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Likert types of rating scales in which a respondent chooses a response from an ordered

set of response options are used to measure a wide variety of psychological, educational,

and medical outcome variables. The most appropriate item response theory model

for analyzing and scoring these instruments when they provide scores on multiple

scales is the multidimensional graded response model (MGRM) A simulation study

was conducted to investigate the variables that might affect item parameter recovery

for the MGRM. Data were generated based on different sample sizes, test lengths,

and scale intercorrelations. Parameter estimates were obtained through the flexMIRT

software. The quality of parameter recovery was assessed by the correlation between

true and estimated parameters as well as bias and root-mean-square-error. Results

indicated that for the vast majority of cases studied a sample size of N = 500 provided

accurate parameter estimates, except for tests with 240 items when 1000 examinees

were necessary to obtain accurate parameter estimates. Increasing sample size beyond

N = 1000 did not increase the accuracy of MGRM parameter estimates.

Keywords: graded response model, multidimensionality, item parameters, sample size, parameter recovery

INTRODUCTION

A wide variety of psychological, educational, and medical outcome variables are measured using
Likert types of rating scales in which a respondent endorses a response from an ordered set of
options (e.g., Bjorner et al., 2003; Bolt et al., 2004; Scherbaum et al., 2006). Responses to these
types of items have been scored using a number of methods/models (e.g., van der Linden and
Hambleton, 1997; Nering and Ostini, 2010), among which the graded response model (GRM;
Samejima, 1969) is one of the most popular polytomous item response theory (IRT) models that
are able to utilize all the information from each item response in order to better measure people
and to create psychometrically sound measuring instruments.

The unidimensional GRM first models, for each item,K boundary functions where (K+1) is the
number of response options. They represent the probability of responding with all options below
the boundary vs. all options above the boundary, as a function of the trait level θ . These functions
are two-parameter logistic functions, with the item discrimination constant within an item but
variable across items:

P∗jk (θ) =
1

1+ exp
[

−Daj
(

θ − bjk
)] (1)
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with D = 1.0 or 1.7 and k = 1, . . . ,K. When D = 1.0, the
boundary function is the logistic model; when D = 1.7, the
function is a logistic approximation of the normal ogive model.
In Equation (1), bjk denotes the boundary parameter of the kth
category of item j, which is on the same scale as θ , and aj is
the discrimination parameter for item j. Then, as is shown in
Equation (2), the probability of responding with a given response
option is obtained by subtraction of adjacent boundary functions,
with the probability of responding below the first option set to
1.0 and the probability of responding above the highest option
set to 0.0:

Pjk (θ) = P∗jk (θ) − P∗j(k+1) (θ) (2)

Previous research has established guidelines concerning sample
sizes needed to accurately estimate item parameters for the
unidimensional GRM through simulation studies. Reise and
Yu (1990) investigated the parameter recovery under different
true θ distributions, true item discrimination distributions, and
calibration sample sizes. They concluded that a minimum of
500 calibration examinees was required to achieve adequate item
parameter recovery as reflected in correlations between estimated
and true discrimination parameters of 0.85 or greater. Recovery
of the item boundary parameters was primarily affected by item
discriminations, with lower correlations for less discriminating
items. Larger sample sizes improved correlational recovery. Both
discrimination and boundary parameter recovery, as indexed by
the root-mean-squared-error (RMSE), were affected by sample
size and item discriminations. In another simulation study,
De Ayala (1994) varied sample size and test length. The results
from his unidimensional dataset indicated excellent recovery of
both the discrimination and boundary parameters (r > 0.89 and
generally well above 0.90) with 375 examinees for 15-item scales
and 750 examinees for 30-item scales.

Many of the instruments that use the GRM include multiple
scales measuring different constructs or different aspects of the
same construct (e.g., Zickar and Robie, 1999; Fraley et al., 2000;
Fletcher and Hattie, 2004; Zagorsek et al., 2006; Walton et al.,
2008; Pilkonis et al., 2014). When modeling responses from
multidimensional scales using ordered response category items,
the multidimensional version of the GRM is the theoretically
correct choice. In these studies, however, the unidimensional
version of the GRM was used to derive IRT scores for each scale
separately, even though the scales were frequently correlated.
Such analysis generally fails to capture the association between
the constructs in question, and may lead to other undesirable
issues, such as model-data misfit. In addition, the use of
univariate IRT models in instruments that have an underlying
multivariate structure results in a loss of information in the
scale scores, yielding scores that are less precise than they could
be if an appropriate multivariate model had been applied. De
Ayala’s study (1994), which also examined the effect of estimating
multidimensional data with the unidimensional GRM, showed
substantial reductions in the recovery of the discrimination
parameters when the incorrect model was estimated (De Ayala,
1994).

The increase in computing power of personal computers
and the development of advanced psychometric software—for
example, the “mirt” package in R (R Core Team, 2015), Mplus
(Muthén and Muthén, 1998–2012), and flexMIRT (Cai, 2013)—
now make it possible to calibrate complex IRT models on
relatively long tests with large samples. A recent study (Thomas
et al., 2013) used the multidimensional GRM (MGRM) to
score the responses to the Penn Face Memory Test, a measure
of visual episodic memory. Hsieh et al. (2010) combined the
MGRM with latent growth curve analysis in modeling the
longitudinal association between adolescents’ social isolation
and delinquency. Forero et al. (2013) applied MGRM scoring
to the two-dimensional Short Form-12 questionnaire, a widely
used measure of physical and mental health status and change.
However, these studies utilized preexisting large-scale survey
data and did not address the issue of whether the parameters
could be accurately estimated given their research sample and
the characteristics of their measuring scales. Researchers usually
report only model-fit indices, as it is impossible to verify if the
model parameters are estimated satisfactorily based on real data.

In addition, there are some concerns and confusion in the
literature regarding the appropriate conditions under which such
models can be implemented. For example, Ferrando and Chico
(2001) chose not to use the MGRM in their data analysis based
on a sample of 448 examinees for a 20-item scale because
they believed that the model required large sample sizes to
obtain accurate parameter estimates (p. 1127). Forero et al.
(2009) and Forero and Maydeu-Olivares (2009) reported two
extensive simulation studies that examined parameter recovery
for multidimensional GRM data using methods implemented in
a factor analytic framework. The first study compared diagonally
weighted least squares and unweighted least squares estimation
methods and the second compared full information maximum
likelihood factor analysis and categorical item factor analysis.
Their data for both studies were simulated across 324 conditions,
varying samples sizes (200, 500, and 2000), test length (9,
21, and 42 items), and factor loadings (0.4, 0.6, 0.8, roughly
equivalent to low, medium, and high discriminations). They also
included conditions with three latent traits based on items with
five response options. They concluded that in most cases 500
examinees were sufficient to adequately estimate item parameters
with some of the methods they examined. The usefulness of their
results is limited, however, because they assumed that the three
traits were uncorrelated, which is rare with typical rating scales
used in psychological research and applications. Their results are
also limited to the methods they examined in the study, and they
did not consider instruments with more than 42 items.

Purpose
The present study was designed to examine the sample size
requirements for obtaining adequate model calibration under the
MGRM using standard IRT estimation procedures under a set
of realistic conditions to assist researchers in making informed
decisions on research design and scale construction when using
the MGRM in their data collection and analysis, particularly with
larger numbers of items than had been investigated previously.
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METHODS

The performance of parameter recovery for the MGRM under
several conditions was assessed in a simulation study. The
multivariate generalization of the two-parameter logistic version
of the model in Equation (1) was used. Let, θ be a vector of length
H representing the latent traits of interest, then

P∗jk (θ) =
1

1+ exp
[

−D
∑H

h=1

[

ajh
(

θh − bjk
)]

] (3)

where h = 1, 2, . . . ,H, and ajh are the item discrimination
parameters on the hth dimension of item j.Dwas set to 1. Similar
to the unidimensional case, P∗j0 (θ) ≡ 1 and P∗

j(K+ 1) (θ) ≡ 0.

Manipulated Variables
Previous research (e.g., Reise and Yu, 1990) has investigated the
effects of sample size and test length for the unidimensional
GRM. In the multidimensional case, the intercorrelations
between dimensions can also affect parameter recovery (De
Ayala, 1994). Therefore, three variables were manipulated: (1)
test length: L = 30, 90, and 240 items; (2) sample size:
N = 500, 1000, 1500, and 2000; (3) intercorrelation between
dimensions: r = 0.2, 0.5, and 0.7. The three levels of test length
were chosen to simulate different measuring instruments, from
short paper-and-pencil personality inventories to an item bank
for use in a computerized adaptive test. All the factors were
fully crossed, resulting in a total of 3 × 4 × 3 = 36 simulation
conditions.

Items
The three-dimensional graded response model with four
response categories for all items was used in this study. The
ajhs were randomly sampled from U[1.1, 2.8]. A simple structure
was assumed so that for each item only one of the three
discrimination parameters was non-zero, and every dimension
was represented by an equal number of items. bjks ranged from

[−2, 2] (De Ayala, 1994), and each was uniformly distributed
along an equidistant interval within this range for each item.
Thus, the three boundary parameters were sampled randomly
fromU[−2,−0.67], U[−0.67, 0.67], andU [0.67, 2], respectively.
To avoid sparseness of the response matrix, only adjacent
boundary parameters with distance of at least 0.5 apart were
retained.

Simulees
The latent trait vector θ of an examinee was generated from
a multivariate normal distribution with a mean vector of 0s
and a covariance matrix with 1s along the diagonal. The off-
diagonal terms represented the correlation between any two of
the marginal distributions and were set to be a known constant
specified above. The true item and person parameters were
used in Equation (3) to calculate the theoretical probability of
endorsing each category of a given item. The probability vector
was provided as the parameter of a multinomial distribution
for each item and the first random draw from this distribution
was used as the response for the item. Data generation was
implemented in R statistical programming software (R Core
Team, 2015).

Item Parameter Estimation
The generated response matrix was then supplied to flexMIRT2
(Cai, 2013) from which item parameter estimates were obtained
using the default Expectation Maximization (EM) algorithm.
The default Gauss-Hermite quadrature method was invoked to
obtain numeric approximation of themultidimensional integrals.
Due to multidimensionality and long test length in some of
the simulation conditions, the number of integration quadrature
points was reduced from the default of 49 to 21, and the range
was restricted to -3.5 to 3.5. Parallel processing was also adopted
to further speed up the computation.

Parameter Recovery
The estimated parameters were then used to derive indices
of parameter recovery. Bias, RMSE, and Pearson correlations
were calculated for the three discrimination and the three
boundary parameters, respectively, for each replication. Taking
the first discrimination parameter as an example, given a certain
dimension, the bias was calculated as

Bias =

∑L
j= 1

(

âj1 − aj1
)

L
(4)

where L is the total test length. RMSE was calculated as

RMSE =

√

∑L
j= 1

(

âj1 − aj1
)2

L
(5)

The results were further analyzed by a three-way analysis of
variance (ANOVA) for each of the three parameter recovery
variables. To facilitate comparison of effects and interactions
among the manipulated variables, effect size η2 was calculated for
each recovered item parameter and was defined as

η2 =
SSbetween

SStotal
(6)

where SSbetween is the sum of squares between effects and SStotal is
the total sum of squares of the model.

Replications
To enhance the generality of the results, each of the 36 cells
of the completely crossed design was replicated a number of
times. To determine the number of replications, a pilot study was
conducted in which the simulation procedure was implemented
on a selected subset of the 36 conditions for a large number of
replications and mean values of the dependent variables were
examined as a function of the number of replications. For each
replication a new set of θs and item parameters were sampled. To
identify an appropriate number of replications for all conditions
in the study, the pilot study was implemented for the conditions
in which test length ranged from 30 to 90 and sample size from
500 to 2000. Means across each number of replications were then
determined and reported for the correlation, bias, and RMSE
indices. Figure 1 shows the results for two of the conditions:
L = 30, N = 500, r = 0.2; and L = 30, N = 1500, and r = 0.2.
As the figures show, for the majority of the a and b parameters,
the recovery indices changed very little after 30 replications.
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The correlations changed the most from 30 to 50 replications,
but the largest change was in the third decimal place. Similar
results were obtained for the other conditions in the pilot study.
Based on these results, each of the 36 conditions in the study was
replicated 30 times.

RESULTS

Parameter estimation finished normally for all conditions except
those with L = 240 and N = 500, for which the standard
errors of estimation for item parameters were unusually large.
The results for the three conditions that combined these values of
L andN were, therefore, not included in the subsequent analyses.
The longest run time was for the N = 2000 and L = 240
condition, which ranged from approximately 1800 s to 5000 s per
replication.

Bias
Table 1 shows η2-values for each of the main effects and the two-
and three-way interactions. Only test length had η2s greater than
0.05. For the discriminations (a) η2s ranged from 0.268 to 0.307;
for the b parameters, η2was 0.236 for b3 and 0.244 for b1, but
0.0 for b2. η

2s for all other main effects and all interactions were
near 0.0.

Figure 2A shows the marginal means of bias (aggregated
across all other conditions) for the discrimination parameters
for the different test lengths; Figure 2B shows similar results for

the boundary parameters (vertical lines in these figures represent
1 standard deviation of the means across the 12 conditions for
L = 30 and L = 90, and nine conditions for L = 240). These
results indicate that the test length effect was mainly due to
relatively large bias associated with the L = 240 condition,
for both the a and b parameters. The average biases in the

TABLE 1 | Effect sizes (η2)* of main effects and interactions on bias of

estimates.

Source of Variation a1 a2 a3 b1 b2 b3

Test Length 0.281 0.307 0.268 0.244 0.000 0.236

Sample Size 0.005 0.016 0.014 0.003 0.001 0.000

Correlation 0.001 0.005 0.001 0.001 0.000 0.003

Test Length × Sample Size 0.007 0.008 0.004 0.015 0.003 0.002

Test Length × Correlation 0.008 0.010 0.004 0.001 0.004 0.014

Sample Size × Correlation 0.000 0.000 0.001 0.001 0.000 0.000

Test Length × Sample Size

× Correlation

0.000 0.002 0.000 0.001 0.001 0.000

Residual 0.698 0.652 0.708 0.734 0.991 0.746

*All effect size η2 in this and subsequent tables was defined as

η2 =
SSbetween

SStotal

where SSbetween is the sum of squares between effects and SStotal is the total sum of

squares of the model.

FIGURE 1 | Bias, RMSE, and correlations of parameter estimates for N = 500, L = 30, and r = 0.2; and N = 1500, L = 30, and r = 0.2.
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FIGURE 2 | Bias of parameter estimates for three test lengths. (A) Discrimination parameters. (B) Boundary parameters.

other test length conditions were very similar and all reasonably
small. Increasing the test length from 30 to 90 did not change
the bias for either the a or b parameters. It was noteworthy
(Figure 2B) that there was a strong relationship between bias and
the positions of the boundary parameters— b1s were substantially
underestimated while b3s were overestimated.

RMSE
Table 2 shows η2-values for each of the main effects and two-
and three-way interactions with RMSE as the dependent variable.
η2s for test length were low and near 0.05 for the discrimination
parameters but between 0.180 and 0.226 for the boundary
parameters. For sample size, η2s ranged from 0.295 to 0.336

TABLE 2 | Effect sizes (η2) for main effects and interactions on RMSE of

estimates.

Source of Variation a1 a2 a3 b1 b2 b3

Test Length 0.055 0.048 0.049 0.226 0.218 0.180

Sample Size 0.295 0.335 0.336 0.215 0.266 0.244

Correlation 0.005 0.002 0.002 0.000 0.001 0.005

Test Length × Sample Size 0.030 0.049 0.024 0.030 0.008 0.012

Test Length × Correlation 0.006 0.020 0.008 0.004 0.000 0.006

Sample Size × Correlation 0.000 0.000 0.001 0.001 0.000 0.000

Test Length × Sample Size

× Correlation

0.000 0.001 0.000 0.001 0.001 0.000

Residual 0.609 0.545 0.579 0.524 0.506 0.552
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for the discrimination parameters and 0.215 to 0.266 for the
boundary parameters. All other η2s were 0.03 or less with the
exception of the test length × sample size interaction for a2, for
which η2 = 0.049.

Figure 3A shows that the RMSE of the a parameter estimates
decreased as sample size increased. with the largest decrease
between N = 500 and N = 1000. The average decrease in
RMSE from N = 1000 to N = 1500 was about 0.02. There
was almost no decrease in average RMSE from N = 1500 to
N = 2000. A similar result was observed for the boundary
parameters (Figure 3B). The largest decrease was observed from
N = 500 to N = 1000, but that decrease was only approximately

0.02. Although RMSE continued to decrease with larger sample
sizes, the rate of decrease was slower and the magnitudes of the
decreases were very small. Figure 3B also shows that the RMSE
for the middle boundary (b2) was consistently smaller than that
of the two more extreme boundaries.

Figure 4 displays marginal means (and SDs) of RMSE for the
test length effect. Shorter test length resulted in smaller RMSE
for the boundary parameters but not for the discrimination
parameters. There was no change in the boundary parameters
as test length increased from L = 30 to L = 90, but
RMSE increased from L = 90 to L = 240 by about 0.04
for the two extreme boundaries and about 0.02 for the middle

FIGURE 3 | RMSE of parameter estimates for four sample sizes. (A) Discrimination parameters. (B) Boundary parameters.
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FIGURE 4 | RMSE of boundary parameters for three test lengths.

boundary, which was better recovered than the other two. In
general, the boundary parameters were better recovered than
the discrimination parameters, and the boundary parameters in
the middle were better recovered than those at the ends. The
marginal means for RMSE of the discrimination parameters were
below 0.20, and those of the boundary parameters were below
0.125, indicating that overall the item parameters were recovered
reasonably well.

Correlation
Table 3 shows that the correlations between true and estimated
parameters were affected only by sample size, and the effect was
particularly strong for boundary parameters with η2s ranging
from 0.459 to 0.519 vs. 0.276 to 0.367 for the discrimination
parameters. As can be seen from Figure 5A, increasing sample
size from 500 to 1000 improved the correlation for the a
parameters from a mean of about r = 0.95 to about r = 0.98,
but not much gain could be achieved by increasing sample size
even further. For the b parameters (Figure 5B) the same increase
was observed for the b1 and b3 parameters and a smaller increase
was observed for the b2 parameter. As was the case with RMSE,
the recovery for the middle boundary parameter was better than
the others. Both a and b parameters were recovered with a
minimum mean r = 0.95 regardless of sample size or number
of items.

DISCUSSION AND CONCLUSIONS

Three factors that might affect the recovery of MGRM item
parameters—sample size, test length, and scale correlations—
were varied in a completely crossed simulation design. Effects
were evaluated using bias, RMSE, and correlations of the
parameter estimates as they recovered true item discrimination
and boundary parameters. Results based on using a marginal

TABLE 3 | Effect sizes (η2) for main effects and interactions on correlation

between true and estimated parameters.

Source of Variation a1 a2 a3 b1 b2 b3

Test Length 0.031 0.024 0.027 0.001 0.029 0.001

Sample Size 0.345 0.276 0.367 0.511 0.459 0.519

Correlation 0.000 0.002 0.000 0.016 0.025 0.009

Test Length × Sample Size 0.009 0.028 0.009 0.011 0.001 0.013

Test Length × Correlation 0.001 0.001 0.001 0.004 0.021 0.005

Sample Size × Correlation 0.000 0.001 0.000 0.003 0.002 0.000

Test Length × Sample Size

× Correlation

0.000 0.002 0.001 0.000 0.001 0.001

Residual 0.614 0.665 0.595 0.456 0.462 0.452

maximum likelihood IRT estimation procedure, and summarized
within an ANOVA framework, indicated that there were no
important two-way or three-way interactions for any of the
dependent variables—all interactions across the three dependent
variables accounted for less than 5% of the variance as reflected in
η2 values. These results contrast sharply with those of Forero et al.
(2009) who observed substantial complex interactions among
their independent variables when IRT parameters for the MGRM
were estimated within a factor analytic framework using two
different least-squares estimation methods.

Of the three manipulated variables, sample size resulted in η2

values between 0.276 and 0.367 for recovery of the a parameters
as indexed by both RMSE and correlations, and between 0.215
and 0.519 for the b parameters. Bias of the parameter estimates
was not affected by sample size. For both the a and b parameters,
RMSE decreased as sample size increased, with the largest
decrease from N = 500 to N = 1000. Yet for the a parameter,
that largest decrease was from mean RMSE = 0.17 to mean
RMSE = 0.125; for the b parameters, the decrease in mean RMSE
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FIGURE 5 | Correlation between true and estimated parameters for four sample sizes. (A) Discrimination parameters. (B) Boundary parameters.

was 0.02 or less as sample size increased from 500 to 1000.
Results for RMSE of the b parameters indicated that the two
extreme b parameters (b1 and b3) were better estimated than the
center boundary parameter (b3). This phenomenon is consistent
with the well-documented outward bias of maximum likelihood
estimators (e.g., Warm, 1989). Although changes in sample size
resulted in the largest η2 values observed in the analyses for the
correlation dependent variable, and correlations increased with
sample size, increases in correlations were minimal, with mean
correlations varying from about 0.952 to 0.992; these values are
much higher than those obtained by Reise and Yu (1990) in their
examination of parameter recovery for the unidimensional GRM
Again, the b2 parameters were better recovered than the b1 or b3

parameters regardless of sample size. Sample size did not result in
any change in bias because all bias values were close to 0.0, even
with sample sizes as small as 500.

Variation in test length resulted in relatively large η2 values
for both the a and b parameters as reflected in bias and RMSE for
the b parameters. Correlations were not affected by test length for
either a or b. Mean bias for the a parameters was essentially zero
for 30-item tests with 10 items per scale and 90-item tests with
30 items per scale. For 240-item tests (80 items per scale) bias
increased to a mean of about -0.10. A similar effect was observed
for the b parameters, except that the observed mean bias of about
0.07 was negative for b1 and positive for b3, whereas b2 was
unbiased. This latter result is, again, likely due to the outward bias
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of maximum likelihood estimators. Overall, however, the degree
of bias observed for both parameters was minimal.

The results demonstrated that scale intercorrelations, which
were varied from low to high at three levels, had no effect on any
of the three parameter recovery indices. All η2-values for scale
intercorrelations were very near zero.

The present study differed from the two studies by Forero et al.
(2009) in several repects: (1) the correlations among dimensions
were varied at 0.2, 0.5, or 0.7, whereas the Ferero studies held
the scale correlation at zero; (2) the present study considered
much longer test length. Even though Forero et al. argued that
short questionnaires are frequently encountered in behavioral
research within medical settings, the present study examined the
sample size requirements for accurately calibrating much larger
numbers of items. This choice was made because large numbers
of items are needed to form item banks to facilitate computerized
adaptive testing. Finally, the Forero studies estimated the model
using factor analysis methods, which result in a different
parameterization than the traditional IRT parameterization
applied in the present study. Nevertheless, with regard to the
major common element among the three studies, the results
agreed that a sample size as small as N = 500 is sufficient to
recover all model parameters adequately—even with tests that
had three scales of 80 items each—and sample size larger than
1000 does not provide any visible benefit for parameter recovery.
The exception to N = 500 occurred in the present study using
the traditional IRT parameterization was 240-item tests. In that
case, the standard errors of the parameter estimates were large,
indicating inaccurate estimates. Under these circumstances, N =

1000 was required to obtain estimates with useful standard errors.
Using the factor analysis parameterization, Forero et al. had
estimation failures under several other conditions with N = 500
but with much shorter tests.

Level of correlation in this study did not show any effect
on parameter recovery, primarily because only simple structure
was considered in the design. Usually higher correlation is
preferred when estimating person parameters because the
shared information among correlated dimensions will help
reduce measurement errors of θ (e.g., Wang, 2015). However,
higher correlation might also impose estimation difficulty for
item parameter recovery possibly due to multicollinearity (e.g.,
Babcock, 2011; Wang and Nydick, 2014). This phenomenon is
especially salient for within-itemmultidimensionality. Therefore,
it would be interesting to extend the present research to complex
test structures.

This research can also be generalized inmany other directions.
For instance, only the EM algorithm was evaluated in the

present study. Note that in flexMIRT, either EM or the
Metropolis-Hastings Robbins-Monro (MH-RM) algorithm is
implemented, with the latter allowing users to deal effectively
with higher-dimensional models (i.e., models with more than
three latent variables). The major difference between the two
is their performance on models with high dimensions, and
the difference has more to do with speed than accuracy (Cai,
2010). EM was used because it is currently the most commonly
used algorithm in IRT research and the model did not contain
too many dimensions. In addition, it was possible to achieve

acceptable computing speed by modifying a few options under
EM. A future study can be conducted to compare different
available estimation methods, such as the Markov Chain Monte
Carlo algorithm, among others.

Second, all latent traits were assumed to follow a normal
distribution. However, it is highly possible, especially in medical
or clinical data, that certain latent traits in a general population
follow a skewed distribution. Consequently, it would be
appropriate to examine the robustness of parameter recovery for
the current MGRMmodel in the presence of non-normal θs and,
if the estimation procedures are not robust to non-normality,
develop a new semi-parametric MGRM model to account for
non-normality of θs in the model.
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