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While the extant literature has focused on major depressive disorder (MDD) as being
characterized by abnormalities in processing affective stimuli (e.g., facial expressions),
little is known regarding which specific aspects of cognition influence the evaluation
of affective stimuli, and what are the underlying neural correlates. To investigate these
issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy
controls (HCL) who completed an emotion identification task of dynamically morphing
faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral
data using a sequential sampling model of response time (RT) commonly used to
elucidate aspects of cognition in binary perceptual decision making tasks: the Linear
Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method,
we obtained group-level and individual-level estimates of LBA parameters on the facial
emotion identification task. While the MDD and HCL groups did not differ in mean RT,
accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate
parameter of the LBA), the MDD group showed significantly reduced responses in left
fusiform gyrus compared to the HCL group during the facial emotion identification task.
Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective
face processing was significantly associated with greater individual-level estimates of
perceptual processing efficiency. Our results therefore suggest that affective processing
biases in adolescents with MDD are characterized by greater perceptual processing
efficiency of affective visual information in sensory brain regions responsible for the
early processing of visual information. The theoretical, methodological, and clinical
implications of our results are discussed.

Keywords: adolescent, depression, fMRI BOLD, response time modeling, mood disorders, face processing,
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INTRODUCTION

Major depressive disorder (MDD) is a prevalent condition
that is associated negative mood and emotional dysregulation,
with an onset that increases dramatically during adolescence
(Merikangas et al., 2009; Kessler et al., 2010). While adolescence
is both a period of increased brain plasticity and heightened
risk for the development of MDD, the neural mechanisms
underlying adolescent MDD are still unclear (Casey et al.,
2008; Kerestes et al., 2014). Prior research examining the
neurobiological mechanisms of individuals with MDD have
used facial emotion processing tasks in conjunction with
functional magnetic resonance imaging (fMRI) to probe
how MDD is related to neural systems supporting affective
processing (Fusar-Poli et al., 2009; Stuhrmann et al., 2011). In
these fMRI studies of facial emotion processing, adults with
MDD compared to healthy controls exhibit brain activation
differences at multiple levels in the information processing:
from visual areas such as the fusiform gyrus and the
middle occipital cortex involved in early visual processing
of affective stimuli, to limbic and paralimbic regions such
as the amygdala and insula involved in evaluating and
integrating sensory and affective information, to prefrontal
areas such as dorsolateral prefrontal cortex and ventromedial
prefrontal cortex involved in top-down emotion regulation
(Haxby et al., 2000; Stuhrmann et al., 2011). More recent
work in adolescents with MDD (Ho et al., 2014, 2015; Henje
Blom et al., 2015) have also shown concordance with the
adult literature by demonstrating that depression is related
to functional aberrations in the face processing network that
includes visual regions, limbic and paralimbic structures, and
frontal cortices during processing of emotional facial expressions
in youth.

The most common cognitive feature of MDD is a processing
bias toward negatively affective stimuli (Gotlib et al., 2004;
Foland-Ross and Gotlib, 2012). The literature also supports
conceptual models positing that biases in the processing
and interpretation of emotional facial expressions as social
cues may be one of the underlying mechanisms in the
development of MDD in youth (Joormann and Gotlib, 2006;
Joormann et al., 2007; Kujawa et al., 2011). Specifically,
attentional biases have been reported even in children who
are at familial risk for MDD, thus potentially serving as a
cognitive risk factor in the development of depression (Joormann
and Gotlib, 2006; Joormann et al., 2007; Kujawa et al.,
2011; Montagner et al., 2015). However, whether depression-
related biases in the processing of emotional facial expressions
are due to dysfunction in early visual regions, limbic and
paralimbic regions involved in the affective evaluation of facial
expressions, and/or top–down cognitive control regions still
remains unclear. Thus, relating biases in the processing of
emotional information to neural substrates in adolescents with
MDD is critical if we are to understand how these cognitive
processes may contribute to the early development of depressive
symptoms.

Most cognitive tasks used to assess information processing
in both healthy and clinical populations involve straightforward

two-choice decisions (e.g., “Is this face negative or positive?”,
“Is this word threatening or not?”, “Have you seen this image
before or not?”). The behavioral data acquired from these
tasks are typically reported as mean response time (RT) and
mean accuracy. While comparing effects of RT and accuracy
are sometimes meaningful, there are several situations where
comparisons of mean RTs or accuracy rates do not sufficiently
identify processing differences between groups or conditions
(including but not limited to speed-accuracy tradeoffs or an
unequal weighing of decision outcomes; (White et al., 2010).
Moreover, other behavioral performance measures, such as d’
from signal detection theory, do not take into account RT
distributions, and rely only on hits and false alarm rates to
explain behavior (Ratcliff and McKoon, 2008; White et al., 2010).
Consequently, merely analyzing mean RT and accuracy rates
glosses over the potentially complex relationship between RT,
accuracy, and the underlying cognitive processes.

Over the past several decades, a variety of mathematical
models of choice behavior have successfully related the shape
of correct and incorrect RT distributions with the probabilities
of making correct or incorrect judgments (Ratcliff and Smith,
2004; Smith and Ratcliff, 2004). The advantage of these models
over traditional analyses of accuracy and RT is that both accuracy
and RT are used to decompose the behavioral data into distinct
information processing components, which are represented in
the model as individual parameters. Thus, the model can be
fit to behavioral data to separate out and compare distinct
decision components, including: perceptual processing efficiency,
response caution, response bias, or non-decision time. Sequential
sampling models of choice behavior can identify different
decision components because they utilize all of the behavioral
data available (e.g., hits, false alarms, and RT distributions for
correct and error responses).

While such models have been used extensively in the field
of cognitive psychology, they have only been applied recently
to clinical data (White et al., 2010; Pe et al., 2013; Ho et al.,
2014; Weigard and Huang-Pollock, 2014). For example, Pe
et al. (2013) recently used a sequential sampling model to
show that rumination accounts for the attentional bias toward
emotionally negative stimuli in adults with MDD (Pe et al., 2013).
Their results revealed that when focusing on a negative target,
both rumination and depression were associated with facilitated
perceptual processing due to negative distracters, whereas only
rumination was associated with less interference by positive
distracters. Importantly, these results were not reproduced
when using only accuracy scores or average RTs. Thus, such
models possess great potential in allowing researchers to identify
the cognitive loci of processing differences between healthy
and clinical populations. When combined with neuroimaging,
mathematical models of choice behavior can be used to link
conceptual processes to neural substrates, thereby providing an
unprecedented advance in relating brain dynamics to behavior,
symptoms, and functioning.

In the present study, we sought to apply a mathematical model
of choice behavior to a sample of acutely depressed and well-
matched healthy adolescents undergoing fMRI during a two-
choice facial emotion identification task. All subjects completed
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an emotion identification task of dynamically morphing faces
that has been demonstrated to robustly activate frontolimbic
regions implicated in the pathophysiology of adolescent MDD
(Ho et al., 2015). One of the key parameters examined in
sequential sampling models of choice behavior is the drift rate,
which indexes the strength or amount of sensory information
for a particular choice option (i.e., “sensory evidence”), and thus,
acts as a proxy for perceptual processing efficiency in conditions
when signal and noise amounts do not differ. Drift rates are
often the primary focus of researchers employing two-choice
tasks as they provide a more direct index of perceptual processing
efficiency than either RTs or accuracy, as the latter two measures
are affected by the other components of the decision process.
In the context of a mathematical model of choice behavior, the
effects of the decision components not related to the drift rate
are parsed out and represented as other parameters in the model.
Since these components are separated they do not affect drift rate
estimates despite obviously influencing RT and accuracy. Thus,
drift rates are better able to detect small differences in perceptual
processing efficiency that might not be as readily captured by
simply comparing RTs or accuracy (White et al., 2010). Given that
prior studies have found that drift rates differ in adolescents and
adults with MDD during emotional and cognitive processing (Pe
et al., 2013; Ho et al., 2014), we focused our analyses on the drift
rate parameter.

The present study is a secondary analysis of a prior fMRI
investigation where we compared adolescents with MDD and
healthy controls on a facial emotion identification task (Ho
et al., 2015). However, in our previous investigation we examined
only task-based versus resting-state functional connectivity of
the medial prefrontal cortex and posterior cingulate cortex, two
hubs of a major task-negative network. Thus, the hypotheses
in our previous investigation centered only on this task-
negative network and included both task-based and resting-
state functional connectivity analyses. The present study differs
considerably from our previous investigation in that our goal is
to use a combination of neuroimaging and mathematical models
of choice behavior to investigate potential neural correlates
of affective processing biases in adolescent MDD. The whole-
brain fMRI results that we report here and the results of our
mathematical model on the behavioral data in this task are
therefore novel. Thus, the primary contribution of the present
study is to demonstrate the utility of applying mathematical
models of choice behavior to investigate cognitive processing
differences in a clinical sample of depressed adolescents
compared to healthy controls, and to relate these behavioral
assessments with functional neuroimaging measures.

The brain regions we hypothesized would differ between
adolescents with MDD and healthy controls include the face
processing network, specifically occipital areas, limbic and
paralimbic structures, and prefrontal regions. Because the drift
rate parameter in the LBA model captures perceptual processing
efficiency to the visual stimuli in our task, we also hypothesized
that depression-related task activation in visual processing
regions (e.g., fusiforym gyrus, middle occipital cortex) will
correlate with drift rate in adolescents with MDD. In the
following sections, we describe the experiment and analyses and

conclude with a discussion on the implications of this work and
future directions.

MATERIALS AND METHODS

Participants
Sociodemographic, clinical, neuroimaging and behavioral data
from a total of 63 adolescents were included in this study. This
sample of 63 adolescents has been described previously (Ho
et al., 2015). To briefly summarize, 26 adolescents (7 males,
mean ± SEM age: 16.1 ± 0.3 years) were diagnosed with a
current episode of MDD and 37 (14 males, mean ± SEM
age: 16.0 ± 0.2 years) HCL. Potential MDD participants were
recruited from adolescent psychiatric and primary care clinics
in San Diego, while potential HCL participants were recruited
from the same geographic area via e-mail, internet, or flyers.
Adolescents from both genders and all ethnicities were allowed
to participate and all subjects received financial compensation for
participating in this study. All participating adolescents provided
written informed assent and their parent(s)/legal guardian(s)
provided written informed consent in accordance with the
Declaration of Helsinki. The Institutional Review Boards at the
University of California, San Diego, University of California,
San Francisco, Rady Children’s Hospital in San Diego, and
the County of San Diego approved this study. All participants
received financial compensation.

The Schedule for Affective Disorders and Schizophrenia for
School-Age Children-Present and Lifetime Version (K-SADS-
PL; Kaufman et al., 2000) was administered to all potentially
depressed adolescents. All depressed adolescents in the study met
full criteria for a current primary diagnosis of MDD according
to DSM-IV and were unmedicated at the time of scanning (all
depressed participants were entirely naïve to antidepressants
except for two: one had last been exposed to antidepressants
4 months before their scan and other, 4 years before their scan).
The computerized Diagnostic Interview Schedule for Children
4.0 (Shaffer et al., 2000) and the Diagnostic Predictive Scale
(Lucas et al., 2001) were used to screen for the presence of
any Axis I diagnoses in the HCL adolescents. The K-SADS-
PL was administered by mental health professionals with prior
clinical experience with children and adolescents (e.g., child and
adolescent psychiatrists or psychologists) and research assistants
who were rigorously trained in order to develop a high standard
of proficiency. All of the K-SADS-PL interviewers were trained
to a kappa level of 0.80 or higher for the diagnosis of MDD.
The K-SADS-PL is a semi-structured interview that provides
severity ratings of symptomatology, and assesses current and
lifetime history of mostDSM-IV compatible psychiatric disorders
in children and adolescents. Because undergoing K-SADS-PL
interviewing constitutes a considerable time burden for our
participants and because in the healthy controls, the presence
of any Axis-I diagnosis would have excluded them from the
study, we opted to use the computerized DISC, which takes
significantly less time to administer than the K-SADS-PL, and
had trained research assistants administer the DPS over the
telephone to further screen potential HCL participants. Both
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the DISC and DPS have been used extensively by our group
and others to determine the presence of Axis-I disorders in
adolescents (Tapert et al., 2007; Yang et al., 2009; Perlman et al.,
2012; Bava et al., 2013). The final determination of whether
potential HCL participants were suitable for admission into the
present study was made at weekly consensus meetings between
the study personnel and a board certified child and adolescent
psychiatrist (TTY).

Depression symptoms measured with the clinician
administered Children’s Depression Rating Scale-Revised
(CDRS-R; Poznanski, 1996), and the self-report scale
Beck Depression Inventory-II (BDI-II; Beck et al., 1996).
Anxiety symptoms were measured with the self-report scale
Multidimensional Anxiety Scale for Children (MASC; March
et al., 1997). In the initial study (Ho et al., 2015) five of the
adolescents with MDD did not provide information on age
of depression onset but later in follow-up interviews, four of
these five participants provided this information, which is now
included in the present study. One HCL did not complete
the BDI-II and MASC. Participants who did not complete all
assessments were excluded from all analyses involving these
measures.

In addition to completing forms on basic demographics
and general medical and developmental history, all subjects
completed the following within 3 days of scanning: Tanner
stage (Tanner, 1962), Hollingshead Four-Factor Index of
Socioeconomic Position (Hollingshead, 1975), Wechsler’s
Abbreviated Scale of Intelligence Test (WASI; Wechsler, 2008),
Edinburgh Handedness Inventory, Customary Drinking and
Drug Use Record (Brown et al., 1998), Family Interview for
Genetics Studies (Maxwell, 1992), Ishihara Color Plates Test
(8 plates, 2005 edition), and Standard Snellen Eye Chart
(Hetherington, 1954). Groups were matched on age, gender
distribution, ethnicity, pubertal status, socioeconomic status,
and general intelligence.

Exclusion criteria for adolescents with MDD included a
primary psychiatric diagnosis other than MDD, left-handedness,
prepubertal stage (Tanner stage < 3), being color blind or having
less than 20/40 correctable vision, any contraindication to MR
imaging (e.g., pregnancy, claustrophobia, metallic implants), a
full scale IQ score < 75 (as determined by WASI), a serious
medical or neurological illness, a learning disability, the use of
any medication with effects on the central nervous system within
2 weeks of their scan, substance abuse, evidence of illicit drug
use or misuse of prescription drugs, and more than two alcoholic
drinks per week currently or within the previous month at the
time of scanning (as determined by CDDR). Adolescents serving
as HCL for this study were excluded based on the same criteria
applied to the MDD group, as well as any current or lifetime Axis
I psychiatric disorder or any family history of mood or psychotic
disorders in first or second-degree relatives (as determined by
FIGS).

Facial Emotion Identification Task
As described previously (Ho et al., 2015), we employed an
emotion identification task using dynamicmorphing face stimuli,
which was created and presented using an in-house Tcl script

(http://www.tcl.tk/software/tcltk). In this block design task, 10
standardized faces (five female) expressing fear, happiness, and
sadness were morphed with computer graphical manipulation.
On FACE trials, a screen displaying text of the possible emotions
to discern (FEAR, HAPPY, SAD) was presented for 1500 ms.
Next, a neutral face morphed smoothly to an emotion of
prototypical intensity over the span of 3000 ms and remained
on screen for an additional 800 ms before the screen turned
blank for 700ms. At stimulus onset, two possible emotion choices
were displayed in the bottom left and right corners; subjects were
instructed to press one of two buttons corresponding to their
choice as soon as they recognized the facial emotion. OVAL trials
(6 s per trial), where subjects had to determine if a morphing oval
was tilting left or right (maximal tilt angle = 10◦), were used as a
sensorimotor control. At the end of the scan, a blank screen was
presented for 10 s. One run contained 80 trials (60 FACE trials
and 20 OVAL trials) and lasted 490 s in total. RT and accuracy
were recorded for each trial. The order of emotion presentation
was counterbalanced but not randomized. See Figure 1 for an
illustration of the task.

LBA Parameter Estimation
Behavioral data from the emotion identification task were
modeled using the Linear Ballistic Accumulator (LBA), which
is a simplified version of the ballistic accumulator model and
the leaky competing accumulator model (Usher and McClelland,
2001; Brown and Heathcote, 2008). The 5 parameters of the LBA
model are: (1) drift rate (which corresponds to the rate of sensory
evidence accumulation or perceptual processing efficiency of
the participant); (2) standard deviation (which corresponds to
how much drift rates can vary across trials); (3) starting point
(which corresponds to the starting evidence before the decision
process begins); (4) response threshold (how much evidence is
needed before making a choice); and (5) non-decision time (time
unrelated to the decision process, such as sensory processing
or response execution). Changing these parameters changes
the model’s predictions of a given individual’s accuracy and
RT. For example, larger response thresholds reflect increases
in accuracy that is accompanied by both slower responses and
more variability in RT. Larger drift rates also reflect increased
accuracy but both faster and less variable RT. Non-decision time
affects mean RT but has no effect on accuracy or RT variability.
The best-fitting LBA parameters, which yield the most adequate
match between model predictions and the observed data, can be
estimated using a variety of methods, e.g., Bayesian estimation,
maximum likelihood estimation, etc.

In the context of the facial emotion identification task
used in this study, on a particular trial a subject may
need to decide if a face is HAPPY or FEARFUL. The LBA
models this two-choice perceptual decision as a race between
two “accumulators” that accrue sensory evidence in favor of
each choice over time (with each accumulator representing a
perceptual choice, e.g., HAPPY). The two racing accumulators
begin with a random activation level (the starting point) that
is independently drawn from a uniform distribution on [0,
A], where A is a free model parameter. Activity in each
accumulator increases linearly, and a response is triggered as
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FIGURE 1 | Schematic of facial emotion identification task. Facial emotion identification task with dynamically morphing face stimuli. On FACE trials, a screen
displaying text of the three possible emotions to discern (FEAR, HAPPY, SAD) was presented for 1500 ms. Next, a neutral face morphed smoothly and dynamically
to an emotion of prototypical intensity over the span of 3000 ms. At maximal emotion intensity, the face remained on the screen for an additional 800 ms of the trial
before the screen turned blank for 700 ms. At stimulus onset, two possible emotion choices were displayed in text on the bottom left and right corners. Subjects
were instructed to press one of two buttons corresponding to the displayed emotion as soon as they recognized the emotion of the face. OVAL trials were used as a
sensorimotor control (6 s per trial), where subjects had to determine if the top of an oval was tilting to the left or right and make a button response accordingly as
soon as they recognized the tilt direction. (A) Example FACE stimulus (enlarged for purposes of clarity). (B) Sample FACE and OVAL trial. Reproduced with
permission.

soon as one accumulator reaches the response threshold (b).
The predicted RT is the time taken to reach the threshold,
plus a constant offset that represents time unrelated to the
decision process (non-decision time, t0). The rate at which
activation increases in each accumulator is termed the drift
rate (v) for that accumulator which is drawn from a normal
distribution (v, s). Here, we included the drift rate for the
accumulator corresponding to the correct response (termed
perceptual processing efficiency, vc) and drift rate for the
accumulator corresponding to the incorrect response (ve), as
we have typically done (Ho et al., 2009, 2012, 2014). On each
trial, the drift rates are drawn from two independent normal
distributions, with one associated with the correct choice and
the other associated with the incorrect choice, with the standard
deviations being arbitrarily fixed at 1, as is commonly done
in the literature (Forstmann et al., 2008, 2011; Ho et al.,
2009, 2012; Mansfield et al., 2011). Hence, the means of the
normal distributions are interpreted to reflect the quality or
strength of the perceptual input for that particular choice (e.g.,
FEAR, HAPPY). The first accumulator to gather the criterion
amount of evidence determines the subject’s choice and RT
(equivalent to the time taken for the accumulator to hit the
response threshold plus non-decision time to account for sensory
and motor processing time). See Figure 2 for a conceptual
illustration of the LBA and Brown andHeathcote (2008) for more
details.

A hierarchical method was used to estimate parameters
in the LBA at the individual-level and group-level. We
obtained parameter estimates at the individual-level so that
we could relate individual differences in aspects of cognitive
processing (here, drift rate) to individual differences in brain
function or clinical characteristics. At the same time, we
obtained parameter estimates at the group-level so that we
could increase the generalizability of our results and more
precisely compute any potential group differences (Turner
et al., 2013b; Ho et al., 2014). The hierarchical model
makes a key assumption that there are continuous individual
differences between people in the parameterization of the
cognitive process they use, and the smooth variation of
the individual differences is constrained by some central
tendency. The group-level analysis estimates the distribution
of the individual-level parameters within the population of
interest (MDD or HCL), termed a hyper distribution (with
its own parameters such as the mean, μ, and the variance,
σ). Each individual subject’s data are described by the five
parameters of LBA, and these individual parameters, together
with the hyper-parameters for their group distributions, are
estimated simultaneously using Bayesian posterior sampling
methods.

We also made the assumption that depressed compared to
healthy control individuals have qualitatively different types
of cognitive processes, so we applied the same hierarchical
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FIGURE 2 | Schematic of the LBA model. The 5 parameters of the model are: (1) drift rate (which corresponds to the rate of sensory evidence accumulation or
perceptual processing efficiency of the participant); (2) standard deviation (which corresponds to how much drift rates can vary across trials); (3) starting point
(starting amount of evidence before the decision process begins); (4) response threshold (how much evidence is needed before making a choice); and (5)
non-decision time (time unrelated to the decision process, such as sensory processing or response execution). The two racing accumulators begin with a random
activation level (the starting point) that is independently drawn from a uniform distribution (indicated by the shaded gray area) on [0, A], where A is a free model
parameter. Activity in each accumulator increases linearly, and a response is triggered as soon as one accumulator reaches the response threshold (b). Time is
indicated on the abscissa and so the predicted RT is the time taken to reach the threshold, plus a constant offset that represents time unrelated to the decision
process (non-decision time, t0). The rate at which activation increases in each accumulator is termed the drift rate (v). On each trial, the drift rates are drawn from two
independent normal distributions (v, s). In this example, a subject may need to decide if a face is HAPPY or FEARFUL. The LBA models this two-choice perceptual
decision as a race between two “accumulators” that accrue sensory evidence in favor of each choice over time. The first accumulator to gather the criterion amount
of evidence determines the subject’s choice and RT (equivalent to the time taken for the accumulator to hit the response threshold plus non-decision time to account
for sensory and motor processing time). In the example shown here, the accumulator for “HAPPY” hits the response threshold first, thereby the model predicts the
perceptual decision to be a happy face. For more details, see Brown and Heathcote (2008).

framework to estimate the individual- and group-level
parameters for the two groups separately. All hyper distributions
were assumed to be truncated normal distributions (truncated
to positive values), defined by a mean (μ) and standard
deviation (σ), and were computed separate for each group
(MDD, HCL). All individual parameters were fixed across
trial conditions except for drift rates (vc and ve), which
varied across FACE and OVAL trials. Due to the limited
number of trials in the facial emotion identification task,
all emotion conditions were collapsed together (i.e., FACE
trials). Using differential evolution Markov Chain Monte
Carlo (DE-MCM) sampling (20 chains, 5000 samples each),
we obtained full posterior distributions for each of the 5 LBA
parameters (Turner et al., 2013b). DE-MCMC uses multiple
interacting chains to generate the proposal (a candidate state
to be accepted or rejected depending on the acceptance
rule) for each sampling step, rather than simply adding
random noise to the current state as done by the conventional
MCMC. DE-MCMC has proven to be more efficient than the
conventional MCMC when the model parameters are highly
correlated, as in many sophisticated models of RT (Turner
et al., 2013b). For more information on DE-MCMC, please
see (Turner et al., 2013b). The individual-level parameters
reported here and the ones used in our correlation analysis
(see below) are the median of the posterior distributions
estimated.

Group Differences in Drift Rate
An odds ratio (OR) was used to compare MDD and HCL on
group-level estimates of drift rate. To compute OR, for each

group we compared samples exhaustively drawn from the true
distribution. A count was produced reflecting when the value
drawn from the MDD distribution was larger than the value
drawn from the HCL distribution. The mean count was then
divided by 1 minus this count; the OR was therefore calculated
to be greater than 1, for ease of interpretation (Ho et al., 2014).

MR Image Acquisition and Analysis
All scanning was carried out on a GE 3T MR750 System
(General Electric Healthcare, Milwaukee, WI, USA) with Twin
Speed Gradients and a GE 8-channel head coil at the Center
of Functional MRI at the University of California, San Diego.
A fast spoiled gradient recalled sequence was used to collect T1-
weighted images: TR = 8.1 ms, TE = 3.17 ms, TI = 450 ms, flip
angle = 12◦, 256 × 256 matrix, FOV = 250 mm × 250 mm,
168 sagittal slices 1 mm thick with an in-plane resolution of
0.98 mm × 0.98 mm. For the facial emotion identification task,
T2*-weighted echo planar images (EPI) were acquired using the
following pulse sequence: TR = 1000 ms, TE = 30 ms, flip
angle = 90◦, 64 × 64 matrix, FOV = 192 mm × 192 mm, 490
repetitions, 20 contiguous axial slices 3mm thick with an in-plane
resolution of 3 mm × 3 mm. Participants were supine in the bore
of the magnet during the task, and were instructed to relax but be
as still as possible while making responses on a button box. Visual
stimuli were projected onto a screen and viewed through a small,
angled mirror mounted above the participant’s head.

All image processing and analyses were conducted using
Analysis of Functional NeuroImages (AFNI; Cox, 1996) and
FMRIB Software Library (FSL; Smith et al., 2004). The T1-
weighted images were skull-stripped and transformed toMNI152
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(Montreal Neurological Institute, Montreal, QC, Canada) with
an affine transform (Jenkinson and Smith, 2001; Jenkinson
et al., 2002) followed by non-linear refinement (Andersson
et al., 2007). Echo planar imaging (EPI) data were slice time
and motion corrected and aligned to the T1-weighted images
using a localized Pearson correlation function (Saad et al.,
2009). Next, the EPI data were convolved with a 4.2-mm full
width at half maximum isotropic Gaussian filter and grand
mean scaled before being transformed to MNI152 space at
3 mm× 3mm× 3mm resolution. Each voxel’s time series was fit
using a generalized least squares regression model that estimated
the serial correlation of noise using an autoregressive moving
averagemethod. Each stimulus type was included as a regressor of
interest (FEAR,HAPPY, SAD,OVAL). Each time series of interest
spanned stimulus onset until the first valid (≥150 ms) response,
before being convolved with a gamma-variate function (Boynton
et al., 1996). Demeaned motion parameters and a second-order
Legrendre polynomial were included as nuisance regressors (i.e.,
baseline). Volumes where the Euclidean norm of the motion
derivatives were>0.2 or where more than 10% of voxels exceeded
the median absolute deviation of the detrended time series were
censored (Ho et al., 2015). The mean ± SEM percentage of
volumes censored in the MDD group was 5.26% ± 1.06 and in
the HCL was 4.84% ± 0.75%. The groups did not differ in the
number of volumes censored due to excessive motion (U = 509,
p = 0.903). A general linear test for FACE-OVAL was computed
for each participant. Brain activation was operationally defined as
percentage signal change relative to baseline.

Group Differences in Brain Activation to
Facial Emotion Identification Task
As described previously (Ho et al., 2015), we assessed group
differences on the facial emotion identification task using a linear
mixed effects (LME) model on the estimates from the regression
model described above, with group (MDD, HCL) modeled as
fixed factors and participant modeled as a random factor.

Correcting For Multiple Comparisons
As described previously (Ho et al., 2015), we empirically derived
the minimum number of contiguous voxels (i.e., cluster) using
10,000 iterations of Monte Carlo simulations based on the
imposed FWHM values and an average skull-stripped whole
brain gray matter mask comprising 24,511 voxels (661,797 μL)
that overlapped with at least 90% of the slice stacks created
from all participants (Forman et al., 1995). Each voxel in
the cluster passed a voxel-wise threshold for a significant
group difference at p < 0.05. Cluster formation was based
on first-nearest neighbor clustering (i.e., voxel faces touching).
Cluster correction was conducted at the whole brain level. The
empirically derived minimum cluster threshold was 51 voxels
(1377 μL).

Correlation Analysis
Although our a priori hypotheses focused specifically on the
relationship between perceptual processing efficiency and sensory
regions involved in facial emotion processing (e.g., fusiform

gyrus, middle occipital cortex), we also correlated perceptual
processing efficiency with task activation in all the other
regions showing group differences on the task within each
group separately. We also conducted exploratory correlations
within the MDD group only between perceptual processing
efficiency and clinical characteristics (i.e., depression symptom
severity as measured by RADS-2 total t-scores, anxiety symptom
severity as measured by MASC t-scores, age of depression onset
rounded to the nearest integer year). Finally, we also conducted
exploratory correlations within the MDD group only, between
activation on each brain region showing group differences on
the task and clinical characteristics. All correlations were two-
tailed tests using the non-parametric Spearman’s rank correlation
coefficient (rs).

RESULTS

Sociodemographic and Clinical Results
As reported previously (Ho et al., 2015), MDD and HCL
adolescents did not differ significantly in age, gender, pubertal
stage, ethnicity, general intelligence or socioeconomic status
(all p’s > 0.36). As expected, adolescents with MDD endorsed
significantly greater levels of depression and anxiety (all
p’s < 0.001). See Table 1 for a summary of the sociodemographic
and clinical results.

Behavioral Results
The MDD and HCL groups did not differ significantly in
mean accuracy or mean RT on the task (see Table 1). A two-
way ANOVA with group (MDD, HCL) and emotion (FEAR,
HAPPY, SAD) as factors were applied to the accuracy and
RT data separately. There was no main effect of group or
emotion on accuracy (all p’s > 0.5). For RT, there was
no main effect of group (F1,198 = 0.284, p = 0.595), a
significant effect of emotion where participants were significantly
faster on HAPPY trials (F2,198 = 7.328, p < 0.001), but
no significant group × emotion interaction (F2,198 = 0,150,
p = 0.861).

LBA Results
MDD and HCL did not differ significantly in group-level
estimates of drift rate (OR = 1.58:1), not providing support of the
MDD group exhibiting greater drift rates than the HCL group.
Figure 3 shows the hyper distribution of the drift rate parameter
of interest (vc) for each group separately as well as the group-level
difference (MDD-HCL). This difference distribution is centered
on 0, thereby indicating no group difference in drift rate.

Group Differences in Brain Activation on
Facial Emotion Identification Task
Relative to the HCL group, adolescents with MDD showed
hyperactivation in the left medial prefrontal cortex and left
posterior cingulate cortex, as reported previously (Ho et al.,
2015). Relative to the HCL group, adolescents with MDD
also showed hypoactivation in bilateral anterior insula and
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TABLE 1 | Summary of sociodemographic, clinical, and behavioral information of participants.

Characteristic MDD HCL Statistic p-value

Number of participants 26 37

Gender (M/F) 7/19 14/23 χ2 = 0.819 0.366

Age at time of scan (Years) 16.1 ± 0.3 16.0 ± 0.2 t61 = 0.29 0.77

Ethnicity (Asian/Black/Caucasian/Hispanic/Mixed) 3/3/8/10/2 4/2/13/14/4 U = 9 0.458

Hollingshead socioeconomic score 40 ± 25.2 29 ± 16.3 U = 432 0.36

Tanner Score 4.2 ± 0.4 4.0 ± 0.7 U = 509 0.90

Wechsler Abbreviated Scale of Intelligence (Standardized) 104.2 ± 4.6 107.3 ± 3.3 t61 = 0.56 0.58

Beck Depression Inventory II (BDI-II) 28.4 ± 2.0 3.4 ± 0.7 t60 = 13.10 <0.0001

Children’s Depression Rating Scale– Revised (Standardized) 73.1 ± 1.8 34.3 ± 1.2 t61 = 18.64 <0.0001

Multidimensional Anxiety Scale for Children (Standardized) 59.8 ± 1.8 42.1 ± 1.4 t60 = 7.88 <0.0001

Mean response time (seconds) 2.25 ± 2.16 2.16 ± 0.59 t61 = 0.53 0.958

Mean accuracy (%) 80.73 ± 6.44 80.06 ± 9.73 t61 = 0.11 0.913

Age of depression onset (years) 12.34 ± 0.57

All entries are of the form mean ± SEM. Statistical analyses of between-group differences were conducted with χ2 , Student’s t-tests, and Wilcoxon rank sum test (U). All
p-values indicate two-tailed statistical significance levels.

left fusiform gyrus/lingual gyrus, as well as hyperactivation
in a cluster encompassing right parahippocampal cortex,
amygdala, and lentiform nucleus, hyperactivation in
bilateral middle temporal gyri, and hyperactivation in left
middle occipital cortex. See Figure 4 and Table 2 for more
details.

Correlations Between Perceptual
Processing Efficiency and Brain
Activation on Facial Emotion
Identification Task
Our a priori hypotheses concerned relating perceptual processing
efficiency (vc) to task activation from sensory regions that
have been previously demonstrated to show differences between
depressed and healthy individuals (e.g., fusiform gyrus, occipital
cortex). In the present study, we found that within the MDD
group only, perceptual processing efficiency was negatively
associated with task activation in left fusiform gyrus (rs = −0.441,
p = 0.021; Figure 5) but was not significantly associated with
task activation in left middle occipital cortex (p = 0.325). All
other brain regions showing group differences on the task did
not correlate significantly with perceptual processing efficiency
within the MDD group (all p’s > 0.487). Importantly, task
activation of left fusiform gyrus did not correlate with mean
RT or accuracy on the task within the MDD (all p’s > 0.17).
Finally, within the HCL, none of the brain regions showing group
differences on the task correlated significantly with perceptual
processing efficiency, mean RT, or mean accuracy (p’s > 0.123).

Additional Exploratory Correlations
We also conducted additional exploratory correlations within
the MDD group only between clinical characteristics (depression
symptom severity, anxiety symptom severity, and age of
depression onset) and (1) perceptual processing efficiency and
(2) task activation on all other brain regions showing between
group differences. All of these relationships were non-significant
(all p’s > 0.07).

DISCUSSION

This is the largest study to date to combine mathematical
models of choice behavior with fMRI activation for improved
understanding of cognitive and neural mechanisms of adolescent
MDD. We examined the relationship between perceptual
processing efficiency—as ascertained from RT distributions
subjected to a cognitive-behavioral model of RT—and brain
activation in adolescents with MDD and well-matched healthy
controls (HCL) during performance of a facial emotion
identification task. The advantage of using a mathematical
model of choice behavior over traditional analyses of accuracy
and RT is that distinct components of the decision making
process can be assessed. This method therefore allows us to
determine which cognitive components or processes altered
under the influence of a task condition, or as in this case,
psychopathology of the individual. Here, motivated by prior
work in behavioral studies of adults (Pe et al., 2013) and
adolescents (Ho et al., 2014) with MDD, we used the LBA
model (Brown and Heathcote, 2008) and estimated individual-
level and group-level estimates of the drift rate parameter
as a proxy of perceptual processing efficiency. We found
that while adolescents with MDD and HCL did not differ
in group-level estimates of perceptual processing efficiency
(Figure 3), adolescents with MDD exhibited abnormal activation
to emotional faces throughout the face processing network,
including early visual processing regions, limbic and paralimbic
regions, and top–down frontal regions (Figure 4). Notably,
adolescents with MDD exhibited hypoactivation relative to
HCL in a key face processing area, the left fusiform gyrus.
Moreover, within the MDD group only, reduced left fusiform
gyrus activation to emotional faces was significantly associated
with greater individual-level estimates of perceptual processing
efficiency (Figure 5). Importantly, activation in left fusiform
gyrus did not correlate with mean RT or mean accuracy
on the task, demonstrating the utility of combining cognitive
models of behavior with neuroimaging methods to better
understand neural correlates of cognitive mechanisms in
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FIGURE 3 | Group differences in posterior estimates of drift rate. We
used the mean (μ) and variability (σ) hyper distributions for drift rate on correct
trials (vc) to calculate the mean of the associated truncated normal distribution
for MDD (A) and (B) HCL. (C) Differences in these means (MDD – HCL). See
LBA Parameter Estimation in the Methods for more details.

clinical populations. Together, our results suggest that affective
processing biases in adolescents with MDD are characterized
by greater perceptual processing efficiency of affective visual
information in sensory brain regions responsible for processing
of visual information.

Several studies in both adult and adolescent depression
have documented functional and structural differences in
visual regions such as the fusiform/lingual gyrus and middle
occipital cortex (Ho et al., 2013, 2014; Liao et al., 2013;
Truong et al., 2013; Henje Blom et al., 2015). The results
from the present study are consistent with the findings of
fusiform gyrus dysfunction in depression and particularly,
with recent fMRI studies reporting reduced fusiform gyrus
activation during affective face processing in adolescents
with MDD. For instance, in a study where participants
judged happy, sad, fearful, and neutral faces, adolescents
with MDD exhibited reduced fusiform gyrus activation across
most valence contrasts and especially during processing of
happy versus sad face stimuli (Henje Blom et al., 2015).
Similarly, in another study where participants judged fearful
faces of varying intensities, adolescents with MDD showed
comparatively reduced functional connectivity between the
fusiform gyrus and the subgenual anterior cingulate cortex, a
key region interfacing between emotional and cognitive stimuli
processing (Ho et al., 2014). Importantly, our results build
from our previous investigation of the same data set (where we
examined task-based and resting-state functional connectivity
of the primary nodes of a major task-negative network) by
demonstrating the importance of sensory regions (and by
extension, networks) that may affect processing of sensory
stimuli and consequently, support the cognitive processing
biases found in MDD (Ho et al., 2015). By innovatively
combining neuroimaging and mathematical models of choice
behavior, the present study suggests that reduced fusiform
gyrus activation in adolescents with MDD reflects more
efficient perceptual processing of affectively laden stimuli and
highlights the importance of examining sensory regions—such
as occipital cortex—to better understand cognitive processing in
MDD.

Compellingly, research has also shown that activation in
occipital regions to emotional faces predicts antidepressive
response in individuals with MDD (Surguladze et al., 2005;
Keedwell et al., 2009, 2010; Furey et al., 2013, 2015). MDD is
characterized by an affective processing bias, wherein processing
of emotional information (such as facial expressions) is biased
toward negative and away from positive or neutral information
(Gotlib et al., 2004; Foland-Ross and Gotlib, 2012). This affective
processing bias can be interpreted within the framework of
sensory processing mechanisms in visual cortices and more
specifically, the cholinergic system (Furey, 2011). Specifically,
cholinergic dysfunction in MDD may lead to selectively
improved (or more efficient) processing of emotional features
in visual stimuli (Vuilleumier and Driver, 2007; Bentley et al.,
2011; Furey, 2011). Indeed, in healthy individuals, the cholinergic
system differentially modulates responses to stimuli in visual
processing areas of the brain based on emotional content
(Vuilleumier and Driver, 2007; Bentley et al., 2011). In the
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FIGURE 4 | Group differences in brain activation during the facial emotion identification task. All regions shown here are corrected for multiple
comparisons at a cluster-wise threshold of p < 0.05 (see Materials and Methods for more details). Locations are reported in Montreal Neurological coordinates
(radiological convention).

TABLE 2 | Summary of location and size of brain regions showing significant group differences on facial emotion identification task.

Region MDD HCL Location
(x,y,z)

# of voxels

L medial prefrontal cortex, pregenual cingulate cortex 0.055 ± 0.07 −0.31 ± 0.05 −4, −51, −2 350

L posterior cingulate cortex 0.087 ± 0.09 −0.296 ± 0.06 −2, −51, 15 189

R parahippocampal cortex, amygdala, lentiform nucleus 0.049 ± 0.03 −0.109 ± 0.03 27, −7, 5 170

R anterior insula, inferior frontal gyrus −0.043 ± 0.03 0.168 ± 0.03 34, 23, 2 140

L anterior insula, inferior frontal gyrus −0.038 ± 0.03 0.147 ± 0.03 −33, 21, 0 130

R middle temporal gyrus 0.109 ± 0.05 −0.086 ± 0.03 54, −6, −13 116

L middle temporal gyrus 0.007 ± 0.06 −0.231 ± 0.04 −56, −13, −10 91

L fusiform gyrus, lingual gyrus 0.321 ± 0.06 0.77 ± 0.09 −22, −88, −10 69

L middle occipital cortex −0.025 ± 0.07 −0.304 ± 0.05 −42, −78, 6 57

Brain activation is reported as mean ± SEM of percentage signal change on FACE-OVAL for each group (MDD, HCL). All results are corrected for multiple comparisons
at a cluster-wise threshold of p < 0.05 (see Materials and Methods for more details). Locations are reported according to the center of mass of cluster in Montreal
Neurological coordinates (radiological convention).

present study, we observed reduced fusiform gyrus activation
to emotional faces in adolescents with MDD relative to HCL,
which may reflect greater perceptual processing, as evidenced
by a significant inverse correlation between fusiform gyrus
activation on the task and drift rate estimates. Consistent with
our present findings, one study reported that adults with MDD
exhibited reduced activation in occipital cortex relative to healthy
controls during emotional processing of face stimuli in a working
memory task (Furey et al., 2013). Interestingly, this study also
demonstrated that activation in occipital regions that responded
selectively to emotional content of visual stimuli correlated

with treatment responses to the anticholinergic antidepressant
scopolamine. Greater improvement in depressive symptoms was
also associated with greater change in activation of occipital
cortex to emotional stimuli after scopolamine administration
relative to baseline (Furey et al., 2013). In another study, adults
withMDD exhibiting greater activation inmiddle occipital cortex
to sad versus happy facial expressions at baseline showed larger
clinical responses to scopolamine (Furey et al., 2015). While
currently speculative, this hypothesized link between cholinergic
dysfunction, processing biases of affective stimuli, and differential
response to affective stimuli in visual areas may explain why
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FIGURE 5 | Correlation between drift rate (vc) and brain activation in
left fusiform gyrus within the MDD group only. Perceptual processing
efficiency was negatively associated with task activation in left fusiform gyrus
(rs = −0.441, p = 0.021) in the MDD group only. All correlations were
two-tailed tests using the non-parametric Spearman’s rank correlation
coefficient.

we found that abnormally reduced fusiform gyrus activation
was significantly associated with greater perceptual processing
efficiency to emotional faces in adolescents with MDD.

Nevertheless, the results from this study must be interpreted
in light of its limitations. Firstly, the task utilized in this
study was not optimally designed to have the behavioral data
modeled by the LBA, which may explain why group-level
differences in drift rate were not observed in our sample. It
is also possible that the facial emotion identification task used
in the present study measures more than perceptual processing
of affect. However, given the straightforward requirements
of the task and the fact that prior studies using sequential
sampling models like the LBA to investigate individuals
with depression focused on the drift rate, we believed the
drift rate was the most appropriate parameter from the
LBA to investigate in the present study. Nevertheless, future
studies could utilize tasks that evoke a wider range of
individual variability on task performance so that enough
trials comprise the incorrect RT distributions to permit better
modeling of these data. Future studies could also include
more cognitively challenging tasks and could manipulate
the response window to affect difficulty and other relevant
parameters in the LBA (e.g., response bias, non-decision
time). Another limitation to our study design is that the
presentation of emotion conditions was not randomized across
subjects. Future studies should increase the number of trials
for each emotion condition so that drift rates (or other
relevant model parameters) can be sufficiently estimated for
each emotion condition. Increasing the number of trials per
condition will also provide the necessary power to investigate
negative versus positive information processing biases in this
population.

Secondly, we relied on the CDDR to measure drug and
alcohol consumption behaviors from our study participants,
which assesses age of first and regular use as well as a
general use pattern for alcohol, nicotine, and other drugs
since age 13. The CDDR is interview administered and has

strong internal consistency and validity (Brown et al., 1998).
Nevertheless, future studies recruiting adolescents from the
community or from outpatient clinics should employ objective
tests to ensure that drug and alcohol use are not potential fMRI
confounds.

Thirdly, our sample of depressed adolescents included
individuals with comorbid psychiatric diagnoses. With the
exception of one subject (i.e., ADHD), all of the comorbid
conditions present in our cohort of depressed adolescents
were anxiety disorders. The rate of comorbid anxiety disorders
in our depressed sample (61.5%) matches the rate at which
adolescent depression presents with comorbid anxiety in the
general community, which is estimated to be around 60% (Essau,
2008; Kessler et al., 2012). Our depressed adolescent sample thus
reflects the distribution of anxiety disorders in the population of
adolescents with depression typically seen in outpatient clinics
which increases the generalizability of our findings. Moreover, we
did not find any correlations between our self-report measure of
anxiety with perceptual processing efficiency or brain activation
in regions showing group differences on the task, suggesting
that our results are not driven by anxiety. Nevertheless, future
studies combining models such as the LBA with neuroimaging
in individuals with depression and comorbid anxiety are needed
to test if our results are specific to depression or if fusiform
gyrus dysfunction and its relationship to perceptual processing
efficiency represent a transdiagnostic dimension of emotional
dysregulation (Insel et al., 2010; Sanislow et al., 2010; Cuthbert
and Insel, 2013).

Finally, the cross-sectional design of the present study limits
us from investigating whether fusiform gyrus dysfunction to
emotional information is a trait or state marker of adolescent
MDD. Longitudinal studies are needed to determine if greater
perceptual processing efficiency and reduced fusiform gyrus
activation to emotional stimuli are potential risk factors for
developing MDD. Similarly, longitudinal work is needed to
determine if drift rates, fusiform activation, and the association
between these two measures could potentially serve as markers
for treatment response. Adolescence is a time of ongoing
maturation of neural networks, including visual systems (Power
et al., 2010; Chai et al., 2014) and future longitudinal studies may
employ functional connectivity analyses to relate developmental
changes in visual networks, perceptual processing efficiency to
emotional stimuli, and depressive symptomatology.

In summary, combining models linking behavior to cognition,
such as RT models, in conjunction with fMRI provide
informative insight into both basic cognitive processes (Ho et al.,
2009, 2012; van Maanen et al., 2011; Mulder et al., 2012) and
cognitive processing altered by neurological or psychiatric insult
(Ho et al., 2014). The present study is the largest to date to
utilize such methods to better understand emotional processing
in depression. Our results clarify the neural correlates of
affective biases commonly observed in this patient population by
demonstrating that perceptual processing efficiency to emotional
stimuli is elevated in depressed adolescents and accompanied
by dysfunction in early sensory processing regions. Our results
present intriguing new hypotheses to test, including whether
early sensory processing regions relevant to task demands
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(e.g., fusiform gyrus, middle occipital cortex) are related to
depression onset and if onset of depression affects the brain
development of intrinsic functional networks, including the
visual system. The development of novel models that combine
accuracy, RT, and fMRI responses into a single unified model
will help bridge the gap between our abstract understanding
of cognitive processing and the signals derived from brain
imaging data, thereby allowing researchers to explicitly test
specific cognitive theories as well as to ensure that the cognitive
abstractions assumed are biologically plausible (Turner et al.,
2013a, 2015).
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