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In task switching, increasing the response–cue interval has been shown to reduce

the switch cost. This has been attributed to a time-based decay process influencing

the activation of memory representations of tasks (task-sets). Recently, an alternative

account based on interference rather than decay has been successfully applied to

this data (Horoufchin et al., 2011a). In this account, variation of the RCI is thought to

influence the temporal distinctiveness (TD) of episodic traces in memory, thus affecting

their retrieval probability. This can affect performance as retrieval probability influences

response time: If retrieval succeeds, responding is fast due to positive priming; if retrieval

fails, responding is slow, due to having to perform the task via a slow algorithmic process.

This account—and a recent formal model (Grange and Cross, 2015)—makes the strong

prediction that all RTs are a mixture of one of two processes: a fast process when retrieval

succeeds, and a slow process when retrieval fails. The present paper assesses the

evidence for this mixture-distribution assumption in TD data. In a first section, statistical

evidence for mixture-distributions is found using the fixed-point property test. In a second

section, a mathematical processmodel with mixture-distributions at its core is fitted to the

response time distribution data. Both approaches provide good evidence in support of

the mixture-distribution assumption, and thus support temporal distinctiveness accounts

of the data.

Keywords: task switching, decay, interference, computational model

INTRODUCTION

The task switching paradigm is a popular method for studying cognitive control (Kiesel et al., 2010;
Vandierendonck et al., 2010; Grange and Houghton, 2014). Within this paradigm, participants are
required to perform simple cognitive operations on multi-valent stimuli; for example, participants
might be presented with numerical stimuli, and be asked to judge either whether the stimulus is
odd/even (task A), or whether the stimulus is lower/higher than 5 (task B). Participants knowwhich
task to perform as they are presented with a cue informing them which task is relevant for the
current trial (e.g., the word “magnitude” might cue the lower/higher task). It is a consistent finding
that switching tasks (e.g., A–B) induces a performance cost in the form of increased response time
(RT) and error rates compared to repeating the same task (e.g., A–A); this switch cost has become
the focus of intense research in an attempt to understand its underlying causes.

More recently, research has started to focus on the nature of the memory representations
used to perform these tasks. As the stimulus is usually not informative as to which task needs
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Grange Mixture Distribution Assumption

to be performed, a so-called “task-set” needs to be formed
in working memory, which can be considered a collection of
programmable task parameters (such as attentional bias etc.)
critical to task performance (Logan and Gordon, 2001); this task-
set must be changed when the task changes. A central goal for
efficient cognitive control is to ensure that the relevant task-
set is the most active among all competitors (e.g., Altmann and
Gray, 2008). Therefore, an understanding of the dynamics of
activation of task-sets is central to a complete understanding of
the challenge facing cognitive control.

Evidence from the task switching paradigm has provided
several lines of evidence suggesting that activation levels of task-
sets decay passively as a function of time. For example, Meiran
et al. (2000) varied the temporal separation between successive
tasks via the response–cue interval (RCI), the time between the
response to one task and the onset of the cue for the next task.
These authors reported reduced switch costs at longer RCIs; this
finding is in perfect accord with a decay account for two reasons:
first, on task repetition trials, the previous task’s activation will
have hadmore time to decay at longer RCIs, meaning its ability to
prime performance on the current trial will have reduced (leading
to slower RTs); secondly, on task switch trials, the activation
levels of the previous (now irrelevant) task-set will have decayed,
inducing less proactive interference on the current trial (thus
resulting in faster RTs). The net result is a reduced switch cost.
It should be noted that several studies have found task repetition
RTs slow as a function of RCI, the evidence for the predicted
speeding of switch RT is less clear. In fact, several studies have
found no evidence for RCI affecting switch RTs in the predicted
direction (Meiran et al., 2000; Altmann, 2005; Horoufchin et al.,
2011a). However, slowing of repetition RTs with increasing RCI
remains an important finding supporting decay accounts.

However, this decay account was recently challenged by
Horoufchin et al. (2011a) whomanipulated RCI on a trial-to-trial
basis between a short- (e.g., 50 ms) and a long-RCI (1000 ms);
they found that the reduction of switch cost was not a function
of absolute time of the RCI (e.g., between the previous trial n–1
and the current cue at n), but rather was a function of the ratio of
the current RCI to that from the previous trial (between trials n–2
and n–1). Specifically, the switch cost was only reduced at longer
RCIs when the previous RCI was short; when the previous RCI
was also long, switch costs were not reduced. These effects were
primarily localized to task repetition RT; task switch RT was not
influenced by RCI or the RCI-ratio.

Horoufchin et al. (2011a) proposed these findings supported
an interference account of RCI effects, and were not compatible
with a decay account. Relating to a temporal ratio model of serial
memory (SIMPLE Brown et al., 2007), the authors suggested that
when presented with a cue on the current trial, the cognitive
system engages in a retrieval attempt of the previous episodic
memory trace of the task-set associated with this cue; such
retrieval attempts have been shown by Brown et al. (2007) to be
influenced by the temporal distinctiveness (TD) of the episodic
trace. TD refers to the degree to which the targeted episodic trace
is distinguishable in memory from competing memory traces
presented within a similar time-window to that of the target
trace. Traces that are clustered closely in episodic memory will

not be distinguishable, and thus have low TD and will have low
probability to be retrieved. The sequential varying of the RCI was
suggested to affect the TD of the targeted episodic trace of the
task-set in memory. TD is operationalized in relation to the RCI-
ratio, which is the ratio of the RCI(n–2:n–1) / RCI(n–1:current
trial). See Figure 1 for how various RCI-ratios are calculated.

When RCI-ratio is high, so too is TD, which means there is
a high probability the episodic trace can be retrieved; successful
retrieval of the task-set primes performance, leading to a fast
RT. When the RCI-ratio is low, so too is TD, which lowers the
probability of successful retrieval of the task-set. When retrieval
fails, the task must be performed via a slower, algorithmic
route, leading to a slower RT (see Logan, 2002, for a similar
proposal). Intermediate RCI-ratios lead to intermediate levels of
TD; therefore, a proportion of these trials will have successful
retrieval, and some trials will have failed retrieval.

Figure 2 represents a portion of data reported by Grange (in
revision)—a brief overview of the pertinent method details and
analysis are presented in Appendix A—that replicates the main
findings from Horoufchin et al. (2011a); focussing on repetition
RTs, increasing RCI from 50 to 1000 ms has negligible effect on
RTs when the RCI was the same as the previous trial (e.g., these
data points relate to D and C in Figure 1); this is because both
of these conditions have an identical RCI-ratio of 1, and hence
have the same TD. RCI has a considerable effect on repetition RT
when the RCI has changed from the previous trial: RT is very fast
when the RCI is 50 ms, as this condition has a very high RCI-
ratio, hence high TD (Figure 1A); RT is very slow when the RCI
is 1000 ms, as this condition has a very low RCI-ratio, hence low
TD (Figure 1B).

Note that a decay account cannot explain this data, as it
would predict identical slowing of repetition RTs at longer RCIs
regardless of the RCI on the previous trial (whether it was the

FIGURE 1 | Various manipulations of temporal distinctiveness as used

by Horoufchin et al. (2011a,b). Task instances are represented by circles,

and time runs from left to right. The current trial’s cue is represented by the

far-right circle; the episodic trace of the previous task is the middle circle, and

the episodic trace of the task from two trials ago is the far-left circle. The RCI

between each trace is shown for each row. The ratio is calculated as

RCI(n-2:n–1) / RCI(n–1:current trial). See text for more details. (A) Ratio of 20.

(B) Ratio of 0.05. (C,D) Ratio of 1.
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FIGURE 2 | Data from Grange (in revision) showing mean response

time in milliseconds (ms) for task repetition and switch trials as a

function of the current response–cue interval (x-axis) and whether the

RCI is the same or different from the previous trial. Error bars denote ±1

standard error around the mean.

same or different to that of the previous trial). Thus, this data
presents a strong challenge to the decay account of task-sets.

THE CURRENT STUDY

Given the important of the dynamics of task-sets for the
development of theoretical accounts of task switching (e.g.,
Schneider and Logan, 2005; Altmann and Gray, 2008),
the temporal distinctiveness account provides an important
challenge to our understanding of cognitive control in task
switching. Given this importance, Grange and Cross (2015)
developed a basic mathematical model of TD effects using
SIMPLE (Brown et al., 2007) to calculate the TD for a range
of RCI-ratios, and in turn to predict mean RT for a range of
RCI-ratios.

In this model—using the mathematics of SIMPLE—the RCI-
ratio can be translated in to a measure of the Distinctiveness of an
episodic trace. Distinctiveness is proportional to the probability
of retrieving this episodic trace, denoted p(retrieval). As per the
verbal theory of Horoufchin et al. (2011a) it is assumed that if
retrieval succeeds, the response for that trial will be sampled from
a fast RT process, with mean µFast ; if retrieval fails, the response
for that trial will be sampled from a slow RT process, with mean
µSlow. Therefore, trials with high RCI-ratio (e.g., 20) will have
high TD, and therefore high p(retrieved), meaning many trials
will be sampled from the fast RT process; trials with low RCI-
ratio (e.g., 0.05) will have low TD, and hence low p(retrieved),
meaning many trials will be sampled from the slow process. See
Appendix B for an overview of this model.

In the model, mean RT for a given RCI-ratio is predicted by

RT = p(retrieved)× µFast + [1− p(retrieved)]× µSlow. (1)

Importantly, this model therefore assumes that all RTs are
being sampled from one of only two processes: a fast and
a slow process. Therefore, trials with intermediate RCI-ratios

(e.g., 1) will have intermediate TDs, and therefore intermediate
p(retrieved); this means that intermediate RCI-ratio RTs will
be a mixture of RTs from the fast process and RTs from the
slow process, with the exact proportion of mixture related to
p(retrieved).

The purpose of the present study is to assess in more detail
the validity of this key prediction of the temporal distinctiveness
account: that intermediate RCI-ratio RTs are amixture of samples
from a fast process and a slow process. I call this assumption the
mixture-distribution assumption.

I approach this assessment in two ways. In the first, I use
a statistical test—the fixed-point property test—to assess the
presence/absence of evidence for intermediate RCI-ratios being
a mixture of a fast and a slow distribution. Then, in a next
step I extend the model of Grange and Cross (2015) to predict
whole RT-distributions, which allows a direct test of the mixture-
distribution assumption.

Switch Trials
Note that the current paper does not attempt to model switch
RT performance. This is for several reasons. One is that there
is evidence that RCI does not affect switch RT (Meiran et al.,
2000; Altmann, 2005; Horoufchin et al., 2011a). Second, the
temporal distinctiveness account of Horoufchin et al. (2011a)
mostly considers task repetition performance because the RCI-
ratio did not influence switch trials. As such, the formal model
of Grange and Cross (2015) only modeled repetition RTs. As
the purpose of the present paper is to test further the main
assumptions of the account of Horoufchin et al. (2011a) and
the formal model of Grange and Cross (2015), the current work
continues to focus on repetition RT. A complete model would
of course have to account for switch trial performance, too, but
as these trials appear unaffected by temporal distinctiveness they
are less interesting for the aims of the current paper. I leave
discussion of this issue to the General Discussion.

ASSESSING THE PRESENCE OF
MIXTURE-DISTRIBUTIONS

Van Maanen et al. (2014) introduced a method—the “fixed-
point” property test—for statistically testing the presence of a
mixture-distribution. If distribution z is a mixture of two base
distributions x and y, then the fixed-point property states that the
probability density for distribution z, fz , is a weighted sum of the
probability densities of the other two distributions fx and fy. Put
simply, this implies that there exists a particular response time t
for which the probability of providing such a response is identical
for all three distributions; that is fx(t) = fz(t) = fy(t).

For example, consider the left panel of Figure 3. Here, three
response time distributions have been simulated: x is a fast RT
distribution, and y is a slow RT distribution. Distribution z was
simulated as being amixture of distributions x and ywithmixture
probability p set to p= 0.7.

As can be seen, the density functions of all three distributions
share a common “crossing point,” the RT at which all density
functions are equal (i.e., where fx(t) = fz(t) = fy(t)). The crossing
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point is made clearer by taking successive subtractions of pairs
of density functions (see the right panel of Figure 3). Zero in
this plot represents a density difference of zero (i.e., where the
two density functions are equal). For example, the solid line
represents the density difference of fz - fx. If the distributions
share a common crossing point, the density differences for all
pairs of distribution differences will cross zero at a similar
response time. This is the case in the current plot, where the
three distributions share a common crossing point of about
0.850 s.

Application to the Data
The task repetition data from Figure 2 was assessed for the
presence of a fixed-point property. In this test, the RCI-ratio of
20 can be considered the “fast” distribution, and the RCI-ratio
of 0.05 can be considered the “slow” distribution. The critical
question is whether intermediate RCI-ratios of 1 are a mixture
of the fast and the slow distribution. For this test, I collapsed
the 50–50 and 1000–1000 data, as both represent an RCI-ratio
of 1. The mean difference between these two conditions was 54.8
ms, but was not statistically significant, t(24) = 1.7496, p =
0.09. The Bayes factor for this test was BF01 = 1.26, which
slightly favors the null of no difference (although this is not
decisive).

Data were trimmed before testing. Correct RTs were trimmed
to retain RTs slower than 150 ms, and RTs faster than 2.5 SD
above each subjects’ mean RT. The data was then assessed for
the presence of a fixed-point by passing it to the fp function
provided in the form of R code from Van Maanen et al.
(2014). This takes the individual participants’ RT data as input.
Visual representation of the fixed-point assessment is shown in
Figure 4.

As shown in the left and center panels of Figure 4, the
three group-averaged RT distribution functions share a common
crossing point at just over 1 second. The right panel of
Figure 4 shows box-plots of the distribution across individual
participant data of crossing points for each pair. There is
considerable overlap in the box-plots suggesting no difference
between condition pairs of crossing point (supporting the fixed-
point property). Together, this visual inspection provides good
evidence that the RT function for the RCI-ratio of 1 is a
weighted mixture of the “slow” RT distribution (where RCI-
ratio = 0.05) and the “fast” RT distribution (where RCI-ratio =
20), as predicted by the temporal distinctiveness model (Grange
and Cross, 2015).

To assess statistical support for the common crossing point, a
one-way ANOVA was conducted on the three levels of crossing-
point pairs shown in the right panel of Figure 4. The dependent
variable in this analysis—shown in the x-axis of that Figure—
is the crossing point in seconds for the density difference. This
analysis was not statistically significant [F(2,48) = 1.25, p =
0.295], which provides no reason to reject the null hypothesis
of a common crossing point. However, to confirm the statistical
presence of a common crossing point requires the acceptance
of a null hypothesis which cannot be achieved via standard
null hypothesis significance testing. Therefore, a default Bayesian
ANOVA (Rouder et al., 2012) was conducted on the same

data, which produces a Bayes Factor; the Bayes Factor—denoted
BF01—assesses the evidence in favor of a model assuming a
common crossing point (i.e., a “null” model) compared to a
model assuming multiple crossing points (i.e., an “alternative”
model). The Bayes Factor for this data was BF01 = 3.354,
suggesting the data are 3.4 times more likely under the model
assuming a common crossing point. Together, these statistical
analyses converge on the conclusion that the RT distributions
share a common crossing point, and as such can be considered
support for the mixture-distribution assumption.

A MIXTURE-DISTRIBUTION MODEL OF
TEMPORAL DISTINCTIVENESS EFFECTS

The previous section provided statistical support for the presence
of a mixture-distribution for intermediate RCI ratios (i.e.,
intermediate levels of temporal distinctiveness). This is in
agreement both with the verbal theory regarding TD effects
(Horoufchin et al., 2011a) and its formal implementation
(Grange and Cross, 2015), which explains performance across
RCI-ratios. In this section I develop a mathematical process
model to predict RT distributions of RCI-ratio data. The fitting
of whole RT distributions presents an important advance over
the model of Grange and Cross (2015), as it allows a direct
test—rather than a relatively indirect test from fitting mean
RTs—of that model’s core assumption: that intermediate TD
performance is a weighted mixture of “retrieved” and “not-
retrieved” processing modes, which lead to fast and slow RTs,
respectively.

In this section, I provide a schematic overview of the
assumptions of the model. The mathematical details of the model
are in Appendix C.

Overview of the Model
The model describes two stages to performance: an episodic
retrieval attempt of the target trace, and an evidence
accumulation process that generates a response; the rate of
evidence accumulation toward a response depends on whether
the trace was retrieved or not, with accumulation rates being
faster for successfully retrieved traces. The main processing
stages in the model are shown in Figure 5.

Episodic Retrieval

The model assumes that, when presented with a task cue on a
task repetition trial, the cognitive system attempts to retrieve the
most recent episodic trace of this task (which was from trial n–1).
The success of this retrieval attempt is influenced by the temporal
distinctiveness of the episodic trace (at n–1) from a distracting
episodic trace from the task two trials ago (at n–2).

The retrieval probability—p(retrieval)—influences the speed
of responding. If retrieval succeeds, the response is facilitated due
to retrieval of elements of the previous episodic trace that prime
performance on the current trial; if retrieval fails, the response
is not facilitated, and thus responding is slower as it has to be
performed via a slower, algorithmic, route (see Grange and Cross,
2015, for discussion).
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RT Distributions

To predict response time distributions, the mathematics of the
Linear Ballistic Accumulator (Brown and Heathcote, 2008) was
used. The LBA is a successful model of choice response time,
allowing the modeling of correct and error RT distributions.
The model assumes that, when presented with a task stimulus,
evidence accumulates toward a retrieval threshold. Evidence
for each response—typically simplified to the “correct” and
“error” response—accumulates in a linear fashion until one
of the accumulators reaches the response threshold. At this

point, it is assumed that this response has been selected by the
model.

The LBA model has several parameters. The mean rate of
evidence accumulation is referred to as the drift rate, v; it is higher
for the correct response than for the error response (which is
typically set to 1–v). The drift rate for each accumulator can vary
across trials, but is assumed to have a fixed mean rate. The drift
rate on each trial is a random draw from a normal distribution
with mean v and standard deviation s. The starting point of the
accumulation process can vary uniformly between 0 and A. The

FIGURE 3 | Example of the fixed-point property in three distributions. Distribution z is a mixture of distributions x and y with mixture probability p set to p = 0.7.

The left panel shows the probability densities for each distribution. The right panel shows the density difference between different density functions. The distributions

share a common crossing point at about 0.850 s.

FIGURE 4 | Test of the fixed-point property in three distributions from Grange (in revision). The left panel shows the individual density functions for each

condition of RCI-ratio (1 = 0.05, 2 = 1, 3 = 20). The middle panel shows “crossing points”: the subtraction of pairs of density functions (indicated in legend). The right

panel shows box-plots for the distribution of crossing points for individual participants in the study.
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FIGURE 5 | Overview of the retrieval processes in the model.

height of the response threshold is governed by the parameter b.
The time taken to perceptually encode stimuli andmake amanual
response is captured by a single non-decision time parameter ter.

The Upper portion of Figure 5 shows how the LBA is applied
in the current context. (Note that only the correct accumulators
are shown to avoid clutter.) The model only ever uses one
of two accumulation processes: If retrieval is successful (with
probability p[retrieval]), the model samples the current RT from
a “successful,” “fast” accumulation process with a higher drift
rate, vFast ; if retrieval fails (with probability 1 – p[retrieval]),
the current RT is sampled from an “unsuccessful,” “slow”
accumulation process with a lower drift rate, vSlow.

Thus, in this model, when TD is high, p(retrieval) is high, and
as such more trials will be sampled from the fast accumulation
process. When TD is low, so too will p(retrieval), and as such
more trials will be sampled from the slow accumulation process.
Intermediate TDs will have an intermediate p(retrieval), and as
such their RT distributions will be a weighed mixture of the
two base distributions (fast and slow), with the exact proportion
governed by p(retrieval).

Fitting the Model
All modeling was performed on group-averaged data. Grange
and Cross (2015) used the full mathematics of SIMPLE to
obtain p(retrieved). To reduce the number of free parameters,

TABLE 1 | Best fitting model parameters from the fit routine. Note that

p(retrieved) refers to the probability of sampling from the fast distribution

only for ratio = 1 data points.

Model parameter Value

p(retrieved) 0.759

A 718.14

bFast 114.58

bSlow 179.96

vFast 1.132

vSlow 0.893

s 0.44

ter 346.42

See text for details.

in the current model p(retrieved) was treated as a “semi-fixed”
parameter. To achieve this, the RCI-ratio was calculated for each
RCI-sequence condition in Figure 2. Specifically, the RCI-ratio
was 20 for n–2 to n–1 RCIs of 1000–50 ms; the ratio was 1 for
RCIs of 1000–1000 ms and 50–50 ms; and the ratio was 0.05
for RCIs of 50–1000 ms. p(retrieved) was “semi-fixed” in the
sense that it was fixed at p(retrieved) = 1 for ratios of 20 (i.e.,
perfect retrieval) and fixed at p(retrieved) = 0 for ratios of 0.05
(i.e., failed retrieval); p(retrieved) was free to vary for ratios of
1. Thus, p(retrieved) controls the relative contribution of the
two RT distributions for intermediate RCI ratios. It is of course
possible that even in the RCI-ratio of 20 some retrieval failures
occur (and vice-versa for RCI-ratios of 0.05). However, for the
purposes of this modeling work, I use the simplifying assumption
described.

Separate drift rates were estimated for the “fast” and “slow”
distributions—vFast and vSlow, respectively. (Note that drift rates
for error response evidence accumulation is given as 1–v.) Also,
each distribution had its own response threshold—bFast and
bSlow

1. All other parameters (i.e., A, s, and ter) took on identical
values for all three ratio conditions.

Note therefore that this fit is rather ambitious. First, the
model has to explain whole RT distributions for correct and error
responses across all three conditions of RCI ratio. Also, the data
for RCI-ratio = 1 is never explicitly modeled; rather, the model
is fit to the RCI-ratio = 20 with a fast distribution and to RCI-
ratio = 0.05 data with a slow distribution; the data for RCI-
ratio= 1 is then estimated by a weighted contribution of the two
distributions controlled only by p(retrieved).

The model was fitted to the data via a version of Quantile
MaximumProbability Estimation (QMPEHeathcote et al., 2002),
where the model is fit to observed frequencies between RT
quantiles rather than individual RTs as per maximum likelihood
(see Appendix C for details). This method was used due to the
relatively low number of trials per subject, and the rather low
error rate. The fits of the model to the behavioral data are shown
in Figure 6. The best-fitting parameters are shown in Table 1.

This Figure presents so-called “defective” cumulative
distribution functions (CDFs). The data are sorted from fastest

1Initial fits with just v varying between the fast and slow distributions did not fit

the data as well as when b was also allowed to vary between conditions.
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FIGURE 6 | Defective cumulative distribution functions for the behavioral data and the model fit for all RCI-ratios (0.05, 1, and 20) for correct and error

RT distributions.

to slowest, and then quantile cut-off points are calculated for
each subject according to a pre-specified set of quantiles EQ
(here EQ = 0.1, 0.3, 0.5, 0.7, 0.9). The Figure plots the average
RT for each quantile across subjects against the quantile value.
The plot is a defective CDF in the sense that it also displays
information about errors. Specifically, RT is plotted against EQ ×
mean accuracy rather than just EQ. Perfect accuracy would thus
be plotting RT against EQ. Error RT—shown in the Figure as open
circles)—is error RT plotted against EQ× (1 - mean accuracy).

The overall fit statistic of the model was QMPE = 330.12.
The model fit to correct RT distributions is rather good; the
model’s prediction for mean RT gave R2 = 0.986. The model
captures all of the main trends in the data: RT becomes facilitated
as p(retrieved) increases (from left-to-right p(retrieved) = 0,
p(retrieved) = 0.759, and p(retrieved) = 1). This improvement
in RT is largely at the slower end of the RT distribution. Also, the
height of the defective CDFs increases as p(retrieved) is increased,
reflecting generally better accuracy. Importantly, the central plot
shows a good fit of the model to the data, providing support that
intermediate TDs are a mixture of two base distributions.

The fit to the error RT distributions is not as good as for
the correct RT distributions; the model’s prediction for mean RT
gave R2 = 0.864. However, accuracy was generally very high
in this experiment (indeed, participants were excluded for not
achieving greater than 80% accuracy, and average accuracy was
much higher). So, there were often few error RTs per quantile
bin during the model fit, making accurate estimation difficult.
However, despite the poor quantitative fit, the qualitative pattern
seen in the behavioral data is generally reproduced: error RT
becomes generally faster and less variable as ratio increases.

In sum, this mixture-model provides a good account of the
behavioral data.

GENERAL DISCUSSION

In this paper, I was interested in assessing a key prediction
from the temporal distinctiveness account of RCI effects in task
switching: namely, that all responses are governed by one of
only two processes: a “fast” process when an episodic trace
is successfully retrieved, and a “slow” process when episodic
retrieval fails. This account makes a specific prediction that
intermediate RCI-ratios should be amixture-distribution of a fast
RT distribution and a slow RT distribution.

This prediction was largely supported. In the first section, I
provide evidence that the data support the fixed-point property
of mixture distributions. In the second section I developed a
mixture-distribution model that extends the model of Grange
and Cross (2015) to explain whole RT-distributions. As themodel
is forced to only sample from one of two processes, finding
agreement between behavioral data and model predictions
provides support for the mixture-distribution assumption.
Generally, this condition was met, with overall good fit of the
model to correct RT distributions; the fit to the error distributions
was not so clear, although the qualitative pattern was reproduced.
The modeling in this paper presents a “proof of concept” of the
mixture-distribution assumption rather than being designed to
be a complete explanation of temporal distinctiveness effects in
task switching, so the fit can be considered successful in this
regard.

Model Parameters
The fit of the model to the data allowed estimation of a
number of important parameters, which might shed some
light on explaining performance in RCI-ratio experiments.
Importantly, the drift rate was estimated to be higher in the
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RCI-ratio 20 condition (i.e., vFast) than in the RCI-ratio 0.05
condition (vSlow). This suggests that successful retrieval of the
target episodic trace leads to faster RTs due to a speed-up in
evidence accumulation for a response. In addition, the response
boundary parameter b was reduced when retrieval failed (i.e.,
vSlow). This raises the interesting possibility that when the
cognitive system fails to retrieve the targeted episodic trace, it
enters a more cautious mode of responding by raising response
threshold b; this might be in some way to compensate for
the reduced efficiency of evidence accumulation when retrieval
fails (vSlow).

Switch Trials
Here it is important to note that a complete model of TD effects
in task switching will need to account for performance on switch
trials. Typically, RCI-ratio does not appear to affect switch RT
(Horoufchin et al., 2011a,b) which is why the present focus has
been on repetition RTs only. The model presented here can easily
be extended to account for switch RT performance by adding
new LBA parameters for switch trials (e.g., vSwitch, ASwitch, bSwitch,
and possibly sSwitch and terSwitch). As RCI-ratio does not typically
affect switch trials, it can be assumed that retrieval always fails on
switch trials, so p(retrieved) can be set to zero for all RCI-ratio
conditions.

CONCLUSION

The present paper sought to assess the evidence in favor of
a key prediction of the TD hypothesis of RCI effects on task
repetition trials in task switching, namely that repetition RTs are
a mixture of only one of two processes. In sum, this paper has
provided good support for the TD prediction, which provides
more support for these theoretical accounts (Horoufchin et al.,
2011a,b; Grange and Cross, 2015). This presents an important
challenge to models of cognitive control during task switching
which assume control systems work to prevent relevant task-
sets decaying. Instead, loss of retrieval of task-sets appears to
be well-explained by interference effects rather than time-based
decay.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

AUTHOR NOTE

I am grateful to Chris Donkin for discussion regarding the Linear
Ballistic Accumulator model. All raw data, analysis code, and
model code are available to download at http://bit.ly/1TiPnEu.

REFERENCES

Altmann, E. M. (2005). Repetition priming in task switching: do the

benefits dissipate? Psychon. Bull. Rev. 12, 535–540. doi: 10.3758/BF031

93801

Altmann, E. M., and Gray, W. D. (2008). An integrated model of cognitive

control in task switching. Psychol. Rev. 115, 602–639. doi: 10.1037/0033-295X.

115.3.602

Brown, G. D. A., Neath, I., and Chater, N. (2007). A temporal ratio model of

memory. Psychol. Rev. 114, 539–576. doi: 10.1037/0033-295X.114.3.539

Brown, S. D., and Heathcote, A. (2008). The simplest complete model of choice

response time: linear ballistic accumulation. Cogn. Psychol. 57, 153–178. doi:

10.1016/j.cogpsych.2007.12.002

Donkin, C., Brown, S., andHeathcote, A. (2011). Drawing conclusions from choice

response time models: a tutorial using the linear ballistic accumulator. J. Math.

Psychol. 55, 140–151. doi: 10.1016/j.jmp.2010.10.001

Grange, J. A., and Cross, E. (2015). Can time-based decay explain temporal

distinctiveness effects in task switching? Q. J. Exp. Psychol. 68, 19–45. doi:

10.1080/17470218.2014.934696

Grange, J. A., and Houghton, G. (ed.). (2014). Task Switching and

Cognitive Control. New York, NY: Oxford University Press. doi:

10.1093/acprof:osobl/9780199921959.001.0001

Heathcote, A., Brown, S., and Mewhort, D. (2002). Quantile maximum likelihood

estimation of response time distributions. Psychon. Bull. Rev. 9, 394–401. doi:

10.3758/BF03196299

Horoufchin, H., Philipp, A. M., and Koch, I. (2011a). The dissipating task-

repetition benefit in cued task switching: task-set decay or temporal

distinctiveness? J. Exp. Psychol. Hum. Percept. Perform. 37, 455–472. doi:

10.1037/a0020557

Horoufchin, H., Philipp, A. M., and Koch, I. (2011b). Temporal distinctiveness

and repetition benefits in task switching: disentangling stimulus-related

and response-related contributions. Q. J. Exp. Psychol. 64, 434–446. doi:

10.1080/17470218.2010.496857

Kiesel, A., Steinhauser, M., Wendt, M., Falkstein, M., Jost, K., Philipp, A., et al.

(2010). Control and interference in task switching—a review. Psychol. Bull. 136,

849–874. doi: 10.1037/a0019842

Logan, G. D. (2002). An instance theory of attention and memory. Psychol. Rev.

109, 376–400. doi: 10.1037/0033-295X.109.2.376

Logan, G. D., and Gordon, R. D. (2001). Executive control of visual attention

in dual-task situations. Psychol. Rev. 108, 393–434. doi: 10.1037/0033-

295X.108.2.393

Meiran, N., Chorev, Z., and Sapir, A. (2000). Component processes in task

switching. Cogn. Psychol. 41, 211–253. doi: 10.1006/cogp.2000.0736

Rouder, J. N., Morey, R. D., Speckman, P. L., and Province, J. M. (2012).

Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374. doi:

10.1016/j.jmp.2012.08.001

Schneider, D. W., and Logan, G. D. (2005). Modeling task switching without

switching tasks: a short-term priming account of explicitly cued performance.

J. Exp. Psychol. Gen. 134, 343–367. doi: 10.1037/0096-3445.134.3.343

Van Maanen, L., De Jong, R., and Van Rijn, H. (2014). How to assess the existence

of competing strategies in cognitive tasks: a primer on the fixed-point property.

PLoS ONE 9:e106113. doi: 10.1371/journal.pone.0106113

Vandierendonck, A., Liefooghe, B., and Verbruggen, F. (2010). Task switching:

interplay of reconfiguration and interference. Psychol. Bull. 136, 601–626. doi:

10.1037/a0019791

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Grange. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 8 February 2016 | Volume 7 | Article 251

http://bit.ly/1TiPnEu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Grange Mixture Distribution Assumption

APPENDIX A

TABLE A1 | ANOVA summary table for response time data from Grange (in

revision).

Source df F p η
2
g

Sequence (S) 1, 24 118.94 <0.001 0.469

RCI (R) 1, 24 12.61 0.002 0.022

RCI-Change (RC) 1, 24 15.68 <0.001 0.015

S * R 1, 24 32.03 <0.001 0.024

S * RC 1, 24 4.95 0.036 0.002

R * RC 1, 24 12.26 0.002 0.021

S * R * RC 1, 24 18.3 <0.001 0.008

Method and Results (Grange, in revision)
The data presented in Figure 2 presents a portion of the overall
data presented by Grange (in revision). Speficially, this data
comes from the “categorization” condition. In this condition, 25
participants were presented with a 2 × 2 square grid. Two arrow
cues either pointed up and down (presented above and below the
grid, respectively) or left and right (presented to the left and to
the right of the grid, respectively). Hundred milliseconds later, a
stimulus appeared in one of the grid’s cells. The stimulus could
be an A or a 4, presented in either red or blue font. If the arrows
pointed up and down, the participants had to judge whether the
stimulus was an A or a 4; if the arrows pointed left and right,
the participants had to judge whether the stimulus was red or
blue. Participants responded using the “1” and the “9” keys on
the numerical part of the keyboard; 1 corresponded to “letter”
and “red” responses, and 9 corresponded to “number” and
“blue” responses. Once a response was registered, the grid was
cleared for an RCI of either 50 or 1000 ms (chosen randomly).
The next task was chosen randomly. In total, participants were
presented with 6 blocks of 64 trials, preceded by 16 practice
trials.

The ANOVA summary table for this data are shown in
Table A1.

APPENDIX B

Overview of Grange and Cross (2015)
Model
The Grange and Cross (2015) model used the full mathematics
of the SIMPLE (Brown et al., 2007) model to account for TD
effects on task repetition trials. Distinctiveness is proportional
to the similarity between a target trace and its neighbors in
episodic memory. In this model, similarity is only influenced
by the temporal domain. Similarity of episodic instances at n–1
(item i) and n–2 (item j) is given by

ηij =

(

Ti

Tj

)c

, (A1)

where Tx refers to the temporal age of an item and c scales
the similarity. Temporal age is calculated from the current time.

So, with RCIs of 50–1000 ms, Ti would equal 1000 ms, and Tj

would equal 1050 ms. Based on the target trace i’s similarity to its
neighbors, its discriminability Di can be determined. This refers
to how isolated the target trace i is in episodic memory, and is
given by

Di =
1

n
∑

j=1
ηij

. (A2)

As we are only considering the similarity between two items (i
and j), and as an item’s similarity to itself is 1, Equation A2
becomes

Di =
1

ηij + 1
. (A3)

Given an item’s discriminability, we can calculate its retrieval
probability p(Ri) at time of retrieval t by

p(Ri|Di) =
1

1+ e−s(Di−thresh)
, (A4)

where s and thresh are free parameters which describe the slope
of the transforming function and the threshold of retrieval,
respectively. Given these equations, we can calculate the retrieval
probability for each level of temporal distinctiveness in the
behavioral experiment. It is assumed that if the trace is retrieved
(with probability p[retrieved]) then response time will be a
random draw from a fast RT distribution with mean µfast ; if
retrieval fails (with probability 1 − p[retrieved]), the response
time will be a random draw from a slow RT distribution with
mean µslow. Thus, mean RT for each level of TD is given by the
RT-mixture equation

RT = p(retrieved)× µFast + [1− p(retrieved)]× µslow. (A5)

APPENDIX C

Mixture-Distribution Model Details
This section describes the details of the mixture-distribution
model. The model extends the mathematics of the linear
ballistic accumulator (Brown and Heathcote, 2008) for a unitary
process (i.e., not a mixture model), which allows calculation
of the defective probability density function of one response
accumulator reaching retrieval threshold before the accumulator
for the second response does. I first describe the mathematics of
the LBA for a unitary process before describing how this can be
extended to a mixture model.

LBA for Unitary Process

For a unitary process, to calculate the defective PDF of response
option i reaching threshold first (before j), one first needs the
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cumulative distribution function (CDF) for i at time t, Fi(t), given
the model parameters v, A, s, b, and t = t − ter), is given by

Fi(t) =1+
b− A− tvi

A
8

(

b− A− tvi

ts

)

−
b− tvi

A
8

(

b− tvi

ts

)

+
ts

A
φ

(

b− A− tvi

ts

)

−
ts

A
φ

(

b− tvi

ts

)

,

(B1)
(where 8 refers to the normal distribution’s CDF). Then one
needs the probability density function (PDF) of i at time t, fi(t)
given by

fi(t) =
1

A

[

−vi8

(

b− A− tvi

ts

)

+ sφ

(

b− A− tvi

ts

)

+ vi8

(

b− tvi

ts

)

− sφ

(

b− tvi

ts

)] (B2)

where φ refers to the normal distribution’s density.
Considering two accumulators i and j (e.g., correct and
error response, respectively), the defective PDF for i at time t is
given by

PDFi(t) = fi(t)
∏

j 6=i

(

1− Fj(t)
)

. (B3)

Modeling Mixture-Distributions

Extending this to a mixture-distribution model is as follows.
If we denote the fast accumulation process as Fast and the
slow accumulation process as Slow, recall that mean RT can be
predicted by

RT = pµFast + (1− p)µSlow. (B4)

Extending this mixture-distribution model to a likelihood
function from the LBA, we can now obtain the PDF for response
i (rather than response j) at time t by

PDFi =
[

p · fFast[i](1− FFast[j])
]

+
[

(1− p) · fSlow[i]
]

(1− FSlow[j])
(B5)

Model Fit Details

The model was fit to the data via a variant of the QMPE method
(Heathcote et al., 2002). Specifically, the average quantile cut-
off values were found for correct and error responses for each
condition and accuracy response. The quantiles used were 0.1,
0.3, 0.5, 0.7, and 0.9. So, RTs for each each quantile value were
stored in the vector EQ with length q such that EQ = RT0.1 . . .RT0.9.
The number of RTs in each bin (i.e., in the range 0–EQ–1)
were stored in the vector EN with length n. Then, the defective
cumulative distribution function F at time t = t − ter, F(t)2,
given model parameters Eθ was calculated, and multiplied by the
number of trials within that bin to obtain the QMPE estimate

QMPE
(

Eθ | EQ, EN
)

∝ ln
[

F
(

Q1 : Eθ
)

− F
(

0 : Eθ
)]

N1

× ln
[

F
(

Qi : Eθ
)

− F
(

Qi−1 : Eθ
)]

Ni

× . . .

× ln
[

F
(

∞ : Eθ
)

− F
(

Qq : Eθ
)]

Nn,

(B6)
where ln is the natural logarithm.

This was performed for each RCI-ratio condition for correct
and error responses, and the likelihoods for each were summed.
The fit routine aimed to find the best-fitting parameters that
minimized the negative summed likelihood; the Nelder-Mead
method using R’s optim function was used to fit the model.
Starting values for the parameter search utilized the starting
heuristics recommended by Donkin et al. (2011).

2Obtained via numerical integration of Equation B5 at time t.
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