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In a previous study we have shown that human motion trajectories can be characterized

by translating continuous trajectories into symbol sequences with well-defined

complexity measures. Here we test the hypothesis that the motion complexity individuals

generate in their movements might be correlated to the degree of creativity assigned

by a human observer to the visualized motion trajectories. We asked participants

to generate 55 novel hand movement patterns in virtual reality, where each pattern

had to be repeated 10 times in a row to ensure reproducibility. This allowed us to

estimate a probability distribution over trajectories for each pattern. We assessed motion

complexity not only by the previously proposed complexity measures on symbolic

sequences, but we also propose two novel complexity measures that can be directly

applied to the distributions over trajectories based on the frameworks of Gaussian

Processes and Probabilistic Movement Primitives. In contrast to previous studies, these

new methods allow computing complexities of individual motion patterns from very

few sample trajectories. We compared the different complexity measures to how a

group of independent jurors rank ordered the recorded motion trajectories according

to their personal creativity judgment. We found three entropic complexity measures that

correlate significantly with human creativity judgment and discuss differences between

the measures. We also test whether these complexity measures correlate with individual

creativity in divergent thinking tasks, but do not find any consistent correlation. Our results

suggest that entropic complexity measures of hand motion may reveal domain-specific

individual differences in kinesthetic creativity.

Keywords: creativity, motion complexity, Gaussian processes, probabilistic movement primitives, Lempel-Ziv

complexity

INTRODUCTION

Creativity is a hallmark of human behavior and the motor for innovation both in individuals
and in society. Machines typically lack this ability, as they only execute commands they are
programmed for, usually under very specified conditions. Consequently, there is a growing interest
in investigating how creativity could be modeled in a quantitative way and automatized (Boden,
1998). Practical examples for the study of computational creativity in artificial systems include
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linguistic processing (Binsted et al., 1997), composition of music
(Gibson and Byrne, 1991) and visual art (Romero and Machado,
2008). An overarching theoretical conceptualization has been
proposed by Schmidhuber suggesting that creativity can be
understood in the context of intrinsic rewards that come from
finding novel patterns or regularities allowing for improved
data compression of previous observations (Schmidhuber, 2010,
2012). According to this theory there is a fundamental link
between creativity and informational complexity.

In this study we test experimentally for the link between
creativity and informational complexity in the domain of human
hand movements. Human creativity expresses itself in many
domains and across different sense modalities ranging from
visual, to auditory and kinesthetic, as evidenced for example
in the visual arts, in music and in dance. However, this does
not necessarily mean that there is a single monolithic cognitive
process underlying creativity and, in fact, it has been stipulated
that creativity could be highly domain-specific (Baer, 1998;
Plucker, 1998; Baer, 2008).What makes human handmovements
particularly amenable to a quantitative study of a domain-specific
creativity is that we could show previously that informational
complexity can be used to characterize the complexity of different
types of hand motion (Peng et al., 2014). These previous
measures require that we translate motion trajectories into
symbol sequences consisting of transitions between the four
cardinal movement directions. Due to the limited number of
symbolic transitions in short movements, however, we were
previously unable to estimate the informational complexity
of particular motion patterns. In this study we adopt two
modern machine learning approaches that are based on Gaussian
Processes and Probabilistic Movement Primitives both of which
allow representing probability distributions over trajectories.
This way we cannot only evaluate the complexity of particular
motion patterns, but also evaluate the empirical adequacy of
Schmidhuber’s theory by relating the informational complexity
of motion patterns to measures of kinesthetic creativity.

In general, creativity can be assessed in different ways.
Most researchers distinguish between creative potential and
creative achievement (Eysenck, 1995; Jauk et al., 2013), where
the former refers to a basic individual ability that follows
a normal distribution in the population, whereas the latter
refers to actual real-life accomplishments like publishing a
book, composing a piece of music or making a scientific
discovery. While creative achievement is usually measured by
auto-biographical self-reports like the Creative Achievement
Questionnaire (Carson et al., 2005), creative potential is usually
measured by psychometric tests. Guildford was one of the
first to suggest that creative potential could be assessed by
means of testing the ability of divergent thinking when solving
open problems that allow for a variety of solutions (Guilford,
1967). Ever since, several attempts have been made to develop
psychometric measures of a “creativity quotient” of an individual
similar to the intelligence quotient (IQ). Well-known tests
include the Guildford tests (Guilford, 1967), the Wallach and
Kogan tests (Wallach and Kogan, 1965) and the Torrance Test
of Creative Thinking (Torrance, 1966, 1974). The Torrance Test
originally involved simple tests of divergent thinking and other
problem-solving skills based on fluency, flexibility, originality

and elaboration. It is the most widely used test, for example to
assess the giftedness of school kids, and has been renormed four
times since its inception (Kim, 2006).

Instead of assessing the creative potential of a person by
psychometric measurement, it has also been proposed to assess
the creativity of artifacts created by the person (Hennessey and
Amabile, 2010). Such assessments usually follow the Consensual
Assessment Technique (CAT; Amabile, 1982). Unlike other
measures of creativity, which are often based on a particular
theory of creativity, the CAT is based on the idea that the best
measure of the creativity of a work of art, a scientific proposal,
or any other artifact is the combined assessment of experts
in the same domain (Baer and McKool, 2009). This approach
enjoys wide popularity, as it is theory-independent, relatively
simple to implement and usually achieves high levels of inter-
rater agreement (Hennessey and Amabile, 2010). In our study
we test the hypothesis that informational complexity of human
hand movements reflect creativity rankings of the visualized
motion trajectories as judged by an independent jury group.
Additionally, we test the hypothesis that handmotion complexity
might be a domain general indicator of an individual’s creativity
as measured by a range of simplified tasks requiring creative
solutions that we adapted from typical psychometric creativity
tests.

RESULTS

Participants in a test group were asked to generate motion
patterns in virtual reality that they thought were as creative
as possible. Crucially, each movement had to be repeated
10 times to ensure that creative patterns were planned and
reproducible, rather than merely one-off chance events. In total,
each participant in the test groupwas asked to generate 55motion
patterns that they considered to be as creative as possible. The
motion patterns were recorded in a virtual reality set-up that
consisted of a three dimensional Phantom manipulandum and
a head-mounted display—see Materials and Methods for details.
Participants were told that they had to repeat every movement 10
times by passing through a fixed sphere whose position in the
workspace was determined randomly at the beginning of each
trial. Otherwise, the movements could be chosen freely.

After recording participants of the test group we invited
another group of participants to act as a jury group. Each
member of the jury group was asked to rank the visualized
motion trajectories produced by the first group according to their
subjective judgment of creativity. The ranking was established
separately for each trial comparing the different motion patterns
of the participants in the test group. As the test group consisted
of 10 participants, the jury group could perform the creativity
ranking by comparing no more than 10 items in each trial.
An illustration of the experimental procedure can be found in
Figure 1. The entire experiment was repeated twice to ensure
reproducibility of the results.

Motion Complexity
As each motion pattern was repeated 10 times, we could
use the corresponding 10 trajectories to estimate a probability
distribution over trajectories. In particular, we used two different

Frontiers in Psychology | www.frontiersin.org 2 December 2015 | Volume 6 | Article 1879

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Peng and Braun Motion Complexity and Creativity

FIGURE 1 | Experimental design of a single trial. Subjects in the test group were asked to generate motion patterns in virtual reality that they thought were as

creative as possible. Each pattern consisted of 10 repeated trajectories. Subjects’ movements were recorded with a manipulandum that constrained movements into

the vertical plane within a workspace of 10× 10 cm. Subjects saw their hand movement through a head-mounted display as a moving point in virtual reality. In total

subjects were required to complete 55 trials, each trial consisting of a different motion pattern. A jury group was asked to rank visualizations of the test group’s motion

patterns according to their own subjective judgment of creativity.

methods to estimate these probability distributions based on
the recently proposed framework of Probabilistic Movement
Primitives (Paraschos et al., 2013) and the well-established
framework of Gaussian Processes (Rasmussen and Williams,
2006). In the framework of Probabilistic Movement Primitives,
every single trajectory is transformed into a lower-dimensional
representation. The distribution over repetitions, that is the
pattern, is assumed to be a Gaussian distribution in the the
space of lower-dimensional representations, which ultimately
also implies a distribution in the space of trajectories—compare
Equation (8) in the Materials and Methods. In the Gaussian
Process framework, the distribution over trajectories is estimated
directly based on a mean function and a covariance function
between neighboring points of the trajectories. The length scale of
the covariance function characterizes the trajectories’ smoothness
and complexity—compare Equation (3) in the Materials and
Methods. The variance across repeated trajectories is assumed
to be Gaussian. The advantage of having a probabilistic
representation of the motion patterns is that it allows the
application of information-theoretic complexity measures at the
trajectory level without the need for a conversion into symbolic
sequences. This way we can reduce motion complexity to the
notion of model complexity used in Bayesian model comparison
(Genewein and Braun, 2012, 2014).

Intuitively, complex models are flexible and can explain many
data sets, whereas simple models can only explain few data sets.
The fundamental trade-off of choosing the right level of model
complexity can be seen most clearly if the model can be described
by a number of parameters. A complex model has many possible
parameter settings, which makes it probable that one parameter
setting will be able to explain the data very well. However, there
will be many parameter settings that will not be able to explain

the data. In contrast, a simple model will only allow for few
parameter settings and if one of these parameter settings fits
well, there are fewer other parameter settings that cannot explain
the data compared to the complex model. By computing the
average data fit quality under all possible parameter settings the
trade-off between goodness of fit and model complexity can
be formalized. Mathematically, this is achieved by computing
the marginal likelihood p(D|θ) that indicates the likelihood of
some data D under model θ considering all possible parameter
settings of this model. Importantly, under the two frameworks
we are considering, the marginal likelihood can be written down
analytically and has the following abstract form

log p(D|θ) ∝ −
1

2
x†
D 6−1xD

︸ ︷︷ ︸

goodness-of-fit

−
1

2
log |6|

︸ ︷︷ ︸

model complexity

(1)

The complexity term corresponds essentially to the entropy
of a Gaussian distribution. Intuitively, the entropy measures
the average amount of informational surprise that each pattern
contains. Here this informational surprise can therefore be
applied to capture the informational complexity of motion
patterns. The informational complexity scores achieved by
subjects under the two frameworks can be seen in the first two
columns of Figure 2.

In line with our previous study, we also computed two other
measures of motion complexity, namely Lempel-Ziv complexity
and effective measure complexity—see Materials and Methods
for details. These complexity measures are typically applied to
sequences of symbols. We therefore converted subjects’ motion
trajectories into symbol sequences by parcellating the 10 ×

10 cm workspace into evenly spaced 1 cm2 grid cells. The
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FIGURE 2 | Scatter plots of subjective creativity rankings and motion complexity measures. In all 10 panels the abscissa shows average subjective creativity

ranking scores attributed to motion trajectories generated by subjects of the test group. The five different columns show complexity values for the Gaussian Process

model (GP), the Probabilistic Movement Primitive framework (PMP), the Lempel-Ziv complexity (LZC), the effective measure complexity (EMC), and the trajectory

variance (VAR), respectively. The two rows present the results of the two experimental repetitions. Five hundred fifty data points are shown in each panel plot, as we

collected 55 patterns from each of the 10 subjects in each experiment.

motion trajectory could then be converted into a sequence of
up, down, left, and right cell transitions. By sampling multiple
trajectories from each motion pattern distribution fitted by
the probabilistic movement primitives, we obtained symbol
sequences of sufficient length to compute both Lempel-Ziv
complexity and effective measure complexity for each pattern.
Intuitively, the (normalized) Lempel-Ziv complexity quantifies
the irregularity in a symbol sequence based on the number
of unique subsequences, while effective measure complexity
unravels the structural complexity of a movement that is not
too random, but also not too stereotypical. The symbol-sequence
complexity scores achieved by subjects can be seen in the third
and fourth column of Figure 2.

Subjective Creativity Judgment
To obtain independent creativity measurements, we invited a
jury group to assess visual displays of the hand motion patterns
produced by the test group. The first 10 jurors judged patterns
produced by the first 10 participants in the test group, while the
last 10 jurors were assigned to judge the patterns from the last 10
subjects in the test group. Accordingly, each juror had to compare
10 patterns in each trial from 10 different subjects and rank
them according to their own subjective concept of creativity—
compare Figure 1 for an example. Jurors had to complete 55 trials
in total. Then we could compute the average rank for each trial
by averaging the rankings scores of all jurors. Finally, we could
average the rankings of all jurors across all trials to obtain an
overall rank for each test subject.

We compared the average creativity rankings with the four
motion complexity measures introduced in the last paragraph.
Figure 2 shows the trial-by-trial scatter plot of these measures
in both experiments. In all plots, the abscissa indicates the
average rank of a test subjects’ pattern in a particular trial,
while the ordinate shows the corresponding motion complexity

measure of the pattern. With the exception of the effective
measure complexity, we found reproducible correlations between
all the informational complexity measures and the subjective
creativity judgments. The motion complexity in the Gaussian
Process model had a Spearman’s rank correlation with the
creativity rankings of ρ = 0.40 (p < 10−10) and
ρ = 0.66 (p < 10−10) across the two experiments. The
motion complexity in the Probabilistic Movement Primitive
framework showed a Spearman’s rank correlation with ranked
creativity of ρ = 0.44 (p < 10−10) and ρ = 0.54
(p < 10−10) across the two experiments. When representing
trajectories as symbol sequences, we also found a moderate
correlation between the Lempel-Ziv complexity of motion
patterns and subjective creativity judgments in both experiments
(ρ = 0.37 with p < 10−10 and ρ = 0.39 with
p < 10−10). The effective measure complexity only showed
a negligible correlation with the creativity rankings—compare
Figure 2.

Importantly, the correlation between the entropic motion
complexities and subjective creativity rankings were also
significant at the single subject level, that is when assessing
correlations between motion complexity and subjective
creativity judgments of the 55 trials generated by each single
subject—compare Figure 3. In the Gaussian process model,
we found significant correlations between entropic complexity
and subjective creativity judgments in 14 out of 20 subjects.
Correlating entropic complexity and subjective creativity
judgments in the framework of Probabilistic Movement
Primitives resulted in significant correlations in 17 out of
20 subjects. When transforming trajectories into symbol
sequences, we found a significant correlation between Lempel-
Ziv complexity and subjective creativity judgments in 16 out of
20 subjects. In contrast, we found no consistent correlation for
effective measure complexity.
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FIGURE 3 | Correlation between motion complexity measures and subjective creativity judgment for each single subject. Five measures are compared,

they are complexity under the Gaussian Process model (GP), the complexity under the framework of Probabilistic Movement Primitives (PMP), Lempel-Ziv complexity

(LZC), effective measure complexity (EMC), and variance (VAR). Each dot represents the Spearman’s rank correlation coefficient of one subject. A filled dot indicates a

significant correlation (black: p < 0.001, dark gray: p < 0.01 and light gray: p < 0.05) and a white dot indicates that the correlation is not significant (p > 0.05). The red

cross indicates the average correlation coefficient over all subjects.

Furthermore, the same patterns of correlation persist when
replacing the absolute complexity values with complexity ranks.
To this end we rank ordered according to complexity the 10
relevant motion patterns in each trial that were also shown to
jurors. Moreover, we replaced the average subjective creativity
rank by a full rank 1, 2, . . . , 10. This way we can ensure that
the correlations we found for absolute complexities also hold
for ranks. The rank-rank correlations between complexity and
creativity can be seen in Figure 4.

As each motion pattern had to be repeated 10 times, due to
imperfect memory more complex trajectories might have been
naturally accompanied by higher variability. This way our data
set might show an intrinsic correlation between variability and
complexity. The different randomness measures that correlate
with subjective creativity might therefore only be a side effect
of the increased variance of complex patterns. To control for
this possibility, we computed the variance across the 10 original
trajectory repetitions. The fifth column in Figure 2 shows the
trial-wise correlation between the trajectory variance and the
subjective creativity judgment. We only found a weak correlation
in both experiments. Figure 3 also shows the correlation between
the trajectory variance and the subjective creativity judgment
at the single subject level. Only 3 out of 20 subjects revealed
significant correlation, but with inconsistent signs. This result

suggests that the correlations between entropic complexity
measures and creativity rankings do not simply reflect variance
across trajectories.

Additional Creativity Assessments
Participants in the test group additionally accomplished five
creativity tasks adapted from the psychological literature
including the Creativity Achievement Questionnaire (CAQ), the
Alternative Uses Task (AUT), the Cloud Imagination Task (CIT),
the Picture Completion Task (PCT), and the Remote Associates
Test (RAT)—see Materials and Methods for details. These tasks
were meant to assess both subjects’ creative achievement (CAQ)
and creative potential (AUT, CIT, PCT, RAT). In particular, the
AUT, the CIT and the PCT were meant to measure subjects’
divergent thinking, while the RAT is thought to reveal individual
ability of remote association. The results of these creativity tests
are shown in Supplementary Figure 1.

We investigated the correlation between the different motion
complexity measures and the five creativity assessments of each
individual. The results of this analysis are shown in Table 1. We
compared the average achieved motion complexities over 55
trials of each subject with the achieved scores in the creativity
tasks we used in our study. As the process of generating hand
movement might involve spatial visualization and hand motion
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FIGURE 4 | Ranking results. (A–D) 2d histograms of rank pairs consisting of subjective creativity rankings and different motion complexity rankings. With exception

of effective measure complexity (EMC), the other informational complexity rankings have most coincidence with the creativity rankings on the diagonals. (E)

Subject-wise correlation between creativity rankings and complexity rankings. The rank-rank correlation is significant in the case of complexity under the Gaussian

Process model (GP) for 15 out of 20 subjects, in the case of the complexity under the framework of Probabilistic Movement Primitives (PMP) for 17 out of 20 subjects,

in the case of Lempel-Ziv complexity (LZC) for 10 out of 20 subjects and in the case of EMC for 3 out of 20 subjects.

ability, we also used four sub-scales in the CAQ as additional
metrics, namely art, music, dance, and theater/film. Although
architectural design also requires visual and drawing skills,
only two subjects in the test population claimed they have
received training in this domain, therefore, we excluded this
sub-scales from our analysis. For the divergent thinking tests we
used three different metrics, namely fluency, mean originality
and percentage score—see Materials and Methods for details.
However, we found no consistent correlation between any pair
of measures, that is no correlation that could be consistently
reproduced over two runs of the experiment. Finally, we
investigated the correlation between the overall subjective
creativity rank of a subject and the achieved scores in the
pen-and-paper creativity tasks. The results are shown in Table 1.
Again we found no significant correlation between subjective
creativity judgments and the achieved scores in the creativity
tests.

DISCUSSION

In this experimental study we have tested the hypothesis that
the motion complexity individuals generate in their movements
might be correlated to the degree of creativity assigned by

a human observer to the visualized motion trajectories. In
addition to our previous complexity analysis that required
translating movements into symbol sequences (Peng et al.,
2014), in this study we adopted state-of-the-art machine learning
approaches—Gaussian Processes (Rasmussen and Williams,
2006) and Probabilistic Movement Primitives (Paraschos et al.,
2013)—to represent movement patterns directly as probability
distributions over trajectories. This allowed us to assess motion
complexity in terms of Bayesian model complexity, which
corresponds to informational surprise (Genewein and Braun,
2014). The link between creativity and information surprise has
been previously proposed by Schmidhuber (2010, 2012). In our
data we found a significant and reproducible correlation between
the information-theoretic complexity measures of subjects’
motion trajectories and the subjective creativity judgment of
independent jurors. We did not find any consistent correlation
between motion complexity measures and creativity measures
that we obtained in a set of adapted divergent thinking and
remote associate tasks as well as creative achievements scores
from a questionnaire.

In a previous study (Peng et al., 2014) we have shown
the applicability of symbol-based randomness and complexity
measures to human hand motion. In order to apply these
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TABLE 1 | Spearman’s rank correlation coefficient between motion complexity measures and creativity assessments of an individual.

GP PMP LZC EMC Ranking

ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

CAQ Total 0.50 0.03 0.26 0.27 0.16 0.50 −0.12 0.63 0.45 0.05

Art 0.19 0.43 −0.16 0.50 −0.06 0.81 0.09 0.70 0.32 0.17

Music 0.26 0.27 0.10 0.68 −0.08 0.73 0.07 0.77 0.28 0.24

Dance −0.19 0.42 −0.24 0.31 −0.30 0.20 0.32 0.16 −0.08 0.75

Theater 0.09 0.69 −0.10 0.68 −0.27 0.26 0.23 0.33 −0.13 0.57

AUT Fluency −0.23 0.33 −0.43 0.06 −0.33 0.15 0.23 0.32 −0.11 0.65

m. Orig. 0.12 0.62 −0.06 0.79 −0.05 0.83 0.09 0.70 0.23 0.33

Percent. 0.04 0.86 −0.11 0.63 −0.19 0.43 0.16 0.50 −0.13 0.60

CIT Fluency −0.04 0.86 0.12 0.60 0.26 0.27 −0.37 0.11 −0.24 0.31

m. Orig. 0.02 0.95 0.24 0.31 0.24 0.31 −0.38 0.10 −0.08 0.75

Percent. 0.01 0.96 0.30 0.20 0.37 0.10 −0.50 0.03 −0.00 0.99

PCT Fluency −0.09 0.71 −0.24 0.30 −0.05 0.84 0.01 0.95 −0.12 0.62

m. Orig. 0.07 0.76 0.36 0.12 0.26 0.26 −0.18 0.44 −0.05 0.85

Percent. 0.04 0.87 0.33 0.15 0.29 0.21 −0.18 0.44 −0.05 0.84

RAT 0.39 0.09 0.27 0.25 0.25 0.28 −0.01 0.95 0.35 0.13

We found no consistently significant correlation. The first four columns show correlations between performance in the creativity tasks and the complexity measures in a Gaussian

Process Model (GP), within the framework of Probabilistic Movement Primitives (PMP), Lempel-Ziv complexity (LZC), and effective measure complexity (EMC). The last column shows

the correlation between subjective creativity ranking of the visualized motion trajectories and the results of the creativity tasks. The p-values are not Bonferroni-Holmes corrected. After

correction there are no significant correlations.

measures, we converted motion trajectories into symbolic
sequences s1s2s3...sn, with si ∈ {l, r, u, d} corresponding to
“left,” “right,” “up,” and “down” movements. Due to the limited
number of symbolic cell transitions in short movements, we were
previously unable to estimate different complexity measures of
single motion patterns, and we could only estimate complexity
measures of concatenated movements. We have overcome this
limitation in the present study by representing movement
patterns as probability distributions over trajectories, which we
exploited in two ways. First, we determinedmotion complexity of
movement patterns directly by applying the concept of Bayesian
model complexity to the probabilistic trajectory representation.
Second, we applied the previous symbol-based complexity
measures to single patterns by generating an arbitrary amount
of samples from the trajectory distributions.

A main concern regarding the proposed complexity measures
is that the measured information-theoretic surprise might simply
reflect trial-by-trial variability. In our experimental setup this
issue is particularly crucial, as subjects were asked to repeat
each movement 10 times and trial-by-trial variability can be
expected to be increased for complex movements due to
imperfect memory. Importantly, we found in our data that
this is not the case, and that the complexity measures do
not simply reflect trial-by-trial variability—compare Figure 2.
This can also be illustrated in artificially generated trajectories
with different levels of complexity and variability—compare
Figure 5. Both the Gaussian Process and the Probabilistic
Movement Primitives complexity measures do not simply
reflect variability, as both measures are higher for complex-low

variance trajectories (Figure 5A2) than for simple-high variance
trajectories (Figure 5A3). However, for completely random
movements the Gaussian Process complexity is low, because
observations can be explained by a smooth trajectory with high
noise. In contrast, the movement primitive complexity is high,
because a broad distribution in feature space is required to
represent this trajectory distribution. Notably, this extreme case
of complete randomness is irrelevant in our experiment and both
frameworks make similar predictions for repeatable trajectories
that are not completely random. In contrast to these probabilistic
measures, the Lempel-Ziv complexity does follow the variance
pattern in these artificial data sets. The reason is that Lempel-
Ziv complexity does not distinguish between irregularity in an
individual trajectory and variability across trajectories. In our
previous study this did not constitute a problem, because there
were no repeated trajectories. In the present study, however, this
issue has to be kept in mind when interpreting the Lempel-Ziv
measure, as it is most sensitive to the variability, even though
the data analysis shows that it gives complexity information
beyond variability—compare Figure 2. Note that, while the
effective measure complexity classifies the artificial data well, it
did not yield any significant correlations with subjective creativity
rankings.

A number of previous studies have established a link between
physical movement and human creativity. One study has shown
that mood and creativity can be improved by physical exercise
independently of each other (Steinberg et al., 1997). Another
study recently showed that fluid arm movements can enhance
creativity in alternative use tasks, cognitive flexibility, and
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FIGURE 5 | Artificial example trajectories. (A1–A4) Panel (A1) shows 10 trajectory realizations of a random pattern with large variability. Panel (A2) shows 10

trajectory realizations of a complex pattern with low variance. Panel (A3) shows 10 trajectory realizations of a simple elliptic pattern with large variability between the

trajectories. Panel (A4) shows a simple elliptic pattern with little variance. We have generated 20 patterns of each type. (B–F) Box plots of motion complexity

measures of artificial trajectories. Panels (B–E) show informational complexity of the artificial trajectories in the Gaussian Process model (B), the Probabilistic

Movement Primitive framework (C), the Lempel-Ziv complexity (D), and the effective measure complexity (E). Panel (F) shows the trajectory variances.

remote association (Slepian and Ambady, 2012), suggesting that
fluid movement might improve fluid thinking, whereas abrupt
movements do not. Similarly, another recent study revealed
that walking indoors or outdoors boosted creative inspiration.
Creativity levels were consistently and significantly higher for
those walking compared to those sitting (Oppezzo and Schwartz,
2014). While these studies show that bodily movement can
actually influence cognitive processing and enhance human
creativity, none of the previous studies have shown a relation
between the complexity of the movements and subjects’ creative
potential.

In the literature (Mumford, 2003; Hennessey and Amabile,
2010), the definition of creativity is still a topic of ongoing debate,
although most researchers agree that “creativity involves the
development of a novel product, idea or problem solution that is of
value to the individual and/or the larger social group” (Hennessey
and Amabile, 2010). Creativity in the sense of “novelty and
appropriateness” can be displayed both in daily problem solving
(“Little c”: everyday creativity) and in lifetime achievements that
have a major impact on others (“Big C”: eminent creativity).
Boden (2004) introduces a similar distinction of p-creativity
(personal) and h-creativity (historical), respectively. Recently, the
“Two C” distinction has been extended to the “Four C Model”
by Kaufman and Beghetto (2009)—besides “Little c” and “Big C,”
“mini c” indicates the creativity inherent in the learning process
and “Pro C” represents the professional-level expertise in any
creative area.

The creativity tasks that we adapted from established
psychometric creativity tests were selected on the basis that

the tasks should be easy to implement and straightforward
to evaluate in the absence of trained experts. However, this
simplification might have caused some drawbacks in our
experimental design. First, using only one single item for
the Alternative Use Task is underpowered compared to the
whole battery of Guilford’s Alternative Uses Task (Guilford,
1967). Second, the reliability and validation of the Cloud
Imagination Task and the Picture Completion Task have not
been systematically verified. Third, the German version of the
Remote Association Task was not independently validated. These
experimental flaws may be one of several possible reasons for
why we did not find any significant correlation between motion
complexity and the results of our adapted creativity tasks.

Furthermore, even the evaluation of the established
psychometric creativity tests are still under debate, especially
some of the scoring systems (Mumford et al., 2008). For example,
instead of determining originality and fluency scores in the
alternative use task, Runco and Mraz have proposed to evaluate
responses based on ratings of subjects’ replies through additional
judges (Runco and Mraz, 1992). Silvia and colleagues have
proposed the “Top 2” scoring method in which participants in
divergent thinking tests have to chose two of their own responses
that they consider as most creative, judges then evaluate the
responses on a 5-point scale (Silvia et al., 2008). Similarly,
the RAT was criticized by Worthen and Clark with the main
argument that RAT measures sensitivity to language rather than
creative potential (Worthen and Clark, 1971). They proposed
accordingly an improved version called Functionally Remote
Associates Test (FRAT) that keeps the same solutions as used
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in the original RAT task, however, rebuilds the stimulus words
based on functional associations rather than verbal associations.
Although the validity and reliability of existing methodologies
to assess individual creativity is a topic of debate, they are
still widely applied (Plucker and Runco, 1998; Plucker, 1999).
According to Baer (1998, 2008), a fundamental problem with
divergent thinking tests and their fragile results might be that
creativity could be highly domain-specific. Consequently, there
may not exist any single monolithic cognitive process underlying
creativity that could be measured reliably by divergent thinking
tests or any other one-dimensional test metric (Dietrich, 2007).
This could also be a possible explanation for why we did not
find any correlation between motion complexity and several
creativity tasks in our experiment.

A recent study by Lee and colleagues (Lee et al., 2014) showed
that the scores on the RAT were positively and significantly
correlated with scores on workingmemory and intelligence tasks,
and were not significantly correlated with scores on indicators of
divergent thinking test. Therefore, the RAT may be more likely
to be an assessment of intelligence rather than creativity. Also
in our motion task we cannot exclude a correlation between
working memory, intelligence and motion complexity. In fact,
the correlation between creativity and intelligence has been
debated for a long time across a wide range of domains (Silvia,
2008; Jauk et al., 2013). What our data clearly shows, however,
is that motion complexity correlates with subjective creativity
rankings of the visualized motion patterns. This assessment
by averaging creativity rankings differs from usual consensual
assessment techniques in that we forced jurors to rank order
specimens rather than assigning absolute levels of creativity. The
reason we introduced this ranking procedure was to avoid a floor
effect, where absolute creativity levels of most motion patterns
might be judged below a critical creativity threshold.

Over the last decade, creativity has become an exciting
research topic across a number of disciplines ranging from
psychology and cognitive science, to neuroscience and artificial
intelligence. Modern neuroscientists have attempted to reveal
the neural processes in the brain underlying creative thought by
means of advanced neuroimaging technologies like functional
magnetic resonance imaging (fMRI). Vandervert and colleagues
have argued, for example, that the cerebellum may play a crucial
role in creative thinking as it increases the rapidity and efficiency
of memory routines (Vandervert et al., 2007). As the cerebellum
is crucial for motor control, this study also suggests that there
might be a link betweenmotion complexity and creativity. Recent
reviews of neuroimaging studies of creativity can be found for
example in Dietrich and Kanso (2010) and Arden et al. (2010).

While some researchers are trying to understand how creative
thinking is generated in human brains, other researchers are
attempting to implement computational creativity in artificial
systems, including linguistic processing (Binsted et al., 1997),
composition of music (Gibson and Byrne, 1991), and artistic
creation (Romero and Machado, 2008). From a computational
creativity perspective, Boden proposed three types of creativity,
namely combinational, exploratory and transformational
creativity (Boden, 1998). Combinational creativity involves novel
combinations of familiar ideas, exploratory creativity is generated
by exploring structured conceptual spaces, and transformational

creativity is revealed by transforming some dimension of an
existing space to create novel structures. The existing artificial
systems with apparent artificial creativity (Gibson and Byrne,
1991; Binsted et al., 1997; Romero and Machado, 2008) based
on genetic algorithms or boosted by a bootstrapping process
can also be seen as exhibiting exploratory and combinational
creativity under Boden’s definition. Schmidhuber’s description
of creativity as finding novel patterns and regularities that allow
for improved data compression is maybe the most abstract
characterization that can be thought to subsume these different
types of creativity. Our study provides evidence for this link
between creativity and informational complexity in the domain
of hand motions.

MATERIALS AND METHODS

Participants and Apparatus
Forty participants took part in the study. All participants were
naïve and gave informed consent before starting the experiment.
The study was approved by the ethics committee of the Max
Planck Society. Motion trajectories were recorded in three
dimensions by means of a virtual reality setup consisting of a
Sensable R© Phantom R© Premium 1.5 High Force manipulandum
and an NVIS R© nVisor ST50 head-mounted display (HMD)
for creating stereoscopic 3D virtual reality—see Genewein and
Braun (2012) for details.

General Experimental Procedure
Participants were assigned into two groups, which we refer to in
the following as the test group and the jury group. Each group
consisted of twenty subjects. The first twenty participants were
assigned to the test group and they were asked to accomplish
several creativity tests and complete a drawing task in virtual
reality. The last twenty participants were assigned to the jury
group and were asked to judge the drawings produced by the
first group. Figure 1 shows the experimental procedure of both
groups.

Test Group
Experimental procedures in this group comprised two sessions.
In the first session, subjects were asked to complete five different
creativity tasks by writing their answers on paper.

• Creativity Achievement Questionnaire (CAQ). The CAQ is
a self-report measure of creative achievement developed by
Carson et al. (2005). Participants are asked to rank their own
creative achievements from 0 to 7 in ten different domains:
visual arts, music, dance, architectural design, creative
writing, humor, inventions, scientific inquiry, theater/film, and
culinary arts. The test sheet used in our study can be found at
the end of Carson’s paper (Carson et al., 2005).

• Guilford’s Alternative Uses Task (AUT) for divergent thinking
(Guilford, 1967). Subjects were asked to write a list of as many
uses for a “newspaper” as possible in 1 min.

• Cloud Imagination Task (CIT). In this task we showed subjects
a single picture of a natural cloud and asked them to write
down as many interpretations of the cloud as they could think
of within 1 min.
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• Picture Completion Task (PCT). In this task we showed
subjects two non-aligned circles and asked them to conjure
up images where the circles would form a natural part of
the image. Rather than drawing these images as proposed
by Torrance (1974), we asked subjects to write down short
descriptions of their imaginations. Again, this test had to be
completed in 1 min.

• Remote Associates Test (RAT; Mednick and Mednick, 1967).
In each trial, three seemingly unrelated words were shown on
a computer screen, and subjects had 25 s to find a single word
that related to each of these three words. In total, there were
15 trials per subject with varying difficulty. For the English
version of the test we selected 15 questions from the online
collection of RAT questions at Berkeley University1. For the
German version of the test we used the same 15 solutions and
modified the three stimulus words accordingly.

The first session started with the CAQ, where subjects filled
out the questionnaire in paper form. The four following tests
were displayed on a computer screen and subjects gave their
answers in written form on a separate piece of paper. At the
beginning of each test, the experimenter read the instructions on
the screen aloud and provided further information to the subjects
if required. Only when subjects indicated that they understood
the test requirements, they were allowed to continue by clicking
the “next” button to start the test. The button click triggered a
timer. When reaching the time limit, a slide indicating the end of
the test was shown and a beep occurred to inform subjects that
the test was over. Subjects were not allowed to write anything
more on the answer sheet after the beep. After 5 s the next test
instructions were displayed.

In the second session, subjects operated a 3D manipulandum
in a virtual reality environment where they controlled a cursor
(blue, radius 4 mm) representing their hand position. In each
trial, their task was to generate 10 repetitions of a self-chosen
trajectory in the vertical plane in a 10 × 10 cm workspace that
was displayed in 3D. Subjects could not move outside the grid
as they were constrained by a spring force to stay within the
vertical plane and within the boundaries of the grid. The spring
constant was set to 8 N/cm. To initiate the trial subjects had to
move to a start sphere (blue, radius 6 mm), which was randomly
placed in the grid at beginning of the trial. In each trial, subjects
were requested to draw a closed-form pattern and to repeat this
pattern 10 times. The pattern had to include the start sphere and
the trial was completed when passing through the start sphere for
the tenth time. Importantly, subjects only ever saw their current
hand position displayed and had to remember the pattern over
the course of the repetitions. In total, each subject completed 55
trials. They were explicitly instructed to be as creative as possible.

Jury Group
The first 10 jurors were asked to judge the motion trajectories
produced by the first 10 participants in the test group, while
the last 10 jurors judged motion trajectories from the last 10
participants in the test group. The jury group were informed
that a previous group of subjects performed in a free motion
generating task with the instruction to be as creative as possible.

1http://socrates.berkeley.edu/~kihlstrm/RATest.htm

They were told that now their job was to rank these visualized
motion trajectories collected from the previous experiment
according to their subjective judgment of creativity. At any one
time, they compared 10 motion patterns that were produced by
the 10 previous subjects in the same trial. The 10 motion patterns
were displayed on a computer screen as illustrated in Figure 1.
On the screen the 10 motion patterns were randomly arranged
to rule out spatial preference effects. The motion patterns were
shown in consecutive order of the trial number. Subjects of the
jury group were asked to write down the rank of the motion
patterns from most creative (rank 10) to least creative (rank 1).
There was no time limit for the jury group.

Data Analysis
Metrics for Divergent Thinking Tests
Three metrics were used to evaluate the responses of the
divergent thinking tests, namely fluency, percentage, and mean
originality. Fluency is simply defined as the total number of
meaningful and interpretable responses produced by a subject.
The originality score is conventionally defined as the number
of responses provided by <20% of the samples. However,
this metric is not independent from fluency. Accordingly, the
percentage scoring method, which is computed as originality
scores divided by fluency scores, has been suggested as a more
appropriate scoring strategy for divergent thinking tests rather
than the conventional originality scores (Plucker, 2011). Mean
originality is another measure, which has demonstrated good
discriminative validity (Zenasni and Lubart, 2009). There are
three steps to calculate the mean originality scores: (1) compute
the relative frequency of each response provided by subjects; (2)
compute one minus the frequency, so that the rarer response
yields a higher score; (3) sum up all scores of responses in one
subject and divide it by the number of responses generated by
this subject. This average score is defined as the mean originality
of a single subject.

Gaussian Process Model
Gaussian Processes are a well-established technique in machine
learning to represent probability distributions over functions. In
our case the functions aremovement trajectories indexed by time.
Accordingly, a Gaussian process over time can be specified as

f (t) ∼ GP(m(t), k(t, t′)) (2)

where m(t) is the mean function, and k(t, t′) indicates the
covariance function. In our study, we use a zero-mean prior
m(t) = 0 and assume a squared exponential covariance function

k(t, t′) = σ 2
f · exp

(

−
|t − t′|2

λ2

)

(3)

where σf is the signal variance and λ is the characteristic length

scale. For each trajectory T = 150 equidistant points are chosen
in time which defines a vector t = [1, 2, . . . ,T]. The two
movement dimensions of a motion trajectory are defined by the
corresponding vectors x = [x1, . . . , xT] and y = [y1, . . . , yT]. As
movements were two-dimensional, we treated each dimension as
a separate Gaussian Process with length scales λx and λy. For a
given length scale λ, the covariance function at the time points t

Frontiers in Psychology | www.frontiersin.org 10 December 2015 | Volume 6 | Article 1879

http://socrates.berkeley.edu/~kihlstrm/RATest.htm
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Peng and Braun Motion Complexity and Creativity

can be abbreviated as a matrix Kλ = kλ(t, t). For any particular
pattern we concatenated the 10 observed trajectories into one
single trajectory. Observed trajectories are assumed to be noisy
samples of the truly intended trajectory, where for example in the
y-dimension yi = f (ti) + ǫi with ǫi ∼ N (0, σ 2

n ). As shown in
Equation (2.30) in Rasmussen and Williams (2006) the marginal
likelihood for a given set of observation can be expressed as

log P(y|t, λ) = −
1

2
y†(Kλ + σ 2

n IN )
−1y

︸ ︷︷ ︸

goodness-of-fit

−
1

2
log det

(

Kλ + σ 2
n IN

2π

)

︸ ︷︷ ︸

model complexity

(4)

where † denotes the transpose operation. Similarly, the
complexity of the other movement dimension x is computed.
For the total complexity the two dimensions are added, where
the overall marginal likelihood is given by log P(x, y|t, λx, λy) =
log P(x|t, λx) + log P(y|t, λy). The data-independent model
complexity is entirely determined by the length scale λ. For each
movement pattern λ was fitted so as to maximize the marginal
likelihood. Based on this maximum likelihood λ we could then
compute the trajectory complexity.

Probabilistic Movement Primitives
Movement primitives are a well-established approach for
representing modular building blocks of movements with
applications both in computational neuroscience and robotics
(Schaal et al., 2003). Recently, Paraschos and colleagues proposed
a probabilistic formulation of movement primitives where a
primitive represents a distribution over trajectories (Paraschos
et al., 2013). Here we adopted this approach to represent human
drawing patterns.

A single movement is denoted by a trajectory τ = {qt}t=0···T

where qt = [xt; yt] defines the end effector position at time t,
and xt and yt refer to the two dimensions of the vertical plane.
Given an n-dimensional time-dependent feature vector 8t , it is
assumed that the trajectory can be represented compactly by a
linear combination of features with weight vector ω such that

qt =

[

xt
yt

]

=

[

8
†
t 01×n

01×n 8
†
t

]
[

ωx

ωy

]

+ ǫq = 9tω + ǫq,

p(qt|ω) = N (qt|9tω,6q) (5)

where ǫq ∼ N (0, 6q) is zero-mean Gaussian noise. The variable
9 represents a block-diagonal matrix composed of the feature
vectors. Moreover, we assumed the feature matrix 8t to be
composed of Gaussian basis functions given by

bi(zt) = e
−

(zt−ci)
2

2h2 , φi(zt) =
bi(zt)
n∑

j= 1
bj(zt)

(6)

where h defines the width and ci the center for the ith basis
function. In our implementation we set n = 20, that is ω ∈ R

40.
The phase variable zt is introduced to transform the temporal
variable t into phase space. In general, z(t) could be any function
monotonically increasing with t where z0 = 0 and zT = 1 (Schaal
et al., 2003). For simplicity, we assumed a linear relationship

between t and z in our analysis. Using these basis functions,
one can effectively represent the trajectory τ in terms of a
weight vector ω by resorting the position coordinates into two
dimensions separately:

τ =

















x1
x2
...
xT
y1
y2
...
yT

















=



















8
†
1 01×n

8
†
2 01×n

...

8
†

T 01×n

01×n 8
†
1

01×n 8
†
2

...

01×n 8
†

T



















[

ωx

ωy

]

+ ǫτ = 9ω + ǫτ ,

p(τ |ω) = N (τ |9ω,6τ ) (7)

where ǫτ ∼ N (0, 6τ ) is zero-mean Gaussian noise. In our
implementation we set 6τ = 1e−10

I2T×2T implying negligible
observation noise of the trajectory.

To represent a distribution over multiple trajectory
realizations of the same movement pattern we need to represent
a distribution over weight vectors ω. We assume this distribution
to be a Gaussian distribution p(ω|θ) = N (ω|µω, 6ω) over
the weight vector ω with summary statistics θ = {µω, 6ω}

composed of mean µω and covariance 6ω . Sample trajectories
that follow a given pattern with statistics θ can be generated from
the predictive distribution

p(τ |θ) =

∫

ω

p(τ |ω)p(ω|θ) =

∫

ω

N (τ |9ω,6q)N (ω|µω, 6ω)

= N (τ |9µω, 96ω9† + 6τ ) (8)

By taking the logarithm of the predictive distribution p(τ |θ)
we get the log marginal likelihood that is crucial for Bayesian
model complexity. As Equation (8) is Gaussian, the log marginal
likelihood can be expressed analytically as

log p(τ |θ) = −
1

2
(τ − 9µω)†

(

96ω9† + 6τ

)−1
(τ − 9µω)

︸ ︷︷ ︸

goodness-of-fit

−
1

2
log det

(
96ω9† + 6τ

2π

)

︸ ︷︷ ︸

model complexity

(9)

The data-independent model complexity corresponds to the
entropy of the predictive distribution. This complexity is entirely
determined by the covariance matrix 6ω that describes the
variance of the movement pattern in feature space. We estimated
the value of θ = {µω, 6ω} in Equation (8) by Bayesian
inference. To this end, we first computed the prior over θ by
assuming a Normal-inverse-wishart distribution with parameters
µ0, κ0, ν0, 60, and initialized µ0 and 90 with maximum-
likelihood estimates of mean and covariance over all data—see
Lazaric and Ghavamzadeh (2010) for details of the maximum-
likelihood estimation procedure. The parameter values κ0 and
ν0 were initialized as κ0 = 0.1 and ν0 = 10.0. However,

Frontiers in Psychology | www.frontiersin.org 11 December 2015 | Volume 6 | Article 1879

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Peng and Braun Motion Complexity and Creativity

the correlation between complexity and subjective creativity
judgment is robust and does not depend on the precise
value of these parameters across several orders of magnitude
(see Supplementary Figure 2). Given this prior over θ , the
posterior over θ for each motion pattern also takes the form
of a Normal-inverse-wishart with parameters [see for example
Murphy (2012)]

µ =
κ0µ0 + Nx̄

κ0 + N

κ = κ0 + N

ν = ν0 + N

9 = 90 + 9̄ +
κ0N

κ0 + N
(x̄− µ0) (x̄− µ0)

† ,

where x̄ is the sample mean, 9̄ is the weighted sample covariance,
and N is the number of observed trajectories for each pattern,
i.e., N = 10. The values of {µω = µ,6ω = 9/ν}

provide a maximum-a-posteriori estimate of θ for a particular
motion pattern obtained from subjects’ example trajectories (10
required repetitions for each pattern). The main reason for
computing maximum-a-posteriori estimates for the entropy is
that maximum-likelihood estimates can lead to ill-conditioned
covariance matrices (Murphy, 2012).

Symbolic Sequence Analysis
In a previous study (Peng et al., 2014) we have shown
that motion complexity can be determined by translating
continuous trajectories into symbol sequences consisting of
up/down/left/right transitions. In order to obtain the transition
sequence, we tessellated the workspace into unit squares called
grid cells. In our experiment the workspace was 10 × 10 cm and
for the analysis we used grid cell of 1×1 cm. Transitions between
the grid cells are recorded as symbol sequences s1s2s3...sn, with
si ∈ {l, r, u, d} corresponding to “left,” “right,” “up,” and “down.”
To get reliable complexity estimates of such symbol sequences,
we required at least 10, 000 transitions. As subjects only drew 10
trajectories per pattern, we fitted the distribution of Equation (8)
to subjects’ trajectories and sampled as many trajectories from
this distribution as required to achieve at least 10, 000 transitions.

Lempel-Ziv Complexity
Lempel-Ziv complexity is an irregularity measure for symbol
sequences (Doğanaksoy and Göloğlu, 2006) that has also been
widely applied in neuroscience (Radhakrishnan and Gangadhar,
1998; Blanc et al., 2008; Casali et al., 2013). Roughly, it counts
the minimal number of distinct substrings to segment an entire
symbol sequence. For instance, the decomposition of the binary
sequence x = 01001101010111001001 into minimal blocks of the
segmentation is 0|1|00|11|0101|0111|0010|01, hence the (LZ-76)
complexity of x is 8.

Effective Measure Complexity
Effectivemeasure complexity does not simplymeasure the degree
of randomness, but rather the complexity of the structure of a
sequence (Grassberger, 1986; Crutchfield and Feldman, 2003; Ay
et al., 2006; Prokopenko et al., 2009). It is defined as

EMC =

∞
∑

L=0

(hL − h), (10)

where the conditional entropy hL quantifies the average
uncertainty about the symbol sL+1 given the previous symbol
sequence s1..sL. The longer the given sequence, the lower the
conditional entropy, as adding more prior information can only
lead to a better prediction of a symbol, such that hL+1 ≤ hL. The
limit L → ∞ of the conditional entropy gives the entropy rate
h = limL→∞ hL, which provides a lower bound on all conditional
entropies. We estimated the effective measure complexity for our
sampled trajectories as described in Peng et al. (2014).
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