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Memory for numbers improves with age and experience. One potential source of
improvement is a logarithmic-to-linear shift in children’s representations of magnitude.
To test this, Kindergartners and second graders estimated the location of numbers
on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at
number-line estimation predicted memory accuracy on a numerical recall task after
controlling for the effect of age and ability to approximately order magnitudes (mapper
status). To test more directly whether linear numeric magnitude representations caused
improvements in memory, half of children were given feedback on their number-line
estimates (Study 2). As expected, learning linear representations was again linked to
memory for numerical information even after controlling for age and mapper status.
These results suggest that linear representations of numerical magnitude may be a
causal factor in development of numeric recall accuracy.
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INTRODUCTION

Remembering numeric information is an important part of modern life. Sometimes numbers
must be recalled verbatim (e.g., personal identification, phone, and flight numbers); other
times remembering the gist of numeric information will suffice (e.g., savings account balances,
temperatures, number of students in a lecture hall). Children’s ability to recall exact and gist
numeric information improves greatly with age and experience (Dempster, 1981; Brainerd and
Gordon, 1994).

To explain age-related improvements in numeric memory, early research pointed to cognitive
changes that applied equally to memory for numbers and other types of information (e.g., letters,
syllables, animal names). Among these 10 potential causes were improved use of strategies—e.g.,
rehearsal (Ornstein et al., 1975), grouping (Easby-Grave, 1924; Estes, 1974), chunking (Simon,
1974; Chi, 1978), and retrieval selectivity (Samuel, 1978)—and non-strategic variables, such as
speed of item identification and item ordering (Chi, 1977), attentional capacity (Dempster, 1978),
resistance to interference (Leslie, 1975), search rate (Keating and Bobbit, 1978), and output buffer
(Baddeley et al., 1975). However Dempster (1981) found that age differences in speed of number
identification was the only variable that reliably accounted for age differences in children’s memory
for numbers.

Modern research on memory development and numerical cognition, however, points
to another potential cause for age-related improvements in memory for numbers,
namely developing representations of numerical magnitudes (Brainerd and Gordon, 1994;
Thompson and Siegler, 2010).The basic premise of this account is that the distinctiveness of
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a trace in memory determines in large part how easily it can
be retrieved, with information leaving the most “fuzzy trace” in
memory being the most difficult to recall (Greene and Crowder,
1984; Brainerd and Reyna, 1990). The generalization of this
account has an interesting implication for children’s memory
for numbers: because children initially represent large numeric
magnitudes as being less distinct than small numeric magnitudes
(as on a logarithmic ruler; see Siegler et al., 2009; Figure 1),
large numbers are also more difficult for young children to
retrieve from memory than smaller numbers (Thompson and
Siegler, 2010). Additionally, within any age group, children with
the least accurate memory for numbers are also the ones most
likely to estimate the positions of numbers on number lines to
increase logarithmically (rather than linearly) with actual value
(Thompson and Siegler, 2010).

If true, this account has important theoretical and practical
implications. Theoretically, it might explain the previously
observed association between age and ability to remember
numbers (e.g., Brainerd and Gordon, 1994). Practically, it
suggests that children’s memory for numbers could also
be improved by engendering the logarithmic-to-linear shift
observed in previous training studies (e.g., Opfer and Siegler,
2007; Opfer and Thompson, 2008; Thompson and Opfer, 2008).
Testing this practical implication is also theoretically interesting
because it could provide evidence for a causal link between
numerical representations and memory, as opposed to just a
correlation that might be equally well-explained by associations
with a third variable (e.g., processing speed, working memory,
proportional judgment skills).

We had hypothesized that the link between numerical
representations and memory accuracy was causal largely due to
theoretical problems in domain-general accounts of number-line
estimation development. The major problem for the domain-
general account is that number-line estimation ability does not
develop like a domain-general ability. For example, when the
same child is given two different number-line tasks (e.g., 0–100
and 0–1000), she typically provides a linear series of estimates
for the smaller scale and a logarithmic series of estimates for
the larger scale (Siegler and Opfer, 2003). Given that the same
child cannot have both a short and long working memory span
at the same time, therefore, a general cognitive skill like working
memory cannot explain these two different patterns of estimates.
In addition, evidence that has been adduced in support of one
domain-general ability, proportional reasoning skills (Barth and
Paladino, 2011; Slusser et al., 2013), appears to be an artifact of
a very specific, atypical procedure for introducing number-line
problems (Opfer et al., 2016). Thus, we were skeptical that the
previously observed correlation between number-line estimation
and memory accuracy was merely due to the development of
some general cognitive skill.

The Current Study
The current studies were designed to test for a potential causal
link between children’s numerical representations and their
numerical memory. In Study 1, Kindergartners, second graders,
and adults estimated numbers in the 0–1,000 range and recalled
numbers presented in meaningful vignettes. The purpose of

FIGURE 1 | Logarithmic and linear functions. Distance between
representations is greatest at 150 (725 vs. 150); this means that the
logarithmic function increases more than the linear representation between
each successive pair of numbers up to 150, but increases less than the linear
function above 150. Thus, numbers below 150 are more discriminable in the
logarithmic representation, and numbers above 150 are more discriminable in
the linear representation.

Study 1 was to investigate the unique contributions of both age
and quality of numerical representations to memory accuracy in
numerical recall, as well as to identify children who would benefit
from training in Study 2. It was an open question as to whether
Kindergartners would be able to learn to produce a linear series of
estimates in the 0–1,000 range after receiving feedback.We tested
all participants in the 0–1,000 range because we wanted to assess
developmental improvements in the relation between estimation
and memory for numbers across the lifespan. Also, this was the
numerical range that was used in previous research (Thompson
and Siegler, 2010).

In Study 2, Kindergartners and second graders received
training on the number-line estimation task, following the
procedure used in Opfer and Siegler (2007). Our goal in Study
2 was to investigate whether adoption of linear spatial-numeric
associations on the number line estimation task would improve
recall of numerical information. We were particularly interested
in memory for large numbers (>150) because they were much
larger than those for which children received training (150),
yet were predicted to elicit the greatest improvements by the
logarithmic-to-linear shift account.

STUDY 1: AGE DIFFERENCES IN
NUMERICAL ESTIMATION AND
MEMORY ACCURACY IN NUMERICAL
RECALL

Method
Participants
Participants were 14 Kindergartners (Mean age = 6.25 years,
SD = 0.39 years; 50% girls; 93% Caucasian, 7% Asian),
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63 second graders (Mean age = 8.31 years, SD = 0.33 years;
45% girls; 95% Caucasian, 3.1% Asian, 1.6% Biracial),
and 28 adults (Mean age = 20.07 years, SD = 2.3 years;
50% women; 71% Caucasian, 29% Asian). Children were
recruited from three schools in southwestern Pennsylvania.
On average, 11% of all children attending these schools were
eligible for free or reduced-cost lunches; the Pennsylvania
state average is 33%. Adults attended a private university
in southwestern Pennsylvania and received partial course
credit for participating. This study was carried out in
accordance with the recommendations of the Carnegie
Mellon University IRB with written informed consent from
the parents/guardians of all subjects and verbal assent from all
child participants.

Tasks
Numerical estimation
Participants were asked to estimate the position of 22 sequentially
presented numbers on a line, where the left end was labeled “0,”
the right end “1,000,” and no other marks. The numbers to be
estimated (from Opfer and Siegler, 2007: 2, 5, 18, 34, 56, 78, 100,
122, 147, 150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 818,
and 938) were centered above the midpoint of each line. After
participants made each of their estimates by making a hatchmark
on the number line, another problem was given.

Numerical recall
Participants listened to six short vignettes (see Table 1) and
were asked to recall the numbers in the vignette after a brief
distracter where children were asked to name colors, animals,
fruits/vegetables, shapes, and modes of transportation presented
on flash cards. Participants were told, “You will get to hear a short
story. Try your best to remember all of the parts of the story
because I will ask you some questions about the story later.” Each
story involved three small (5, 18, 53, 79, 164, 237), medium (419,
487, 524, 548, 625, 632), or big numbers (725, 759, 817, 846, 938,

962). Numbers were presented randomly within vignettes, and
each number was presented equally often with each vignette.

Procedure
Children were tested individually during one 25-min
experimental session occurring in a quiet room in their school;
adults were tested individually during one 20-min experimental
session in a laboratory on a college campus. Participants always
completed the number line estimation task first, and no feedback
was given on participants’ performance.

Results and Discussion
Numerical Estimation
We first examined development of numerical estimation by
measuring age-related changes in accuracy of number line
estimates. Accuracy of estimates was indexed by percent absolute
error (PAE), defined as: ([| to-be-estimated value – participant’s
estimate|]/numerical range) ∗ 100. For instance, PAE = 45%
if a child clicked at the location for 600 when asked to
estimate the number 150 on a 0–1,000 number line, ([|150–
600|]/1,000) ∗ 100. That is, the higher the PAE, the less accurate
the estimates. As expected, accuracy of number line estimates
improved substantially with age, F(2,102) = 80.87, p < 0.0001,
η2 = 0.61 with Kindergartners’ PAE being 31% (SD = 9%),
second graders’ 17% (SD = 8%), and adults’ 3% (SD = 0.9%).

Previous work (Siegler and Opfer, 2003) explained age-related
changes in accuracy of number line estimates as stemming from
a shift from logarithmic to linear mappings between symbolic
and spatial values. To test this idea, we compared the fit of
the logarithmic and linear regression functions for the relation
between the median estimates of each age group and actual
numeric value. Consistent with the logarithmic-to-linear shift
hypothesis, we found that Kindergartners’ median estimates were
best described by a logarithmic function (log R2 = 0.86, lin
R2 = 0.47), second graders’ about equally by each function (log

TABLE 1 | Numerical recall vignettes.

Vignettes Probe Questions

Beth wanted to find something to read at the public (her school’s) library. On a shelf at the public (school’s)
library, she saw _____ magazines, _____ fiction books, and _____ non-fiction books.

How many magazines did Beth see?
How many fiction books did Beth see?
How many non-fiction books did Beth see?

Mr. Smith asked students in his school district (students at his school, second grade students at his school)
how they liked to travel best. _____ liked airplanes, _____ like cars, and _____ liked trains.

How many students liked airplanes best?
How many students liked cars best?
How many students liked trains best?

Mrs. Conway asked students in her school district (students at her school, second grade students at her
school) about their favorite foods. ____ students liked spaghetti best, _____ students liked pizza best, and
_____ students liked chicken nuggets best.

How many students liked spaghetti best?
How many students liked pizza best?
How many students liked chicken nuggets best?

Some farmers (The farmer) planted different kinds of vegetables on (in) their farms (his farm, his garden). They
(He) planted _____ carrots, _____ potatoes, and _____ cucumbers.

How many carrots did the farmers plant?
How many potatoes did the farmers plant?
How many cucumbers did the farmers plant?

Mr. Costa asked the students in his school district (students at his school, second grade students at his school)
which card game they liked best. _____ liked Old Maid, _____ liked Go Fish, _____ liked Uno.

How many students liked Old Maid best?
How many students liked Go Fish best?
How many students liked Uno best?

Colleen washes the dishes at a restaurant. This month (week, weekend), she washed _____ forks, _____ cups,
and _____ plates.

How many forks did Colleen wash?
How many cups did Colleen wash?
How many plates did Colleen wash?

Frontiers in Psychology | www.frontiersin.org 3 January 2016 | Volume 7 | Article 24

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Thompson and Opfer SNA Improves Memory

FIGURE 2 | Percent absolute error (PAE) on the numerical estimation task is strongly correlated with PAE on the numerical memory task for
Kindergartners (black circles), second graders (gray circles), and adults (white circles). The inset figures illustrate a logarithmic-to-linear shift in numerical
estimation across the age range.

R2 = 0.884, lin R2 = 0.879), and adults by the linear function (log
R2 = 0.66, lin R2 = 1.0).

To ensure that these fits did not arise from averaging
over distinct cognitive profiles, we conducted an analysis to
determine which participants approximately mapped numerical
values to magnitudes (i.e., where the slope of the best-fitting
linear function differed significantly from zero). If the slope
of the best fitting linear function differed significantly from
0, participants were labeled “mappers.” If participants’ slope
did not differ significantly from 0, they were labeled “non-
mappers.” In the present study, 100% of adults, 98% of second
graders, and 50% of Kindergartners were mappers. Likewise,
100% of adult mappers produced a series of estimates better fit
by the linear than logarithmic function, and the same was true
for 48% of second grade mappers, and 29% of Kindergarten
mappers. The logarithmic function fit the data better than
the linear function for 86% of Kindergarten non-mappers and
for one second grade non-mapper. There were no adult non-
mappers.

Numerical Recall
We next examined development of memory accuracy in
numerical recall by measuring age-related changes in accuracy

of memory. Accuracy of memory was again indexed by
PAE, [(|to-be-remembered value – number participant
remembered|)/1,000] ∗ 100. Please note that the higher the
PAE the less accurate were the numbers recalled. Similar to
number line estimation PAE, numerical recall PAE shows how
far participants’ memories for numbers deviated from the
numbers that were verbally presented in the short vignettes. As
expected, accuracy of memory improved substantially with age,
r = −0.63, F(1,102) = 67.51, p < 0.0001, with Kindergartners’
PAE being 35% (SD = 8%), second graders’ 19% (SD = 9%), and
adults’ 7% (SD = 3%).

Relation Between Numerical Estimation and Memory
Accuracy in Numerical Recall
Might improvements in memory accuracy—like improvements
in accuracy of numerical estimates—be caused by a logarithmic-
to-linear shift in representations of numerical value? Several
observations suggest this might be the case.

First, memory accuracy was highly correlated (r = 0.781)
with performance in numerical estimation (Figure 2). Even when
adults were removed from the analysis, number line estimation
PAE and memory recall PAEwere strongly correlated (r = 0.654).
After statistically controlling for the effects of mapper status
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FIGURE 3 | Percent absolute error on the numerical estimation task is strongly correlated with PAE on the numerical memory task for non-learners
(black circles) and learners (white circles). The inset figures illustrate a logarithmic-to-linear shift in numerical estimation across non-learners and learners.

(e.g., Did participants approximately map numerical values to
magnitudes on their placement of numbers on number lines?)
and age, accuracy on number line estimation also positively
predicted memory accuracy (slope = 0.66, t = 7.07, p < 0.0001).

A second set of observations came from the predicted
effects of numerical magnitude on memory accuracy. That
is, if numeric symbols are mapped with a constant noisiness
to a logarithmically scaled mental number line, then signal
overlap increases dramatically with numerical value, thereby
leading to significant interference from adjacent values as the
target number increases. In contrast, if numeric symbols are
mapped with constant noisiness on a linearly scaled mental
number line, then signal overlap is greatest for neighboring
values but does not otherwise increase with numeric value.
On a 0–1,000 mental number line, for example, the difference
between the two representations would be greatest around
150 (see Figure 1), leading to a distinct pattern of predicted
errors: for numbers greater than 150, use of a logarithmic
representation would interfere much more with memory than
use of a linear representation, whereas for numbers less than 150,
accuracy would favor the logarithmic representation or neither
representation (depending on overall noisiness of the mapping).

To test this prediction, we conducted a 2 (numerical range:
below 150, above 150) × 2 (best fitting function on number line
estimation: logarithmic, linear) ANOVA on PAE scores for recall.
There was a main effect of numerical range, F(1,103) = 155.63,
p< 0.0001, η2 = 0.52, and best fitting function, F(1,103)= 38.20,
p < 0.0001, η2 = 0.27. The main effect for numerical range

showed that children were more accurate on smaller as compared
to bigger numbers (PAE = 6% vs. 21%). The main effect of best
fitting function showed that children’s PAE was lower when they
were best fit by the linear function (PAE = 9%) as compared to
when they were best fit by the logarithmic function (PAE= 19%).
There was also a significant numerical range × best fitting
function interaction, F(1,103) = 41.97, p < 0.0001, η2 = 0.14.
For numbers below 150, memory accuracy was high regardless
of the numerical representation employed on the number line
estimation task, F(1,103) < 1, p > 0.05. However, for numbers
greater than 150, memory accuracy was much lower among
participants who produced a logarithmic series of estimates on
the number line estimation task than among participants who
produced a linear series of estimates (PAE = 31% vs. 13%,
respectively, F(1,103) = 71.51, p < 0.0001, η2 = 0.41). Thus,
memory accuracy—particularly memory for large numbers—was
associated with use of linear representations.

In summary, the proportion of children producing more
logarithmic than linear estimation patterns declined with age.
Results indicated that (1) children who produced a linear series
of estimates were more accurate than children who produced
a logarithmic series of estimates, (2) older children and adults
were more likely to produce a linear series of estimates, (3)
there was a strong correlation between numerical estimation
performance and memory accuracy on a numerical recall task,
and (4) developmental changes in numerical memory accuracy
occurred much more for numbers greater than 150 than less
than 150.
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FIGURE 4 | Numerical range × learner status interaction. Regardless of
whether children had learned to produce a linear series of estimates on the
number line estimation task, smaller numbers were remembered better than
were larger ones. However, children who learned to produce a linear series of
estimates remembered bigger numbers better than those children who did
not learn to produce a linear series of estimates.

Findings from Thompson and Siegler (2010) and results
from Study 1 provide converging correlational evidence that
linear spatial-numeric associations are related to more accurate
numerical recall. Additionally, the results show that age
alone cannot account for the association between quality of
representation and numerical memory, an issue that could not
be explored in Thompson and Siegler’s data. This is important
because it raises the possibility that manipulating the quality of
numeric representations could improve numeric memory.

STUDY 2: EFFECTS OF TRAINING ON
NUMERICAL ESTIMATION AND
MEMORY ACCURACY

Method
Participants
Children from Study 1 who produced a logarithmic series of
estimates on the number-line estimation task were included in
Study 2 as were additional Kindergartners and second graders
who were recruited to participate in the training procedure.
Participants were 23 Kindergartners (Mean age = 6.23 years,
SD = 0.39 years; 61% girls; 100% Caucasian; 48% were later
assigned to the treatment group) and 64 second graders (Mean
age= 8.31 years, SD= 0.34 years; 59% girls; 94% Caucasian, 3.1%
Biracial, 1.6% Asian, 1.6% Hispanic; 47% were later assigned to
the treatment group). The children were recruited from the same
schools as in Study 1. This study was carried out in accordance
with the recommendations of the Carnegie Mellon University
IRB with written informed consent from the parents/guardians
of all subjects and verbal assent from all child participants.

Tasks
The numerical estimation and recall tasks were equivalent to the
tasks described in Study 1.

Procedure
Children were randomly assigned to a treatment group, who
received corrective feedback on their placement of seven numbers
(147, 150, 156, 163, 172, 179, and 187) on the number line, or a
control group, who completed the same problems but without
feedback on their estimates (see Opfer and Siegler, 2007, for a
detailed description of the training procedure). During training,
children made a hatch mark for the to-be-estimated number,
and then the experimenter told the child whether the estimate
was near (within 10%) or far (beyond 10%) from the correct
location. After the experimenter indicated the correct placement
and labeled the number the child mistakenly indicated, the child
described why the corrected mark showed the right location for
the number. After this training, both groups completed a 22-
problem number-line posttest, followed by the numerical recall
task described in Study 1.

Results and Discussion
Effect of Feedback on Numerical Estimation
To assess the effectiveness of training, we conducted a 2 (test
phase: pretest, posttest) × 2 (condition: control, treatment) × 2
(grade: Kindergarten, second grade) ANOVA on number line
PAE scores. As expected, accuracy increased significantly from
pretest to posttest, F(1,83) = 41.69, p < 0.0001, η2 = 0.30,
with accuracy also being greater in the treatment than control
condition, F(1,83) = 7.08, p < 0.01, η2 = 0.08, and greater
for older than younger children, F(1,83) = 71.88, p < 0.0001,
η2 = 0.46. Against the idea that pretest to posttest gains
occurred through regression to the mean, we also observed a
significant test phase × condition interaction, F(1,83) = 6.30,
p < 0.05, η2 = 0.05. Post hoc analysis indicated that these gains
from pretest to posttest were larger in the treatment group
(M = 8%, SD = 7%) than in the control group (M = 3%,
SD = 6%), F(1,85) = 16.31, p < 0.0001, η2 = 0.16. Finally, a test
phase × condition × grade interaction, F(1,83) = 6.32, p < 0.05,
η2 = 0.05, indicated that feedback reliably induced pretest-
to-posttest gains among second graders (treatment: pretest,
M = 21%, posttest, M = 11%; control: pretest, M = 22%,
posttest, M = 20%) but not Kindergartners (treatment: pretest,
M = 31%, posttest,M = 27%; control: pretest,M = 34%, posttest,
M = 30%).

Transfer of Learning to Memory Accuracy in
Numerical Recall
We next examined whether the logarithmic-to-linear shift that
we induced in numerical estimation would also improve memory
accuracy in a numerical recall task. As in Study 1, we found
accuracy of numerical estimation and numerical recall were
highly correlated (Figure 3), but we were interested in whether
a causal connection existed. To examine this issue, we separated
Kindergartners and second graders into two groups—learners
(N = 31), those children who learned to produce a linear
series of estimates on the number-line posttest, and non-learners
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(N = 56), those children who continued to produce a logarithmic
series of estimates on the number-line posttest.

Our hypothesis was that the accuracy of learners’ recall would
be higher than that of non-learners, and this difference would
be especially strong for large numbers. To test this hypothesis,
we conducted a 2 (numerical range: below 150, above 150) × 2
(learner status: non-learner, learner) ANOVA on PAE memory
scores. As expected, memory was more accurate for small than
large numbers, F(1,85)= 188.01, p< 0.0001, η2 = 0.67, andmore
accurate among learners than non-learners, F(1,85) = 12.81,
p = 0.001, η2 = 0.13. Additionally, we observed a significant
numerical range × learner status interaction (see Figure 4),
F(1,85) = 7.94, p < 0.01, η2 = 0.03. For numbers below 150,
memory accuracy on the numerical recall task was accurate
regardless of whether children learned to produce a linear series
of estimates on the number line estimation task (non-learners
PAE = 6%, learners PAE = 5%), F(1,85) < 1, p > 0.05.
For numbers greater than 150, however, non-learners were less
accurate on the numerical recall task than learners (PAE = 35%
vs. 24%, respectively, F(1,85) = 14.02, p < 0.0001, η2 = 0.14).
Thus, as in Study 1, memory accuracy—particularly memory
for large numbers—was associated with acquisition of linear
representations.

Because there was a small effect size showing that learners had
more accurate memory recall than non-learners, we investigated
whether something other than learning linear representations
could be responsible for this difference. We tested two alternative
explanations. The first idea was that age alone improved
recall. This idea seemed plausible because learners (M = 8.23,
SD = 0.59) tended to be older than non-learners (M = 7.5,
SD = 1.07), t(85) = 3.49, p < 0.001, d = 0.84, possibly
leading them to have better memory. To test this idea, we
examined second graders alone because roughly half of the 64
second graders (n = 29) qualified as learners, and their ages
were very close (learners, M = 8.35, SD = 0.35; non-learners,
M = 8.28, SD = 0.33, t(62) = 0.84, p > 0.05, ns). Here too
we found that numerical recall was more accurate for learners
than non-learners (learners, PAE= 19%, SD = 7%; non-learners,
PAE = 24%, SD = 9%, t(62) = 2.01, p < 0.05, d = 0.62).

Another alternative explanation for why learners might have
more accurately recalled numbers than non-learners was that
feedback alone improved memory, regardless of whether it
actually led to learning linear representations. Against this
hypothesis, however, we found no main effect of feedback on
memory accuracy (treatment, PAE = 18%, SD = 9%; control,
PAE = 19%, SD = 12%; F < 1). Thus, actually learning linear
representations from the feedback appeared both necessary and
sufficient for the average child to improve memory accuracy.

GENERAL DISCUSSION

Previous work has indicated that a logarithmic-to-linear shift
in children’s representations of symbolic quantities profoundly
expands children’s quantitative thinking (for review, see Opfer
and Siegler, 2012; for a discussion of alternative models, see
Opfer et al., 2011, and Young and Opfer, 2011). It improves

children’s ability to estimate the positions of numbers on
number lines (Siegler and Opfer, 2003; Siegler and Booth, 2004;
Berteletti et al., 2010; Thompson and Opfer, 2010), to estimate
the measurements of continuous and discrete quantities (Opfer
et al., 2010; Thompson and Siegler, 2010), to categorize numbers
according to size (Opfer and Thompson, 2008), and to estimate
and learn the answers to arithmetic problems (Booth and Siegler,
2008). Recent work has also indicated that the logarithmic-to-
linear shift is associated with improved memory for numbers
(Thompson and Siegler, 2010), but it was unclear whether there
was a causal link between the representations of numerical
magnitude and memory for numbers.

We found evidence that a logarithmic-to-linear shift in
estimating the position of numbers on number lines was both
correlated with and likely causally related to improved memory
for numbers. In Study 1, linearity of numerical estimates
increased with age, and the more linear children’s magnitude
representations were, the more closely their memory of the
numbers approximated the numbers presented. These results
provided a replication of earlier results, and they also revealed
that performance on the number line estimation task mediated
the relation between age and memory accuracy on a numerical
recall task.

To test the idea that linear magnitude representations were
causally related to number memory, we trained half of the
children on a linear spatial-numeric association on the number
line task. Consistent with there being a causal link between
numerical magnitude representations and memory for numbers,
children who learned to represent numbers as increasing linearly
with numeric magnitude also improved their memory for
numbers. This improvement was particularly large for numbers
greater than 150, though children were not given feedback
on their estimates in this range. Theoretically, this finding
is interesting because it is a prediction that comes from the
logarithmic-to-linear shift account (see Figure 1). That is, the
linear representation makes it easier to discriminate numbers at
the high end of the range, whereas the logarithmic representation
compresses numbers at the high end of the range. This result
is important because it provides a specific mechanism for
developmental change in the accuracy of memory for numbers
(i.e., improved knowledge of numerical magnitudes).

One limitation of our study is that we do not know how
our participants performed on a standardized measure of
mathematics achievement because the state of Pennsylvania does
not mandate mathematics achievement tests for children in this
age range. It is possible that those children who were more likely
to learn a linear representation also possessed higher overall
mathematics achievement, and this can be investigated in future
research. Further, we do not know how broad and durable the
improvements in memory accuracy are after children receive
training on the number line estimation task. We improved
memory for the predicted range of numbers, but we do not know
if other numeric ranges might also be impacted by our training
procedure. In fact, to our knowledge, the numerical cognition
literature does not include any published data on the durability of
number line estimation training in general because most training
studies occur within one experimental session.
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Beyond demonstrating that linear spatial-numeric
associations improve memory for numbers, we believe the
present results also help to explain the positive relation between
linear numeric magnitude representations and arithmetic
proficiency (Booth and Siegler, 2008; Schneider et al., 2009;
Siegler and Ramani, 2009). That is, if learning linear spatial-
numeric associations improves memory for numbers in
vignettes, it is highly likely it also improves memory for
numbers in other contexts, such as memorizing arithmetic
facts, as well as memory for fractions, where development
is more protracted (Opfer and DeVries, 2008; Thompson
and Opfer, 2008; Siegler et al., 2011). Thus, the present
results suggest a plausible explanation for the observed
association between numerical estimation and mathematics

achievement, though this remains an important issue for future
research.
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