). Additionally, extracellular measurements on striatal brain
slices from heterozygous Foxp2 mutant animals show these cells
fail to respond to induction of long term depression (LTD;
Groszer et al., 2008). An inability to induce long term plasticity
[either LTD or long term potentiation (LTP)] has debilitating
consequences as scaled activity (plasticity) is necessary for circuits
to properly regulate their input and output. Synaptic long term
plasticity changes underlie information storage and are necessary
for learning and memory (Novkovic et al., 2015; Zhu et al.,
2015). Interestingly, in the striatum, synaptic plasticity has been
strongly linked to motor learning (Dang et al., 2006; Kreitzer
and Malenka, 2007). Defects specifically related to striatal LTD
and LTP are known to affect procedural motor learning and
the acquisition of new motor paradigms (Gubellini et al.,
2004).

Aberrant induction of synaptic scaling has also been found
in mice following acute RA depletion, which results in a
complete lack of hippocampal LTP or LTD (Misner et al.,
2001). This phenotype was specific to RA depletion and was
reversible, as vitamin A supplementation rapidly restored normal
synaptic plasticity (Misner et al., 2001). At a molecular level,
RA signaling is mediated by the action of RA receptors (RARs;
RARα, RARβ, and RARγ) and similar plasticity defects have
been shown for mice lacking RARα (Sarti et al., 2012) or
RARβ (Chiang et al., 1998). Hippocampal cells from these
mice fail to establish LTD when subjected to low frequency
stimulation – the paradigm necessary to induce LTD in the
hippocampus. By contrast, excess RA induced the reverse effect in
cultured hippocampal slices, where increased excitatory activity
was observed (Aoto et al., 2008). It is not yet known if RA
signaling affects synaptic plasticity in the striatum. However,
the similarity in synaptic activity phenotypes between Foxp2-,
RARα-, and RARβ-deficient animals (albeit focusing on different
brain regions) does indicate these transcription factors may play a
role in similar intracellular pathways regulating neuronal activity
and synaptic plasticity.

The aforementioned plasticity (LTD and/or LTP) deficits in
Foxp2, RARα, and RARβ mutant animals suggests an improper
reaction of neuronal circuits to changes in external input.
Induction of LTD or LTP leads to a decrease or an increase,
respectively, in the amount of glutamate receptors (of the AMPA-
receptor class) at the synaptic membrane (Seidenman et al.,
2003; Briand et al., 2014; for review, see Luscher and Huber,
2010). This change in AMPA receptor abundance modifies the
response strength of a cell when it is excited. The change in
stimulus–response strength is transient, and in time the normal
AMPA receptor distribution will be restored, returning synaptic
responses to normal levels. RA treatment of hippocampal
cultures has shown an increase of AMPA receptors on the cell
surface (Aoto et al., 2008), but no data on the striatum is
currently present. The shared synaptic plasticity defect following
disruption of RA signaling pathways or Foxp2 mutation does
suggest that they both may influence receptor abundance or
localization at the synapse in the striatum, an intriguing area for
further study.
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TABLE 1 | Overview of phenotypes described in Foxp2 mutation, retinoic acid receptor (RAR) mutation and RA excess/depletion treatments.

Deficit Foxp2 mutation RA receptor
mutation

RA excess/
depletion

Homozygous Heterozygous

D
ev

el
o

p
m

en
t

Embryogenesis defects – – – +
Lethality ++ – + ++
Aberrant basal ganglia
development

++ + ++ ++

C
el

lu
la

r

Basal ganglia cell identity defects NT – + ++
Decreased neurite growth and
branching

++ NT NT NT

Aberrant neuronal activity in striatum ++ ++ – +
Unable to induce LTD NT ++ ++ NT

Unable to induce LTP NT NT ++ NT

B
eh

av
io

r General motor control deficits ++ – ++ ++
Motor learning deficits N/A

(postnatal lethality)
+ ++ ++

(postnatal treatment)

Spatial learning deficits N/A
(postnatal lethality)

NT + +

–, no effect; +, mild effect; ++, strong effect; N/A, not applicable; NT, not tested.

A thorough investigation of the mechanisms leading to LTD
and LTP deficits resulting from RA/RAR and Foxp2 malfunction
will be necessary to understand if they function in the same
pathways. Understanding the molecular mechanisms underlying
striatal function, especially related to complex motor circuitry
function, will lead to a better understanding of striatal speech–
motor control.

MOLECULAR LINKS BETWEEN RARs
AND FOXP2

Retinoic acid receptors canonically function as transcription
factors, regulating genes responsible for directing normal
embryogenesis and brain development. Interestingly, FoxP2
and RARs share some of the same target genes (Balmer and
Blomhoff, 2002; Delacroix et al., 2010; Devanna et al., 2014).
RARs are highly expressed in the brain (Krezel et al., 1999)
and are present throughout embryonal development (Mollard
et al., 2000), postnatal development (Wei et al., 2011), and in
adults (Krezel et al., 1999; Zetterstrom et al., 1999). Notably high
expression of RARs can be found throughout the motor circuitry,
including cortical, striatal, and multiple thalamic regions (Krezel
et al., 1999), (Figure 1B). We focus on two key receptors found in
the motor circuitry: RARα and RARβ. RARα is found in layer 5
of the cortex and in the thalamus – both regions that overlap with
murine Foxp2 expression (Krezel et al., 1999; Zetterstrom et al.,
1999; Ferland et al., 2003; Lai et al., 2003; Hisaoka et al., 2010).
Interestingly, Foxp2 only overlaps with RARα in the motor cortex
layer 5, because Foxp2 expression is largely restricted to layer 6
of other mature cortical areas. RARβ is strongly expressed only
in the striatum, another site where Foxp2 expression is highest
(Figure 1B). Notably, FOXP2 has been shown to directly drive
RARβ expression in human cells (Vernes et al., 2007; Devanna

et al., 2014), although this is yet to be shown in the striatum.
This high level of overlap, combined with shared target genes
and molecular interactions, strongly supports interplay between
FoxP2 and RARs in motor pathways.

CONCLUDING REMARKS

In addition to its canonical role during embryogenesis, studies
described here suggest RA signaling plays a specific role in the
development and function of striatal motor circuitry and may
link to FoxP2 function. Disruption of the RA pathway results
in strikingly similar phenotypes to FoxP2 mutation on multiple
levels, which suggests a potential mechanistic interaction. FoxP2
and RARs can regulate some common target genes, affect similar
cellular phenotypes and show highly overlapping expression
patterns in the cortico-striato-thalamic motor circuitry. In
the striatum, aberrant function of Foxp2 and RA signaling
contributes to altered development and, in the case of mutations
of mouse Foxp2, altered synaptic plasticity similar to that seen
in the hippocampus of RARα mutant animals. Given that RARβ

is predominantly expressed in the postnatal striatum, it seems
likely that its disruption will also affect striatal plasticity, however,
this is yet to be experimentally determined. Lastly, animals
with mutated Foxp2 or RA signaling defects show comparable
motor control/learning impairments. Thus at multiple levels
(molecular, cellular, circuit, and behavioral) there is evidence
that interplay between FoxP2 and RA signaling may facilitate
proper development and function of motor circuitry. This
evidence from mice is strengthened by findings in songbirds
which show both FoxP2 and RA influence song learning by
acting in circuits that have parallels with human vocal-motor
pathways (Haesler et al., 2007; Wood et al., 2008). In the
future it will be of great value to understand if these signaling
cascades interact to influence neuronal mechanisms related to
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song learning or speech–motor control, and if RA signaling
deficits are involved in aberrant speech–motor development in
humans. The capacity for human speech and spoken language
is dependent on multiple molecular and neural building blocks.
With the link between FoxP2 and RA signaling, a new block has
been suggested, giving us new opportunities to investigate the
evolution and development of the (spoken) language ready brain.
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