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We tested whether principles that describe the allocation of overt behavior, as in choice
experiments, also describe the allocation of cognition, as in attention experiments. Our
procedure is a cognitive version of the “two-armed bandit choice procedure.” The two-
armed bandit procedure has been of interest to psychologists and economists because
it tends to support patterns of responding that are suboptimal. Each of two alternatives
provides rewards according to fixed probabilities. The optimal solution is to choose the
alternative with the higher probability of reward on each trial. However, subjects often
allocate responses so that the probability of a response approximates its probability
of reward. Although it is this result which has attracted most interest, probability
matching is not always observed. As a function of monetary incentives, practice,
and individual differences, subjects tend to deviate from probability matching toward
exclusive preference, as predicted by maximizing. In our version of the two-armed
bandit procedure, the monitor briefly displayed two, small adjacent stimuli that predicted
correct responses according to fixed probabilities, as in a two-armed bandit procedure.
We show that in this setting, a simple linear equation describes the relationship between
attention and correct responses, and that the equation’s solution is the allocation of
attention between the two stimuli. The calculations showed that attention allocation
varied as a function of the degree to which the stimuli predicted correct responses.
Linear regression revealed a strong correlation (r = 0.99) between the predictiveness
of a stimulus and the probability of attending to it. Nevertheless there were deviations
from probability matching, and although small, they were systematic and statistically
significant. As in choice studies, attention allocation deviated toward maximizing as a
function of practice, feedback, and incentives. Our approach also predicts the frequency
of correct guesses and the relationship between attention allocation and response
latencies. The results were consistent with these two predictions, the assumptions of
the equations used to calculate attention allocation, and recent studies which show that
predictiveness and reward are important determinants of attention.
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INTRODUCTION

We are interested in whether there are general quantitative
principles that apply to both the allocation of overt behavior and
the allocation of cognition. For example, in analogous cognitive
and behavioral experiments, do individuals maximize correct
responses, and, if so, are the mediating processes the same or
similar? Such questions are challenging, because they presuppose
that we can measure the allocation of cognition with the same
precision as we measure the allocation of choices, say on a
scale that varies from 0.0 to 1.0. Although there are many
approaches to the measurement of attention, including a host
of quantitative models (e.g., see Bundesen, 1996 and Logan,
2004 for reviews), we found none that provided a continuous
numerical scale for the division of attention. This is important;
it is often the case that qualitatively different principles predict
similar yet not identical quantitative outcomes. For example,
molar maximizing, as in economic texts (e.g., Baumol and
Blinder, 1994), local maximizing, as in the matching law (e.g.,
Herrnstein, 2000), and probability matching (e.g., Estes, 1976)
predict similar quantitative results under some conditions yet
are different principles, reflecting fundamentally different choice
rules (see, Heyman and Luce, 1979; Herrnstein, 2000). Thus,
our first task was to develop a method that would provide a
continuous measure of the allocation of attention.

In the Section “Materials and Methods”, we describe our
approach to this problem. It combines widely used methods in
research on attention and choice (Estes, 1976; Corbetta et al.,
1990; Le Pelley et al., 2013) with a mathematical model of
performance in the procedure. The simplest version of the model
is a single variable linear equation, whose solution is our desired
result, the allocation of attention. Thus, the new feature of the
procedure is the equation for calculating attention allocation.
The results support the conclusions that the equation accurately
described the relative amount of attention devoted to each of two
simultaneously available visual stimuli and that the allocation of
attention shifted over the course of two sessions so as to increase
the number of correct answers.

The theoretical background for this study includes widely
shared ideas regarding adaptive behavior, and the empirical
background includes recent experiments on the role of reward
and predictiveness in attention. First, the hypothesis that natural
phenomena can be understood as solutions to optimizing
problems has proven useful throughout the sciences. Second, it is
not unreasonable to suppose that there may be general principles
that govern both the allocation of attention and the allocation
of overt behavior. Third, in recent years several research groups
have published studies on how reward influences the allocation of
attention (Small et al., 2005; Anderson and Yantis, 2013; Chelazzi
et al., 2013; Lee and Shomstein, 2014). For instance, subjects are
less likely to report the second of two successive stimuli if the lag
between them is about 150–400 ms, a phenomenon referred to
as “attentional blink.” However, if the second signal predicted a
valued reward, performance at a 200 ms lag was about as good as
at an 800 ms lag (Raymond and O’Brien, 2009). In other words,
reward markedly reduced the attentional blink effect. Fourth,
recent studies show that predictiveness can come to control

attention, where predictiveness refers to the correlation between
a stimulus and a valued outcome, independent of whether the
value is low or high (e.g., Le Pelley et al., 2013). Formal models
of the role of predictiveness in attention borrow heavily from the
learning literature (e.g., Esber and Haselgrove, 2011), and, on the
basis of a recent experiment, Le Pelley et al. (2013) suggest that
that predictiveness may capture attention in a rapid, automatic
fashion, as do highly salient features of the physical world, such as
a vivid color or rapid stimulus onset. In a comprehensive review
of recent research on how reward affects attention, Chelazzi
et al. (2013) concluded with the sentence, “It may seem. . .
paradoxical that learning principles. . .developed to explain overt
behavior within a theoretical framework that was skeptical about
the hidden and impalpable intricacies of cognition now appear
to be perfectly suited to account for reward-based changes in
attentional priority in the short and in the long term.”

Our procedure is a cognitive version of the “two-armed
bandit” choice experiment (Estes, 1976; Shanks et al., 2002). In
the choice version, the subject has two options on each trial. Each
pays off at a fixed probability; for example one may provide a
reward on 25% of the trials, while the other offers a reward on
75% of the trials. Under these conditions, choice probabilities
often approximate the programmed reward probabilities (Estes,
1976; Fantino and Esfandiari, 2002). However, the optimal
strategy is to choose the option that has the higher probability
of reward on 100% of the trials. Thus, probability matching is
anomalous from the perspective of rational choice theory (see
Vulkan, 2000) but is consistent with a number of mathematical
learning theories (e.g., Estes, 1976). The “discrepancy” suggests
that psychological principles trump economic rationality. This
is intriguing and has motivated 100s of two-armed bandit
choice experiments. However, the results are mixed. On the
one hand, many studies report probability matching, leading
many researchers to conclude that this is the expected result
(Gaissmaier and Schooler, 2008; Otto et al., 2011). On the other
hand, there is evidence that probability matching is not a long-
term stable equilibrium (e.g., Goodie and Fantino, 1999; Shanks
et al., 2002). When the experiment includes feedback and/or
incentives or proceeds for many 100s of trials, subjects tend to
deviate from probability matching to maximizing (see Vulkan,
2000 and Shanks et al., 2002 for reviews). Consequently, we
included an incentive and feedback conditions to test whether
similar relations hold for attention allocation.

However, there is a more basic methodological issue. We
used a single variable linear equation to model performance in
the experimental procedure. The variable was set equal to the
division of attention between the two simultaneously displayed
visual stimuli. Thus, by solving the equation, we could calculate
the allocation of attention. However, to properly interpret the
results, performance in the procedure should approximate the
assumptions of the model. The key assumption is that on each
trial the subject attended to one of the two stimuli, but not both
(or neither). For behavioral choice experiments, the analogy is
that the devices for counting responses work properly. That is,
the allocation equation in the present cognitive study can be
considered analogous to the equipment used to tally responses
in a behavioral study.
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Just as we cannot say beforehand whether probability
matching, maximizing, or some other pattern will emerge in the
data, we cannot say in advance whether the calculations will
prove valid. In dichotic listening tasks, the un-shadowed message
makes some impression (Moray, 1959; Bentin et al., 1995) and,
in their review of visual attention, Chun and Wolfe (2001)
provide evidence that attention can be allocated simultaneously
to multiple targets. Thus, attention may not be as constrained
as is choice, and, accordingly, it may not be possible to arrange
conditions so that our equation reliably measures the allocation
of cognitive resources.

We should also point out that our measures and procedure
allow for more than one cognitive bottleneck. One stimulus may
have left a weaker “initial trace” or, in the process of attending
to one stimulus, the “initial trace” of the other stimulus may
have faded from memory. These are not mutually exclusive or
exhaustive possibilities. We touch on “where” the limitations in
cognitive processing in this experiment may have occurred in the
Discussion Section of this paper. However, the primary goal of
this research study is to quantitatively characterize the operating
characteristics of cognition in a procedure that is analogous to a
well-studied behavioral procedure.

EXPERIMENT 1

Materials and Methods
Participants
Forty-one undergraduate students (24 female, 17 male) from
Boston College, ages 18–22, served as subjects. We used
Boston College’s Sona Systems, a subject pool software program,
to recruit subjects. Prior to the start of the experiment all
participants signed a consent form according to the protocols
established by the Boston College institutional review board for
research. In addition subjects filled out a form that included
questions regarding age, gender, year in school, major, GPA, SAT
score, ACT score, home zip code, birth order, number of siblings,
and several filler questions regarding food and music preferences.
The subjects earned credit for Boston College Psychology
Department research requirements for their participation. (This
requirement could also be fulfilled by writing a short paper.) In
addition, 21 subjects received feedback and money for correct
responses, as described below. Four subjects did not complete
Session 2. Thus, the data analyses are based on 37 subjects.
The procedure and consent form were approved by the Boston
College institutional review board.

Procedure
Stimuli
The experiment was conducted on a laptop computer. The screen
measured 31.1 cm × 17.5 cm, and was set at a resolution of
1366 × 768 pixels. The subjects sat at their preferred distance
from the computer, which we estimated at approximately 43–
65 cm from the laptop screen.

The session entailed 132 trials: 22 were cued and 120 were
non-cued. Each trial proceeded in four steps: a preparatory
count-down period, a cue display which indicated the type of

trial, a stimulus screen, and a probe screen. Figure 1 shows the
corresponding displays. The countdown period began with three
asterisks and ended with one, with an asterisk disappearing every
second and a 100 ms inter-screen interval. Following the last
asterisk, the screen displayed the words “top” or “bottom” for
cued trials, or “no cue” for non-cued trials. “Top” and “bottom”
identified the salient stimulus row for the 22 cued trials. Next, the
stimulus screen displayed six digits arranged in two horizontal,
parallel rows of three digits each. The digits were drawn from a
list composed of the numbers 1–7 and were selected according to
the following constraints: a row could not contain three instances
of the same digit, the digits had to sum to a number on the
interval 7–17, and each of the 11 possible sums had to appear
equally often. The duration of the stimulus screen was calibrated
individually for each subject as described below. Figure 1 lists the
5th and 95th longest durations. The stimulus screen was followed
by a 100 ms mask composed of upper case letters arranged in
random orientations. Last, the probe screen listed seven numbers,
one of which matched the sum of the three digits in the top row
or the sum of the three digits in the bottom row of the preceding
stimulus screen. The subject was asked to identify the matching
sum. This could be done in two different ways. He or she could
have attended to the row that provided the matching sum, or,
given the multiple choice format, the subject could guess the
correct sum. Assuming that subjects guessed when they failed
to find the sum that they had just calculated (because they had
attended to the row that did not contain the matching sum),
response times for correct guesses should be longer than response
times for correct responses mediated by attention. The subjects
had up to 20 s to respond to the probe screen. Figure 1 lists the 5th
and 95th longest latencies for trials in which the subject correctly
identified the matching sum.

In the stimulus screen each digit measured approximately
0.18 cm × 0.32 cm and each row of three digits measured
0.71 cm × 0.32 cm, with a space of 0.24 cm between each
row. Thus, depending on the participant’s viewing distance, the
entire stimulus array subtended visual angles of 0.95 × 1.17◦
to 0.63 × 0.78◦, each digit subtended visual angles of about
0.27 × 0.43◦ to 0.18 × 0.28◦, each row subtended angles of
about 0.95 × 0.43◦ to 0.63 × 0.28◦, and the border between
the two rows subtended visual angles of about 0.95 × 0.32◦ to
0.63× 0.21◦. Visual angles of less than 5◦ are described as “small”
or “narrow” (Goolkasian, 1991; De Cesarei and Codispoti, 2008).
This judgment is based on the sizes of the fovea and foveola,
which, according to standard texts, are approximately 5.0 and
1.2◦, respectively (Wandell, 1995, n.d.). Thus, the entire stimulus
array was well within the view of a fixed gaze.

Stimulus screen duration and calibration trials
At the start of each session, the experimenter conducted a
series of calibration trials. The goal was to find the shortest
stimulus duration that would reliably support accuracy scores
of approximately 90% on cued trials, which is to say, in trials
in which the subject knew beforehand which row held the three
digits that added up to one of the sums listed in the probe screen.
The calibration trials proceeded in blocks of 4, 8, or 16 trials; 75%
were cued; and top and bottom cued trials were equally likely. All
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FIGURE 1 | Procedure flow chart (not to scale). Each trial proceeded in four steps. (1) Preparatory count down, with each asterisk screen displayed for 1 s. (2)
This was followed by the cue display, which indicated whether it was a cued or uncued trial, and if cued, whether the top row or bottom row of the stimulus held the
three digits whose sum matched one of the sums in the probe screen. (3) The stimulus screen, whose duration was determined by the calibration procedure. The
title also lists the 5th and 95th longest stimulus screen durations. (4) The probe screen, which was a vertical list of seven numbers. One matched either the sum of
the three digits of the top row of the stimulus screen or matched the sum of the three digits of the bottom row of the stimulus screen. The title lists the 5th and 95th
longest probe screen durations.

subjects were first tested at exposure durations of 600, 400, 300,
200, and 150 ms in descending order. These tests were four trials
long. Next, the exposure durations were changed in smaller steps,
and the number of trials was increased to 8 and/or 16 at each
duration. In the final calibration phase, adjustments were made in
yet smaller steps until the subject consistently had accuracy scores
of at least 90% but less than 100% on top and bottom cued trials
in 8 and/or 16 trial blocks.

Experimental session trials
The experimental session was divided into two parts with a
rest period in between the two halves after Trial 66. Over the
course of the session there were 22 cued trials and 110 uncued
trials, in pseudo-random order. The stimulus exposure time

was fixed at the value established by the calibration trials. The
probabilities that the top row contained the matching sum were
0.1 (8 subjects but one did not complete Session 2), 0.25 (9
subjects), 0.5 (8 subjects but three did not complete Session
2), 0.75 (8 subjects), and 0.90 (8 subjects). The bottom row
probabilities were the complements of these values. The order
in which the top and bottom rows contained the matching
sum was set by a list that was determined randomly with
the constraint that the overall probabilities were as close as
possible to the expected probability in each half session (55
uncued trials). On cued trials (11/half session), the probability
that the top row contained a match was 0.55 in the first
half of the session and 0.45 in the second half of the
session.
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Calculating the allocation of attention
Assuming that attention is a limited capacity and that the
subject selectively attends to one but not both rows of the
stimulus screen, a linear equation describes the relationship
between obtained correct responses, attention allocation, and the
probabilities that a stimulus is correct:

Expected % correct matches = PTp + PT(1− p)g +

PB(1− p) + PBpg, (1)

where PT is the probability that the top row is composed of the
three digits whose sum matches one of the probe screen sums, PB
is the probability that the bottom row has the matching digits, p
is the probability that the participant attended the top row, (1-
p) is the probability that the participant attended to the bottom
row, and g is the frequency of correct guesses. For instance, if
PT was set to = 0.75, and the subject attended to the top row
on 75% of the trials, i.e., p = 0.75 (probability matching), and
guessed correctly on trials that the unattended stimulus was the
correct one as determined by chance (0.143), then the expected
relative frequency of correct top row responses would be 0.589 or
[0.75× 0.75+ (0.75× 0.25× 0.143)]. Given these definitions we
can solve Equation 1 for g and for p.

Let PCT equal the probability that there was a correct response
when the top row was correct and analogously let PCB equal
the probability of a correct response when the bottom row was
correct:

PCT = ((PTp)/PT) + ((PT(1− p)g))/PT) = p + (1− p)g
(1a)

PCB = ((PB(1− p))/PB) + (PBpg)/PB = (1− p) + pg.
(1b)

Now add Equations 1a, 1b and solve for g:

g = (PCT + PCB) − 1. (1c)

Next substitute Equation 1c for g in Equation 1a and solve for p:

p = (PCB− 1)/(PCT + PCB − 2). (1d)

Thus, on the basis of the programmed probabilities of top and
bottom row matches and the numbers of correct responses, it is
possible to calculate the relative amount of cognitive processing
that each stimulus attracts and the probability of a correct guess
on trials that the unattended to stimulus was correct.

Adjusting the model for errors
Equations 1 to 1d imply that the subjects never fail to attend to the
stimuli and never make addition errors. In order to include the
more plausible assumptions that there will be occasional lapses
of attention and errors, we added a term for accuracy to the
equations. We set accuracy on uncued trials equal to the obtained
probability of a correct response on cued trials. Our thinking was
that the best empirical estimate of errors or lapses in attention
was performance on cued trials. On these trials the subject knows
which stimulus to attend to so that an incorrect match reflects an
error in adding or a lapse in attention. Accordingly, we multiplied

the equations for correct top and bottom row responses on
uncued trials by the probability of a correct response on cued
trials (this was typically a number between 0.90 and 1.0). The
resulting solutions for g and p have the same form as Equations
1c and 1d except that A (accuracy) substitutes for 1.0 and 2A
substitutes for 2.0. For example, if accuracy were perfect (A= 1.0)
then the two approaches yield the same solutions.

g = (PCT + PCB) − A (2a)

p = (PCB− A)/(PCT + PCB − 2A) (2b)

When the accuracy rates on cued trials for the two rows differ,
the equation for p is quadratic, as described in the Appendix, Part
1. However, this empirical approach to including errors in the
model has a potential pitfall. Accuracy on cued and uncued trials
may differ. When this happens it is possible to obtain specious
values of p or g (i.e., values of g that were less than 0.0 or values
of p that were less than 0.0 or more than 1.0). This occurred
infrequently, and in almost all cases was resolved by using larger
sample sizes (e.g., two sessions) to calculate guess rates and
attention allocation (thereby reducing the difference between
cued and uncued trial accuracies due to random variation). Part 3
of Appendix provides the details of the calculations along with the
rule for using the quadratic model of the procedure (Equations
A1c, A1d).

Feedback and payment for correct answers
At the end of the session subjects were told their overall
percentage of correct responses. In addition, half of the
participants were given an incentive for correct answers and
within session feedback. Every five uncued trials, a screen
displayed the number of correct responses in the last five
uncued trials. At the end of the session, these same subjects also
received 2–12 dollars, based on the number of correct responses.
We provided both information (feedback) and an incentive to
increase the salience of correct responses.

Statistical analyses
To analyze the possible differences between probability matching
and maximizing, the allocation values were transformed to
deviations from maximizing. Many of the values were close to 0.0
and deviated markedly from normality as determined by normal
probability plots and the Shapiro–Wilk test (Stata). A square-root
transformation normalized the values by these two criteria.

Results
Attention Allocation
Figure 2 summarizes changes in the allocation of attention over
the course of the two sessions. On the x-axis is the likelihood that
the sum of the three numbers in the top row was one of the seven
answers listed in the probe screen. “A” and “B” refer to the first
and second half of each of the two sessions (66 trials each). On
the y-axis is the probability that subjects attended to the top row
during the stimulus screen on uncued trials, as calculated by the
equations. The Appendix provides the calculation details.

Over the course of the two sessions, attention shifted in
favor of the row that was most likely to contain the matching
sum. The slopes of the fitted lines increased from 0. 21 to
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FIGURE 2 | The probability of finding the correct response predicts the allocation of attention. Error bars show standard errors. (1A,B) refer to the first and
second halves of Session 1; (2A,B) refer to the first and second halves of Session 2. Each panel includes the parameters for the best fitting line for the relationship
between attention allocation and the probabilities that the top row and bottom row stimuli contained the digits for a correct response. As a function of experience,
attention allocation shifted toward the stimulus that was more likely to predict the correct answer.

0.99, and the intercepts decreased from 0.43 to 0.01, so that
in the last half of the second session the equation for the best
fitting line relating the allocation of attention to the likelihoods
of finding the correct answer in the top and bottom rows
was y = 0.01 + 0.99x. In support of the graphs, an ANOVA
showed a statistically significant change in slopes as a function of
session. Attention allocation values were the dependent variable,
the predictiveness of the uncued stimuli was a between-subject
factor, and session block was a within-subject factor. Stimulus
predictiveness was a significant factor [F(4,32)= 9.53, p< 0.0005,
η2

p = 0.544], and there was a significant stimulus predictiveness
session block interaction [F(12,96) = 3.70, p = < 0.0005,
η2

p = 0.316]. This corresponds to the increase in slope and
decrease in intercept across half-session blocks. Further analysis
revealed that the interaction had a significant linear component
[F(4,32) = 5.57, p = 0.002, η2

p = 0.411] and a significant
cubic component [F(4,32) = 2.77, p = 0.044, η2

p = 0.257],

but not a significant quadratic component [F(4,32) = 0.413,
p = 0.798, η2

p = 0.049]. Session itself was not significant
[F(3,96) = 0.733, p = 0.535, η2

p = 0.022], which means that
the average allocation values did not change over time (as
expected).

Payment and feedback
Figure 2 combines the results for the subjects with and without
feedback. Figure 3 shows the results for these two groups
separately. The graphs show differences in the second half of
the second session when the predictiveness of the two stimuli
were in ratios of either 3:1 or 1:3. For the no payment/feedback
subjects, deviations from probability matching were biased in
favor of 50:50 (“under-matching”). For the payment/feedback
subjects, the bias was for maximizing. ANOVA showed that the
differences were statistically significant. To increase the sample
size, we pooled the 1:3 with the 3:1 results and likewise pooled the
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FIGURE 3 | Feedback enhances the correlation between attention allocation and the probability of finding the correct response. The format of Figure 2
is the same as in Figure 1. The four panels on the left show the results for the subjects without payment/feedback. The four panels of the rights show the allocation
results for the subjects with payment/feedback. In the second session payment/feedback encouraged deviations from probability matching which increased the
number of correct responses.

1:9 with 9:1 results. This was done by recalculating the allocation
probabilities as differences from the maximizing solutions, 0.0
when top row predictiveness was less than 0.50, and 1.0 when top
row predictiveness was greater than 0.50. The 1:1 results were not
included in this analysis, because in this condition the frequency
of a correct responses is independent of the allocation of attention
and thus not relevant to whether subjects maximized. The new
dependent variable, then, is the difference from maximizing, and
the predictors are presence or absence of payment/feedback and
the predictiveness of the stimuli. There were 15 subjects in the
no-feedback condition and 17 in the feedback condition.

Predictiveness (3:1/1:3 vs. 9:1/1:9) was a significant factor
[F(1,28)= 6.560, p= 0.016, η2

= 0.190], payment/feedback was a
significant factor [F(1,28)= 4.356, p= 0.046, η2

= 0.135] and the
interaction between predictiveness and payment/feedback was
significant: [F(1,28) = 6.135, p = 0.020, η2

= 0.180]. Further
analyses showed that the pairwise comparison for the subjects at
3:1/1:3 probabilities was significant [F(1,28) = 11.15, p = 0.002,
η2
= 0.284], but the pairwise comparison at the 9:1:1/9 was not

significant [F(1,28) = 0.071, p = 0.791, η2
= 0.003]. These last

two results correspond to the relatively larger differences between
the two groups at top row probabilities of 0.25 and 0.75 and
the relatively small differences at 0.10 and 0.90 (see the panels
labeled “2b”).

Response Latencies at the Less Predictive Stimulus
Were Longer
Figure 4 shows response latencies for correct responses for
cued trials and uncued trials. On the x-axis is session block;
on the y-axis are latencies for the three types of trials. The
top panel shows the results for the subjects for whom the
predictiveness of the top and bottom stimuli differed; the bottom
panel shows latencies for the subjects in the condition in which
the predictiveness of each stimulus was 0.50.

The top panel shows that latencies differed as a function
of whether the correct stimulus was cued, predictiveness and
trial block. Latencies were shortest in cued trials (filled red
circles) and longest in the uncued trials in which the less
predictive stimulus was correct (filled black squares). Correct
response latencies for the more predictive uncued stimulus
overlapped with cued trial latencies, and both decreased as a
function of session block. In support of these observations,
a within subject ANOVA revealed a significant type of trial
effect [F(2,42) = 5.614, p = 0.007, η2

p = 0.211] and a
significant session block effect [F(3,63) = 5.844, p = 0.001,
η2

p = 0.218]. Further analyses revealed that the session block
effect had a significant linear component [F(1,21) = 11.72,
p = 0.003, η2

p = 0.358], and that in the first and second
half of the second session, latencies in cued trials and the
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FIGURE 4 | Latencies for correct responses provide a test of the
validity of the calculations. The two panels show the average times for
correct responses as a function of session block and whether a cue signaled
the correct stimulus. In the upper panel the probabilities for top row and
bottom row matches differed. In the lower panel the probabilities of a
matching sum in the top and bottom rows were the same (0.50). The filled red
circles show the average response times for correct responses on cued trials.
The assumption that subjects could attend one row of the stimulus array but
not both rows predicts the pattern of changes in response times and the
longer response times for the less predictive row.

more predictive uncued trials did not differ significantly
[t(31) = −1.170, p = 0.251; t(31) = −0.955, p = 0.347],
whereas latencies in cued trials and in the less predictive
uncued trials differed significantly [t(28) = −2.55, p = 0.016;
t(26) = −3.344, p = 0.003]. The session-block type-of-trial
interaction was not significant [F(6,126) = 2.418, p = 0.213,
η2

p = 0.063]. As outlined in the Discussion, the simplest
hypothesis that explains the different trends in response latencies
is that correct answers mediated by guesses were more likely
in uncued trials in which the less predictive stimulus was
correct.

The bottom panel shows the latencies for correct responses
for the condition in which the top and bottom row probabilities
were both 0.50. In this condition, we grouped uncued trial
response latencies as a function of which stimulus had the most
correct responses (since stimulus predictiveness did not differ).

Response times at the cued stimulus were consistently shorter
than those in uncued trials. In uncued trials, latencies associated
with the stimulus that attracted more correct responses tended
to be shorter, and in the second half of the second session,
these times overlapped substantially with cued trial response
times. However, the standard errors were relatively large in this
condition. Consequently, type of trial was not a significant factor
[F(2,8) = 4.061, p = 0.061]. Similarly, response times did not
differ significantly as a function of session block [F(3,12)= 1.338,
p= 0.308].

Did individual Differences in Stimulus Array Durations
Affect Performance?
Table 1 lists the average exposure times, average correct guess
rates, average accuracy scores, and the correlations of the latter
two measures with exposure times. Recall that at the start of each
session, we calibrated the duration of the stimulus array to the
shortest time that supported accurate performance on cued trials.
Since the exposure times could differ in Sessions 1 and 2, the
analysis is for each session separately.

Table 1 shows that the average calibrated exposure times,
correct guess rates, and accuracy scores on cued trials were
similar in the two sessions. The correlations between exposure
time, accuracy, and correct guess rate were small and not
statistically significant. This means that subjects with longer
stimulus exposure times were not necessarily better at guessing
the answer at the unattended to stimulus nor more accurate in
adding up the three digits. Notice that the average calculated
guess rates in Sessions 1 and 2 were not significantly different
than the expected value of 0.143 according to paired t-tests in
Sessions 1 and 2: t(37) = −1.106, p = 0.276; t(37) = − 1.117
p= 0.271.

Attention Allocation for Strict Adherence to the
Simplest Assumptions (A = 1.0, g = 0.143)
In Figures 2 and 3, the obtained accuracy scores in cued trials
were used to estimate attention allocation and correct guess
rate in uncued trials (e.g., Equation 2b). However, our approach
would be simpler if we calculated attention allocation according
to the assumptions that the subjects always attended to the
stimulus array, had no usable knowledge of the unattended to
stimulus, and never made an arithmetic mistake. Figure 5 shows
the calculated allocation results for this simpler approach. The
changes in slopes, intercepts and even the pattern of deviations
from the fitted straight lines are about the same as when the

TABLE 1 | Experiment 1 stimulus exposure time, correct guess rate,
accuracy.

Exposure time
(avg/SD, ms)

Correct guess
rate

Accuracy
cued trials

Session 1 139.9/55.4 0.162/0.11 0.898/0.09

Correlations with
exposure time (r/p)

0.084/1.00 0.130/1.00

Session 2 130.6/35.8 0.162/0.10 0.908/0.10

Correlations with
exposure time (r/p)

−0.151/1.00 −0.255/0.38
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FIGURE 5 | Attention allocation for subjects who met perfectly the assumptions of the equations for calculating attention. Attention allocation as a
function of session and the probabilities of (top and bottom) row matches for subjects that added the three digits perfectly on every trial (A = 1.0) and whose correct
guess rate at the unattended to row was exactly equal to the expected value (0.143).

observed accuracy rates in cued trials were used to calculate
attention allocation.

Discussion
If the quantitative principles that govern the allocation of choice
also govern the allocation of attention, then in this experiment
attention should shift systematically so as to approximate the
probabilities of a correct response, as predicted by probability
matching, and might also continue to shift yet more so as
to increase the number of correct responses as predicted by
maximizing. Moreover, if the determinants of the allocation of
attention and the allocation of choice overlap, the tendency to
maximize should be greater in the payment/feedback condition.
However, before discussing these issues, there is the more

elementary question of whether the procedure worked as
intended. The calculations were based on the assumption that
the subjects were able to attend to one stimulus (either the top
or bottom row of digits) but not both. Do the data support these
assumptions?

Did the Procedure Work?
Correct guess rate, accuracy scores, response latencies, and
calculation provide the evidence needed to determine if the
assumptions that generated the model were met. If a subject
attended to but one stimulus then the correct guess rate should
be 0.143. For the same reason, there should not be a correlation
between how long the stimulus screen was displayed and correct
guess rate. If the subject had sufficient time to process one
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stimulus, then accuracy should be rather high, taking into
account occasional lapses of attention and/or mathematical
errors. If the subjects learned to attend to the stimulus that
was more predictive then correct guesses must become relatively
more frequent at the less predictive stimulus. Similarly, logic
says that the latencies for these two different types of correct
responses should differ. For example, imagine a subject that
attended the more predictive stimulus exclusively. All correct
responses at the more predictive stimulus would necessarily be
mediated by attention, whereas all correct responses linked to the
less predictive stimulus would have to be mediated by guessing.
However, the subject would only know that they should guess if
they had first reviewed all seven possible answers on the probe
screen and discovered that the sum they had calculated was not
the one that the computer had selected. They had attended to
the wrong stimulus–and it is likely that guessing required some
additional time as well. Thus, correct responses mediated by
guessing should take longer, and the differences should increase
as the subjects learn to attend to the more predictive stimulus.
By the same sort of reasoning, latencies for correct responses
at the more predictive stimulus should decrease and perhaps
eventually approximate the cued response latencies. Finally, if
the conditions that established the calculations were met then
it should be possible to approximate the results by re-doing
the calculations with accuracy set to 1.0 and correct guess rate
set to 0.143. We have, then, several ways to check whether the
procedure worked.

Inspection of the figures, statistical tests and the hypothetical
calculations show that performance was consistent with the
assumptions that were used to formulate the mathematical
model of performance in this procedure and their behavioral
implications. Correct guess rate did not differ significantly
from the expected value of 0.143. Accuracy was about 0.90.
Response times shifted in the predicted manner. The latencies
for correct responses at the less predictive stimulus were longer,
and they did not decrease as a function of session block. In
contrast, the latencies for correct responses at the more predictive
stimulus decreased as a function of session block and overlapped
with the cued trial latencies. Response latencies were not well
differentiated in the 1:1 condition, but here predictiveness was
the same. Figure 5 shows the results if accuracy had been perfect
and correct guess rate had been exactly the expected value.
The hypothetical results closely approximate the actual results.
Each of these observations was supported by statistical tests.
Session and stimulus conditions were significant predictors of
changes in the allocation values and response latencies, and even
feedback made a statistically significant difference, even though
there was little room for maximizing deviations. The effect sizes
were typically large, according to conventional standards. In sum,
there were several ways of measuring whether the conditions for
calculating attention were met; in each case the results passed the
test.

The validity tests say it is reasonable to interpret the findings
in terms of the question that motivated the study. Do the results
support the idea that similar principles govern the allocation of
overt behavior, as in choice experiments, and cognition, as in
this selective attention study? Attention allocation approximated

the probability matching predictions, as in behavioral studies,
and deviations were predicted by maximizing. The correlates of
maximizing in behavioral studies were the correlates of deviations
toward maximizing in this study: feedback, monetary incentives,
and continued exposure to the contingencies (e.g., Vulkan, 2000;
Shanks et al., 2002).

We have not, though, identified the mediating allocation
principles with any precision. For example both local and
global maximizing strategies, such as the operant matching
law (Herrnstein, 2000) and consumer choice theory (Baumol
and Blinder, 1994), predict that subjects will deviate from
probability matching toward exclusive preference in two-armed
bandit choice procedures. Consequently, to obtain a more precise
understanding of the principles that control the allocation of
attention, we will have to modify the present procedure in ways
that discriminate between these two competing theories.

Variability and Sample Size
The equations for calculating attention allocation and correct
guess rates can produce specious values [e.g., a correct guess rate
(g) of less than 0.0 or a value of p greater than 1.0 or less than
0.0] if accuracy on cued and uncued trials differ and the subject
attends one of the stimuli on most or all trials see Part 3 of the
Appendix for details. Sample size made a difference. When the
estimates of accuracy were based on session samples, 22 cued
trials, the equations produced values of p that were less than 0.0
or greater than 1.0 in 21 of 148 cases. In contrast, when accuracy
was based on the pooled (two-session) results, the number of
specious results was cut in about half (10/148). This suggests
that accuracy on cued and uncued trials was similar, and that
specious results were due to random variation. In the remaining
ten cases, we estimated the allocation of attention under the
assumption that accuracy was perfect (A = 1.0) and the correct
guess rate was the expected value (g = 0.143). Figure 5 shows
that these assumptions yield very similar estimates of attention
allocation as estimates based on the obtained accuracies. Session
data yielded four specious estimates of g, and pooled session data
yielded no specious estimates of g. We used smaller samples sizes
and empirical estimates of accuracy since they offered the most
information about changes in attention over the course of the
two sessions. However, data analysis and the presentation would
have been simpler, albeit less informative, if we had restricted the
analysis to whole sessions or to pooled Sessions 1 and 2 results.

Conclusion
The results are consistent with the assumptions of the
mathematical aspects of our approach for calculating the
allocation of attention and with research on choice. The graphs
and statistical analyses show strong and systematic correlations
between the dependent measures, predictiveness and practice,
and even feedback made a statistical difference even though
there was not that much room for maximizing in the 9:1/1:9
conditions. Nevertheless, the mathematical model for calculating
attention allocation is new so that it would be useful to
provide more data regarding how well performance in our
procedure supports its assumptions. Consequently, we ran a
second study. The primary goal was to test the generality of the
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results summarized by Figures 2–5. In addition, we included
three different feedback/incentive conditions. One provided a
monetary incentive for each correct response; one provided the
monetary incentive plus a record of the number of correct
responses in the just previous ten responses; and one provided
no incentive and no information on correct responses. The goal
was to test whether explicit feedback and incentive had more of
an impact on attention allocation than incentive alone, perhaps
interacting synergistically.

EXPERIMENT 2

Introduction
Experiment 2 has two sets of goals. First, will it be possible
to replicate the methodologically relevant results. The most
important are those that follow from the assumptions of the
equations. Namely that the correct guess rate approximates the
expected value for a subject that has no useful knowledge of the
unattended stimulus, that latencies for correct responses reflect
whether guessing or attention mediated the response, and that
accuracy on the cued trials remains at a high level over the course
of the session. Second, Experiment 2 tests whether predictiveness
and practice remain robust predictors of the shift in attention,
and whether feedback and incentives predict deviations from
probability matching toward maximizing.

The predictiveness of the top row was set at 0.20 or 0.80. For
each probability, there were two payment/feedback conditions
and one no payment/feedback condition, as described in the
following Section “Materials and Methods”. On the basis of
Experiment 1, we predicted that attention would gravitate toward
the more predictive stimulus, that allocation values would differ
as a function of payment/feedback, and that subjects would
be more likely to deviate from probability matching toward
maximizing in the payment/feedback conditions.

Materials and Methods
Participants
Sixty-seven volunteers served as subjects. Forty were females, and
27 were males. The age range was 18–33, and the average age
was 22 years. As this experiment was conducted in the summer,
we used flyers posted on campus and summer school classroom
announcements to recruit subjects. Since we were not able to
provide subjects with course credit for participating in the study,
we offered monetary compensation. In the payment/feedback
conditions, each subject was offered $5.00 for participating plus
money for correct responses as described below; in the no
payment/feedback condition each subject was given 14.00/session
for participating, which was about the average amount earned in
the payment/feedback conditions. Note that in the no-feedback
condition, payment was provided regardless of performance, just
as in Experiment 1, subjects earned course credit regardless of
their level of performance.

Prior to the start of the experiment all participants signed
a consent form according to the protocols established by the
Boston College institutional review board for research. One of
the 67 subjects did not complete Session 2, and we omitted data

for one subject who did not follow instructions. Thus, 65 subjects
provided results in the statistical analyses. The procedure and
consent form were approved by the Boston College institutional
review board for research.

Procedure
The procedure was identical to that of Experiment 1, except for
the payment/feedback conditions and how we recruited subjects.
The incentive schedule was $0.10 for each correct answer on cued
and uncued trials. Under this contingency random responding
earned approximately $8.00 and the maximizing strategy earned
approximately $14.00. In addition, one group of subjects also
got feedback on their recent performance. Every ten trials,
a screen displayed the number of correct cued and correct
uncued responses in the just previous ten trials. In the no
payment/feedback condition there was no monetary incentive
for correct responses and no information regarding correct and
incorrect responses.

Data Analysis
Data were analyzed as in Experiment 1. We combined the results
from the two feedback conditions because they did not differ
according to statistical tests. As in Experiment 1, deviations
from maximizing (see the bottom panel of Figure 6) were often
close to 0.0 and markedly non-normal, as determined by the
Shapiro–Wilk test and normal probability plots (Stata). Also as
in Experiment 1, a square root transformation of the differences
reduced deviations from normality. Accordingly, statistical tests
of deviations from maximizing were based on the square root
transformed results.

Results
Attention Allocation
Figure 6 summarizes the results. On the x-axes are the first
and second halves of Sessions 1 and 2. In the upper and
middle panels, the y-axes are the relative amount of attention
devoted to the top row stimulus on uncued trials in the 4:1
and 1:4 conditions, respectively. The lower panel shows the
pooled results from the 4:1 and 1:4 conditions. On the y-axis
is the magnitude of the discrepancies from the maximizing
predictions. For example, a value of 0.20 implies an attention
allocation value of 0.80 in the 4:1 condition and of 0.20 in the
1:4 condition.

The graph shows that attention allocation varied
as a function of the predictiveness of the stimuli
(either 0.8 or 0.2), practice (session block), and
payment/feedback. The ANOVA results support these
points.

As in Experiment 1, predictiveness and payment/feedback
were between subject factors and trial block was a within
subject factor. Predictiveness was statistically significant
[F(1,61) = 53.66, p < 0.0005, η2

p = 0.468]. Feedback was
evaluated in terms of the attention allocation values (the
two top panels) and as deviations from maximizing. The
attention allocation values canceled out since the analysis
includes both 4:1 and 1:4 conditions, resulting in a very
small F value: [F(1,61) = 0.010, p = 0.921]. In contrast, the
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FIGURE 6 | Attention allocation and deviations from maximizing as a
function of session and feedback. The top panel shows the results for
the 4:1 conditions. The middle panel shows the results for the 1:4
conditions. The bottom panel combines the results from the 4:1 and 1:4
conditions by reframing attention allocation as deviations from maximizing.
For example, in the 4:1 condition, a top row attention allocation value of
0.80 is a 0.20 deviation from maximizing.

interaction between predictiveness and feedback/payment,
which distinguishes between the two predictiveness conditions,
yielded a larger F value, but not large enough to pass the

0.05 criterion [F(1,61) = 3.554, p = 0.064, η2
p = 0.055].

However, when feedback was evaluated in terms of deviations
from maximizing (bottom panel), differences between the
payment/feedback subjects and the no payment/feedback
subjects was significant at the 0.05 level: [F(1,63) = 4.05,
p= 0.048, η2

p = 0.060].
Session block (trials) was a within-subject factor. Overall

it was not significant since the 4:1 and 1:4 allocation values
canceled out [F(3,183) = 1.09, p = 0.356, η2

p = 0.018]. However,
the interaction with probability of a top row match, which
distinguishes between the predictiveness of the stimuli, was
significant: [F(3,183) = 24.48, p < 0.0005, η2

p = 0.318]. This
correlation had a significant linear component [F(1,61) = 48.74,
p < 0.0005, η2

p = 0.444]. Deviations from maximizing (bottom
panel) decreased significantly as a function of session block
[F(3,189) = 36.12, p < 0.0005, η2

p = 0.364], and this correlation
also had a significant linear component [F(1,63) = 63.51,
p < 0.0005, η2

p = 0.502]. The session block payment/feedback
interaction was not significant [F(3,189) = 0.59, p = 0.620,
η2

p = 0.009], as the parallel lines make clear.

Response Latencies
Figure 7 shows the latencies for correct responses in Experiment
2 as a function of session block and type of trial. As in
Experiment 1 there were three types of correct responses: those
that occurred in cued trials (filled red circles), those that occurred
in uncued trials when the more predictive stimulus was correct
(filled green upside down triangles), and those that occurred
in uncued trials when the less predictive stimulus was correct
(filled black squares). The top panel is for the subjects in
the payment/feedback conditions. The bottom panel is for the
subjects who were not in the payment/feedback conditions.
Consider the top panel first.

Response latencies varied as a function of session block and
type of trial. The latencies for a correct response were shortest
in the cued trials and longest in the uncued trials in which the
less predictive stimulus was correct. Over the course of the two
sessions, latencies for correct responses in the cued and uncued
more predictive trials decreased. In contrast, latencies for correct
responses in the less predictive uncued trials did not decrease. In
support of these observations, ANOVA revealed that type of trial
was a significant factor [F(2,70) = 33.05, p < 0.005, η2

p = 0.486]
and session (practice) was a significant factor [F(3,105) = 2.73,
p = 0.048, η2

p = 0.072]. Further analyses indicated a significant
session (linear) type trial (quadratic) interaction [F(1,35) = 9.09,
p = 0.005, η2

p = 0.206]. This corresponds to the different
patterns of change across session block as a function of type of
trial.

For the subjects who were not paid or given feedback,
response latencies varied as type of trial and session block, as
in the top panel, however, the differences were smaller. Within-
subject ANOVA revealed that type of trial [F(2,40) = 17.93,
p < 0.005, η2

p = 0.473] and session [F(3,60) = 2.935, p = 0.041,
η2

p = 0.128] were significant factors. Further analyses indicated
that the session effect included a significant linear component
[F(1,20) = 7.46, p = 0.013, η2

p = 0.272], and, as in the top
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FIGURE 7 | Response latencies as a function of probability of finding
the correct sum, cues, and feedback. The format is the same as in
Figure 3. As in Experiment 1 response latencies were a systematic function of
the predictiveness of the stimuli and trials.

panel, there was a significant session (linear) type trial (quadratic)
interaction [F(1,20)= 4.98, p= 0.037, η2

p = 0.200].

Did individual Differences in Stimulus
Array Durations Affect Performance?
We evaluated the correlations between the amount of time that
the stimulus screen was displayed, the probability of a correct
guess, and accuracy on cued trials in Sessions 1 and 2. Table 2
summarizes the results.

As in Experiment 1, the exposure times, correct guess rates,
and accuracy scores in cued trials were similar in the two sessions.
The average exposure times differed by less than 15 ms (or
about half a standard deviation), correct guess rates differed by
about 0.01, and, similarly, accuracy on cued trials changed little.
The correlations with exposure time were not large and were
not statistically significant (see Table 2 for values). According
to paired t-tests, the average calculated guess rates in Sessions
1 and 2 did not differ significantly from the rate predicted by

TABLE 2 | Experiment 2 stimulus exposure time, correct guess rate,
accuracy.

Exposure time
(avg/SD, ms)

Correct guess
rate

Accuracy
cued trials

Session 1 131.6/29.05 0.132/0.10 0.947/0.05

Correlations with
exposure time (r/p)

−0.290/0.063 −0.080/1.00

Session 2 117.08/32.01 0.139/0.09 0.939/0.12

Correlations with
exposure time (r/p)

−0.220/0.268 0.032/1.00

random guessing (0.143): t(63)= 0.917, p= 0.363; t(61)= 0.353,
p= 0.726.

Discussion
The results of Experiment 2 were consistent with the results of
Experiment 1. Over the course of the two sessions, the probability
of attending the top and bottom rows shifted according to
the predictiveness of the stimuli. In the payment/feedback
conditions, deviations from maximizing were significantly
smaller than in the no payment/feedback condition. The average
accuracy score on cued trials was 0.946, implying that subjects
were able to successfully attend to one of the two stimuli. The
correct guess closely approximated the theoretical value for a
subject who had no usable knowledge of the unattended to
stimulus (0.136 vs. 0.143). Latencies for correct responses were
longer in trials in which the less predictive stimulus was correct,
whereas in trials in which the more predictive stimulus was
correct, response times decreased, approaching those when the
subject was informed as to which stimulus was correct.

As in Experiment 1, the results indicate that subjects learned
to attend to the more predictive stimulus, had little or no usable
knowledge of the unattended stimulus, and guessed when they
failed to attend to the correct stimulus. In other words, the
results are consistent with the assumptions of the equations for
calculating attention.

Also, as in Experiment 1, there were instances in which the
equations gave an estimate of the allocation of attention that was
less than 0.0 or greater than 1.0. This occurred in about 3% of the
260 calculations of p. See the Appendix for details.

EXPERIMENTS 1 AND 2 COMBINED

Figure 8 summarizes the results from Experiments 1 and
2. It shows the median attention allocation values in the
payment/feedback and no payment/feedback conditions
for the seven different probabilities of a top row match.
In five of the six conditions in which the predictiveness
of the top and bottom row stimuli differed, maximizing
predicted deviations from probability matching when there
was payment or payment\feedback. For those subjects that
received neither payment nor feedback, maximizing predicted
deviations from probability matching in four conditions.
Consequently, deviations from maximizing were smaller in the
payment/feedback condition [t(95)= 2.64, p= 0.0.01].
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FIGURE 8 | Attention allocation in Experiments 1 and 2 as a function of
predictiveness of the stimuli and payment/feedback. The data points are
the medians. Perfect probability matching implies a slope of 1.0 and an
intercept of 0.0. Maximizing predicts a slope that is greater than 1.0.

GENERAL DISCUSSION

This study was motivated by three questions. Would it be
possible to arrange conditions so that the equations for
calculating the allocation of attention provided valid results?
Would conditions that promote maximizing in behavioral choice
experiments also promote maximizing in a cognitive procedure
in which the “responses” were mathematically inferred? And
would the results support the claim that there are general,
quantitative laws in psychology that hold across sub-discipline
borders?

Validity
The results of both experiments are consistent with the
assumptions that generated the equations. Accuracy scores
averaged about 90% in Experiment 1 and about 95% in
Experiment 2. Correct guess probabilities averaged about 0.16
in Experiment 1 and about 0.14 in Experiment 2–values which
closely approximate the expected probability for a subject who
guessed randomly on trials in which the attended-to row did
not contain the matching sum. In both Experiments 1 and
2, response times for the less predictive stimulus were longer
and changed little over trials, whereas response times at the
more predictive stimulus decreased over trials, approaching
the durations of response latencies on cued trials. This is
precisely the expected pattern for a subject who is learning to
attend to the stimulus with the higher likelihood of providing
a matching sum and who has no usable knowledge of the
contents of the unattended stimulus. The correlations between
the duration of the stimulus screen, correct guess rate, and

accuracy lead to the same conclusion. Correct guess rates
approximated those predicted by random guessing, and accuracy
was 90% or more (see Tables 1 and 2). As with latencies, this
is precisely the expected pattern of performance for a subject
who has learned to selectively attend to the more predictive
stimulus at the cost of not attending to the less predictive
stimulus.

Conditions that Promote Maximizing in
Choice Experiments Promoted
Maximizing in the “Two-Armed Bandit”
Cognitive Task
In two-armed bandit procedures, probability matching shifts
toward maximizing as a function of feedback and practice
(Goodie and Fantino, 1999; Shanks et al., 2002; West and
Stanovich, 2003; Newell et al., 2013). This is the pattern we
found if you substitute correct answers for reward and attention
for choice. However, in this study the shift toward maximizing
required substantially fewer trials than in choice experiments
(e.g., Goodie and Fantino, 1999). Why this was so remains
unexplored.

Principles That Predict Value Driven
Shifts in Attention
Figure 8 shows that in five of the six conditions in which the
top and bottom row probabilities of a correct answer differed, the
median attention allocation values were closer to the predictions
of maximizing (0.0 and 1.0) than of probability matching. To
be sure, the differences were not large, but there was little room
for large deviations and optimizing does not necessarily predict
that the subjects should attend to just one option on all trials.
In choice studies, subjects say that correct responses at the
option that was less likely to payoff were more rewarding. In
addition, sampling the less likely stimulus is reasonable in order
to check if conditions have changed, and, reasonableness aside,
there is evidence that variability is inherent to voluntary behavior
(Neuringer, 2014). Thus, the optimal distribution of behavior in
two-armed bandit procedures may be somewhat less than 100%
in favor of the higher valued and/or more predictive stimulus and,
perhaps, not that different from the allocation values observed in
this study.

We have yet to investigate the processes that may have
mediated the shifts toward maximizing. The choice literature
offers several candidates: (1) global maximizing as assumed in
economics (Baumol and Blinder, 1994); (2) feedback driven
local maximizing processes, such as Herrnstein’s operant
matching law and melioration principle (Herrnstein, 2000);
(3) stochastic learning rules (Estes, 1976); and (4) simple,
mechanical “rules of thumb” that automatically produce optimal
or near optimal outcomes in some settings but not all
(Heyman, 1982). Further research is needed to identify which,
if any, of these principles guided attention in the present
experiment (also see Shahan and Podlesnik, 2006, for a discussion
of attention allocation and Herrnstein’s operant matching
law).
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Limitations and Questions
To what extent was the unattended-to stimulus processed? For
example, was the unattended to row of digits encoded but then
forgotten as the subjects added the digits in the attended to
row, as in studies in which later “stages” of cognitive processing
become increasingly selective (Duncan, 1980 and Lavie et al.,
2004)? Or was attention allocated so that the unattended digits
remained relatively “unregistered” as in studies in which “early
selection” is observed (Treisman, 1969; Lavie et al., 2004)?
Possibly, a priming study would reveal greater knowledge of the
unattended-to digits than the current procedure did.

It is not clear which aspect of the feedback conditions was
most instrumental in promoting maximizing. Our goal was to test
whether conditions that influence the allocation of choice also
influence the allocation of attention. Accordingly we provided
both information and incentives simultaneously in Experiment
1, as this is how the choice experiments work. In Experiment
2 there was an incentive condition without feedback and with
feedback, however, these two conditions produced statistically
indistinguishable results. What is missing is a feedback alone (no
monetary incentive) condition. Consequently, the precise role
of feedback and incentives in this procedure remain unclear.
Likely both matter, and the results from Experiment 1 suggest
that the importance of feedback and/or incentives will vary
inversely with the absolute size of the differences in predictiveness
for the two stimuli. For example, in the 9:1/ 1:9 conditions
payment/feedback made no difference, whereas in the 3:1/1:3
conditions payment/feedback significantly increased deviations
from probability matching toward maximizing.

CONCLUSION

The methodological significance of this study is that it introduces
a method for inferring the allocation of attention–a covert
process–on a scale of 0.0–1.0. Although there are many methods
for describing attention, none, as far as we know, calculate

attention as the solution to an equation, thereby providing a
numerical description that can vary continuously. This approach
invites studies in which researchers can calculate the correlations
between individual differences in the voluntary control of
attention and individual differences in other psychological
functions, such as higher order cognitive skills or obsessive
tendencies. For instance, might subjects who more slowly learn
to attend to the more predictive stimulus also tend to dwell on
disturbing ideas? The theoretical significance of the results is that
they are consistent with the idea that the same general principles
govern attention and choice. Put somewhat differently, the results
suggest that subjective value drives attention in much the same
way that it drives choice. However, as noted in “Limitations
and Questions”, the nature of the processes that mediated the
relationship between reward and attention allocation in the
present study remain an open question. Given the orderliness of
the results in this study, this question should prove answerable.
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APPENDIX

Part 1: Calculating the Allocation of
Attention When Accuracy for Top and
Bottom Row Stimuli Differed
Accuracy rates for top and bottom rows sometimes differed on
cued trials. To take this into account, we entered top and bottom
row cued trial accuracy percentages (A1 and A2) separately in Eq.
2. This yields a quadratic equation in p:

PCT = A1p+ (1− p)g (A1a)

PCB = A2 (1− p)+ pg (A1b)

g = PCT + PCB− A1p− A2(1− p) (A1c)

Now substitute for g in Eq. A1b and set to 0.0

(A2− A1)p2
+ (PCT + PCB− 2A2)p+ (A2− PCB) = 0

(A1d)
We used the quadratic formula to solve the Eq. A1d, and then

inserted the solution into the Eq. A1c in order to caculate the
correct guess rate (g). Note that Eq. A1d reduces to Eq. 2b when
top and bottom row accuracies are the same (as it should).

Part 2: Calculating Attention Allocation
When the Assumptions of the Model
(Eq. 1) were Met Perfectly (A = 1.0 and
g = 0.143)
If we substitute 1.0 for A and 0.143 for g, we can rewrite Eqs. 1a
and 1b as:

p = (PCT − 0.143)/0.857 (A2a)

p = (1− PCB)/0.857 (A2b)

Now add Eqs A2a and A2b:

2p = (PCT − PCB+ 0.857)/0.857 (A2c)

p = (PCT − PCB+ 0.857)/1.714

Although this equation assumes perfect accuracy, Figure 5
shows that its predictions differed little from those based on the
empirically determinded accuracies (e.g., Eqs. 2a and 2b of the
text and Eqs. A1c and A1d of this Appendix).

Part 3: Procedures for Solving the
Allocation of Attention Equations
We calculated p for half-session blocks (55 uncued trials each)
for each subject in Experiments 1 and 2, using the session
cued trial accuracy scores (22 trials) and the linear (Eq. 2) and
quadratic models (Eq. A1). The two equations give identical
results when top and bottom row accuracy were the same, and
somewhat different results when top and bottom row accuracies
differ. Inspection of the results suggested that we should use
the quadratic form when the difference in top and bottom row
accuracy was greater than 0.099. For instance, the linear and
quadratic estimates of attention allocation differed by an average
of 0.007 when the differences in top and bottom row accuracy
were less than the 0.099 criterion, but differed by an average of
0.088 when the difference in top and bottom row accuracy was
greater than 0.099. For about 75% of the cases, we used the linear
model. The numbers are as follows.

There were a total of 408 half-session estimates of attention
allocation (Experiment 1 = 148, Experiment 2 = 260). In
307 cases, we used the linear model (Eq. 2b). In 67 cases,
we used the quadratic model (Eq. A1d). In 34 cases, neither
equation gave an estimate of p on the interval 0.0 to 1.0.
Inspection of the equations reveals that this can occur when
cued trial and uncued trial accuracies differ and the subject
attends largely or exclusively to one row. We dealt with this
issue in a step-by-step manner according to the rule that
empirical estimates of accuracy were preferred to an assumed
level of accuracy. First, we redid the calculations using pooled
Sessions 1 and 2 cued trial results. This doubled the sample
size from 22 to 44 cued trials. This reduced the number of
specious cases from 34 to 16. For the remaining 18 cases, we
assumed that A = 1 and g = 0.143. Although this was not
our preferred approach, Figure 5 shows that it produced results
that were very similar to those based on empirical estimates of
accuracy.

We calculated correct guess rate (g) on the basis of single
session and pooled session results. As noted above, the average
value of g was about the same in both sessions. Of the 204 single
session estimates of g, 13 were less than 0.0, and for the 102 pooled
session estimates, 6 were less than 0.0.
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