
fpsyg-07-00310 March 5, 2016 Time: 18:35 # 1

ORIGINAL RESEARCH
published: 08 March 2016

doi: 10.3389/fpsyg.2016.00310

Edited by:
Joseph Tzelgov,

Ben-Gurion University of the Negev,
Israel

Reviewed by:
Robert Gaschler,

FernUniversität in Hagen, Germany
Stefan Huber,

Knowledge Media Research Center,
Germany

Yoav Cohen,
National Institute for Testing

and Evaluation, Israel

*Correspondence:
Nicholas K. DeWind

ndewind@gmail.com

Specialty section:
This article was submitted to

Cognition,
a section of the journal
Frontiers in Psychology

Received: 10 December 2015
Accepted: 18 February 2016

Published: 08 March 2016

Citation:
DeWind NK and Brannon EM (2016)

Significant Inter-Test Reliability across
Approximate Number System

Assessments. Front. Psychol. 7:310.
doi: 10.3389/fpsyg.2016.00310

Significant Inter-Test Reliability
across Approximate Number System
Assessments
Nicholas K. DeWind* and Elizabeth M. Brannon

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA

The approximate number system (ANS) is the hypothesized cognitive mechanism that
allows adults, infants, and animals to enumerate large sets of items approximately.
Researchers usually assess the ANS by having subjects compare two sets and indicate
which is larger. Accuracy or Weber fraction is taken as an index of the acuity of the
system. However, as Clayton et al. (2015) have highlighted, the stimulus parameters
used when assessing the ANS vary widely. In particular, the numerical ratio between
the pairs, and the way in which non-numerical features are varied often differ radically
between studies. Recently, Clayton et al. (2015) found that accuracy measures derived
from two commonly used stimulus sets are not significantly correlated. They argue
that a lack of inter-test reliability threatens the validity of the ANS construct. Here we
apply a recently developed modeling technique to the same data set. The model,
by explicitly accounting for the effect of numerical ratio and non-numerical features,
produces dependent measures that are less perturbed by stimulus protocol. Contrary
to their conclusion we find a significant correlation in Weber fraction across the two
stimulus sets. Nevertheless, in agreement with Clayton et al. (2015) we find that different
protocols do indeed induce differences in numerical acuity and the degree of influence
of non-numerical stimulus features. These findings highlight the need for a systematic
investigation of how protocol idiosyncrasies affect ANS assessments.

Keywords: Weber fraction, approximate number system, reliability, number sense, numerical cognition, numerical
comparison task

INTRODUCTION

Adult humans can perceive the number of items in large sets without counting, an ability known
as approximate enumeration (Dehaene, 1997). This non-verbal number sense has been termed the
approximate number system (ANS). The ANS can be observed in adults from cultures without
symbolic counting systems (Pica et al., 2004), in human infants that have not yet acquired language
(Xu and Spelke, 2000; Brannon, 2002), in other primates (Cantlon and Brannon, 2007), and in
many other taxa (Agrillo et al., 2006; Scarf et al., 2011). As a result, The ANS has been described as
a core cognitive system with deep evolutionary and developmental roots (Feigenson et al., 2004).

Unlike symbolic number systems, which allow people to represent quantities precisely and
to appreciate number on a linear scale, the ANS supports fuzzy representations of quantity
and discrimination is limited by Weber’s Law. Despite these fundamental differences between
the ANS and symbolic number systems, a prominent theoretical perspective is that the ANS is
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foundational for symbolic mathematics (Dehaene, 1997; Wynn,
1998; Gelman and Gallistel, 2004). Convergent findings support
this perspective. First acuity of the ANS has been found to
correlate with performance in symbolic mathematics, although
some studies have failed to replicate that result (for review and
meta-analysis see Chen and Li, 2014). In addition to correlational
studies a few studies have found that training the ANS yields
benefits for symbolic mathematics ( Park and Brannon, 2013,
2014; Hyde et al., 2014). Consistent with these findings, severe
dyscalculiacs have worse ANS acuity compared to age matched
controls (Piazza et al., 2010).

The entire enterprise of studying the relationship between the
ANS and mathematics, however, would be severely jeopardized
if measures of ANS were found to be unreliable. ANS acuity is
typically measured by presenting subjects with a non-symbolic
numerosity comparison task in which two arrays of dots are
simultaneously and briefly presented on a computer screen and
participants are asked to indicate which array contains more
dots. However, a wide variety of non-numerical features such
as the total area of the items, the area of an individual item,
the density of items within the array, and the area of the total
stimulus can co-vary with changes in number. This presents
a problem for researchers interested in assessing the ability to
discriminate number independently of visual features. Currently
there is no universally accepted best practice for generating
stimuli that control for non-numerical stimulus features (for
a review see Dietrich et al., 2015). Instead a wide variety of
stimulus and task parameters are used across experiments. If
these varying protocols all tap the same underlying cognitive
system, then we should see solid inter-test reliability across
stimulus sets. However, two groups have presented evidence
that performance is uncorrelated across stimulus set (Clayton
et al., 2015; Smets et al., 2015). Clayton et al. (2015) present
evidence that performance is uncorrelated when individuals are
given the same numerical comparison task with two commonly
used stimulus sets (Halberda et al., 2008; Gebuis and Reynvoet,
2011). Smets et al. (2015) similarly show that performance is
uncorrelated between a stimulus set based on Dehaene et al.
(unpublished manuscript) and a subset of the Gebuis and
Reynvoet (2011) stimulus set in which multiple visual features,
the area subtended by the entire array (convex hull), the total area
of the items, individual item size, and density (total area divided
by convex hull), are incongruent to number. These studies
present a significant problem for measuring ANS acuity and
the authors argue that the findings may challenge the construct
validity of the ANS itself; indeed, what is a hypothesized cognitive
mechanism if we cannot consistently measure it?

We recently pioneered a novel modeling approach to ANS
tasks that we argue can shed further light on these important
issues (DeWind et al., 2015). Accuracy as used by Clayton
et al. (2015), although straightforward, is not necessarily the
best dependent measure of ANS acuity, because it is affected
not only on the performance of the participant but also on
the idiosyncrasies of the stimuli chosen. For example, if in one
protocol we present 3:1 numerical ratios participants will perform
very well, whereas in another we present 11:10 ratios they will be
at chance performance. The mean accuracy on these two tasks

might show a very low or zero correlation, but we should not take
this as evidence against an underlying perceptual representation
of number. Similarly but more subtly, the relationship between
number and non-numerical features may introduce noise or
suppress variance in accuracy. If a participant is sensitive to
the density of items while making numerical judgments, but in
one protocol numerical ratio is congruent with density (i.e., the
denser arrays are always the more numerous) the participant
will perform well, where as in a protocol where number and
density are always incongruent they will perform poorly, thus
suppressing the correlation in accuracy between protocols.

These examples are extreme to make the point, but it is true
that both the numerical and non-numerical ratios differ in the
two protocols Clayton et al. (2015) tested, and so the extra
variance in accuracy caused by these differences will necessarily
negatively influence inter-test reliability. Our modeling approach
explicitly accounts for the effects of numerical ratio and non-
numerical ratio. Indeed, we previously found that the model
provides relatively stable coefficients even when non-numerical
features are all congruent with number versus when they are all
incongruent with number, a situation that can be thought of as
an extreme difference in stimulus set protocol (DeWind et al.,
2015). Thus, we hypothesized that applying the DeWind et al.
(2015) model might reveal significant inter-test reliability when
applied to the Clayton et al. (2015) data set. Furthermore, to the
extent that different protocols do induce differences in the ANS,
our model provides separate measures of numerical acuity and
the biasing effect of non-numerical features allowing for a more
quantitative assessment of those differences.

MATERIALS AND METHODS

Data Set
All the analyses and findings are the result of reanalysis of two
previously collected data sets: Clayton et al. (2015)1 and DeWind
et al. (2015). The DeWind data set contained 20 participants who
completed at least 750 trials. The Clayton data set consisted of 57
participants who completed two blocks of the Panamath protocol
(60 trials each) and two blocks of the Gebuis and Reynvoet (G&R)
protocol (96 trials each).

Stimuli
Figure 1 illustrates the ratios for numerosity and non-numerical
features used by the two stimulus sets tested in Clayton et al.
(2015) and the stimulus set used in DeWind et al. (2015). The axes
highlight the relevant aspects of the stimuli from the perspective
of the modeling approach used here. On the x-axis are the
“intrinsic” features (Dehaene et al., unpublished manuscript),
those that pertain to the individual items in the array. These are
the average item area, and “sparsity.” Sparsity is the amount of
space in the array per item (convex hull area divided by number
of items). On the y-axis are the “extrinsic” features, total area
and convex hull. These are features of the array as a whole

1The Clayton et al. (2015) data set is available for download at http://dx.doi.org/10.
6084/m9.figshare.1546747
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FIGURE 1 | Stimulus Space. All stimulus pairs plotted according to the left to right ratio of item area against total area (A), and sparsity against convex hull (B). The
diagonal dotted line shows where stimulus pairs of equal numerosity would appear. Pairs farther up and to the left of both plots have a smaller left to right numerical
ratio, and those down and to the right have a larger left to right numerical ratio. Pairs farther down and left have a smaller size (A) or spacing (B) ratio, and those
farther up and to the right have a larger size (A) or spacing (B) ratio. Red circles are Panamath pairs, blue “x”s are G&R pairs, and green triangles are DeWind pairs.

and are dependent on the number of items. By definition each
extrinsic feature is equal to the corresponding intrinsic feature
multiplied by the number of items. Thus, on a log scaled plot like
Figure 1 the numerical ratio of the arrays can be read out from
its position on the plot. The further up and left a stimulus pair,
the smaller left-to-right the numerical ratio. When plotted in this
way we can also see the orthogonal axes, which we can think of
as two additional stimulus features. We refer to the orthogonal
features as “size,” for the feature related to total area and item area
and “spacing” for the feature related to sparsity and convex hull
(DeWind et al., 2015). Size represents the aspect of the stimulus
that changes when a fixed number of dots change size, thus
changing both total area and item area. Spacing represents the
aspect of the stimulus that changes when a fixed number of dots
are spread out or contracted together, thus changing both convex
hull and sparsity.

As can be seen in Figure 1 and in the summary statistics in
Table 1 the protocols differ in many respects. Panamath has the
smallest range in all non-numerical feature ratios, but a larger
range of numerical ratios compared to G&R. Partly as a result of
this tradeoff G&R non-numerical feature ratios are less correlated
with numerical ratio than Panamath. The DeWind stimuli fall
between the Panamath and G&R stimulus sets in both these
regards with the same maximum numerical ratio as Panamath
(1:2), intermediate variance in non-numerical feature ratios, and
intermediate correlation between numerical and non-numerical
feature ratios. The notable features of the DeWind stimulus set
are the orthogonalization of number, size, and spacing ratios
and the orderly sampling of the stimulus space. These features
optimize model fit and decrease the confidence intervals on the
coefficient estimates, but are not necessary to fit the model.
Indeed, there is nothing special about the stimuli in DeWind
et al. (2015); all the insights of that paper depend on the analysis

approach, which can be applied to other stimulus protocols
(assuming that no non-numerical feature is perfectly correlated
with number).

Modeling Overview
The numerical ratio between two arrays is known to strongly
affect accuracy for non-symbolic numerical comparison: a 1:2
ratio is easier than a 5:6 ratio. The Weber fraction (w) is often
used to account for the ratio effect, summarizing performance
across the range of numerical ratios (Piazza et al., 2010). Non-
numerical features such as the total surface area of the items
or the area of the convex hull might also affect accuracy. Non-
numerical features also differ by a ratio. For example, total area
may differ between arrays by a 1:2 ratio while number differs by
a 2:3 ratio. Our modeling approach, developed in DeWind et al.
(2015), is designed to simultaneously assess the roles of numerical
ratio and non-numerical ratios on accuracy. It can be thought
of as an extension of the Piazza et al. (2010) model. Where
Piazza et al. (2010) use numerical ratio as the only regressor in a
generalized linear model of accuracy, we include more regressors
to account for the non-numerical feature ratios.

The situation is complicated by the complete collinearity of
some combinations of stimulus features. For any combination
of an intrinsic feature, extrinsic feature, and number (three
variables) there are only two degrees of freedom. For example,
if we set the total area of a stimulus and the average item area of a
stimulus, then we cannot freely set the number of items, because
it is already mathematically determined (number equals total area
divided by average item area). If we tried to fit a regression using
the ratio of these three features as regressors, there would be
no unique solution to the linear equations. Variance in accuracy
could be attributed to number or to a combination of total area
and item area. This is where the “orthogonal” stimulus features,

Frontiers in Psychology | www.frontiersin.org 3 March 2016 | Volume 7 | Article 310

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00310 March 5, 2016 Time: 18:35 # 4

DeWind and Brannon Reliability Across ANS Assessments

TABLE 1 | Comparison of stimulus feature ratio statistics.

Protocol Statistic Number Total Area Item Area Convex Hull Sparsity Size Spacing

Panamath Correlation with number (r) 1.00 −0.04 −0.68 0.52 −0.74 −0.43 −0.23

Ratio range 1.06–2.00 1.00–2.93 1.00–5.86 1.00–1.78 1.00–1.89 1.00–17.2 1.01–2.23

Mean ratio 1.3 1.3 1.6 1.2 1.3 2.1 1.4

G&R Correlation with number (r) 1.00 0.38 0.18 0.20 −0.36 0.28 −0.09

Ratio range 1.14–1.64 1.64–11.1 2.34–7.40 1.19–2.36 1.04–2.91 4.38–74.7 1.77–5.18

Mean ratio 1.3 4.3 4.3 1.7 1.7 18.2 3.0

DeWind Correlation with number (r) 1.00 0.44 −0.44 0.44 −0.44 0.00 −0.01

Ratio range 1.12–2.00 1.00–2.83 1.00–2.83 1.00–2.83 1.00–2.83 1.00–4.00 1.00–4.00

Mean ratio 1.4 1.5 1.5 1.5 1.5 2.1 2.1

Correlations with number are taken from the log of the feature ratios (e.g., log of number ratio correlated with log of total area ratio for all pairs in a stimulus set). Mean
ratios are calculated on a log scale (geometric mean).

size and spacing, are useful. They represent the single degree of
freedom left to each pair of intrinsic and extrinsic features after
number has been determined.

Consequently we constructed a simple generalized linear
model of approximate number comparison with three predictors:
number ratio, size ratio and spacing ratio. The number ratio
coefficient is a measure of acuity and its reciprocal is proportional
to w. The size and spacing coefficients summarize the effect of
the non-numerical features. A positive size coefficient means
participants perceive larger dots as more numerous, all other
things being equal. A negative size coefficient means smaller dots
are perceived as more numerous. A positive spacing coefficient
means more spaced out dots are perceived as more numerous,
negative that more densely packed dots are perceived as more
numerous.

Modeling (Equations and Methodological
Details)
We fit the model to different subsets of the Clayton et al. (2015)
data set depending on the analysis as described in the results.
In one analysis we collapsed across participant, but ran the
model separately for each protocol, in another we separated
by participant and protocol, and in a third we separated by
participant, protocol, and block. Here we provide the formula for
the model and the equations for the size and spacing parameters.
Further details can be found in DeWind et al. (2015).

log2(Size) = log2(TSA)+ log2(ISA) (1)

log2(Space) = log2(CH)+ log2(Spar) (2)

Where TSA is the total surface area of all items in an array,
ISA is the area of an individual item or the mean area if the items
are heterogeneous, CH is the convex hull of an array, and Spar is
the sparsity defined as the convex hull divided by the number of
items.

We fit a generalized linear model of choice probability with
three predictor variables (log2 of the ratios of number, size, and
space), a probit link function, and a binomial error distribution.

The equation is:

p(ChooseRight) =

1
2

1+ erf


βside+βnumlog2(rnum) + βsizelog2(rsize)+

βspacelog2(rspace)
√

2



(3)

or simplified as:

p(ChooseRight) =

Φ(βside + βnumlog2(rnum)+ βsizelog2(rsize)+ βspacelog2(rspace))
(4)

where Φ is the cumulative normal distribution; rnum, rsize, and
rspace, refer to the ratio of number, size, and spacing of the array
presented on the right to the number, size, and spacing of the
array presented on the left; p(ChooseRight) is the probability of
choosing the stimulus presented on the right; and erf is the error
function. The intercept, βside, captures the tendency to choose
the stimulus presented on the right regardless of its features. The
model was fit using the Matlab statistics and machine learning
toolbox.

The Weber fraction (w) can be calculated from βnum in a
way that is analogous to other logarithmic models of numerical
comparison (Piazza et al., 2010).

w =
1

√
2 βnum

(5)

A lapse parameter that appeared in the model developed in
DeWind et al. (2015) was excluded from the model here. The
lapse parameter was originally used to estimate the percentage of
trials on which a participant’s response was a guess and unrelated
to any stimulus features. Previous unpublished work in our lab
demonstrated that to get good coefficient estimates and also
estimate the lapse rate very easy numerical ratios must be tested
or a large number of trials must be administered, preferably both.
Since the dataset collected by Clayton et al. (2015) did neither, we
were unable to include the lapse parameter for this analysis.
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We also note a difference in terminology between this report
and DeWind et al. (2015). In that paper we used the term field
area and here we model “convex hull.” Convex hull is the area
of the smallest convex polygon that contains all the items in an
array. Field area is a very closely related parameter: it is the area
of an invisible circle within which the array generation algorithm
used by DeWind et al. (2015) placed the items. Although we
could not extract the convex hull from the DeWind data set, we
constructed 10,000 new stimuli using the same method and found
a correlation of 0.93 between convex hull and field area. Because
these features reflect very similar aspects of the stimulus, we have
treated field area as convex hull for the purposes of comparing
our stimuli with the Panamath and G&R protocols.

Exclusion Criteria
Clayton et al. (2015) excluded ten participants that did not
perform significantly above chance on one or more of the
four blocks. However, DeWind et al. (2015) showed that some
participants perform at or below chance when the numerical
ratio is particularly difficult and they are biased by non-numerical
features of the stimuli. In other words, if a non-numerical feature
such as convex hull differs between two stimuli by a large ratio
and the numerical ratio is very small, then an influence of convex
hull on behavior could induce participants to consistently choose
the wrong stimulus (see “incongruent” condition in Figure 3B in
DeWind et al., 2015). Indeed, the G&R stimulus set is notable
for relatively large ratios of non-numerical features compared
to number. As a result, below or at chance performance is not
necessarily an indication that a participant is guessing but instead
could reflect strong bias from another stimulus feature, an effect
that can be captured by our model. Our reanalysis therefore
excluded only three participants for whom the whole model failed
to explain significant variance in choice behavior for one or
more blocks (log likelihood test, p > 0.05), or who exhibited no
evidence that they used number in one or both protocols (t-test
for βnum, p> 0.05).

RESULTS

The DeWind et al. (2015) Model Fits the
Clayton et al. (2015) Data
Figure 2 shows how the DeWind et al. (2015) model fit the
data for the protocols in the Clayton et al. (2015) data set
(collapsed across participant). Both fits were highly statistically
significant (log likelihood ratio test: Panamath, p� 0.001; G&R,
p� 0.001). However, it is clear that the model fits data from the
G&R protocol better than the Panamath protocol. Indeed, the
Panamath protocol data and fit-line follow a tortuous path across
numerical ratios, because Panamath does not systematically
control for convex hull, which has an important effect on
performance. As a result, some Panamath numerical ratios are
more congruent with convex hull ratio on average, while others
are more incongruent. The model, accounting for the effect of
convex hull, predicts some of these deviations, however, it does
not fully account for them, given that the fit line does not cross
each data point as it does with the G&R stimuli. This may reflect

FIGURE 2 | DeWind et al. (2015) model fits the data. Proportion of trials
on which participants choose the array on the right side plotted against the
left to right numerical ratio (irrespective of non-numerical feature ratio) for
Panamath (red circles) and G&R (blue circles). The line shows the predictions
of the model fit separately to the data for each protocol collapsing across
participant.

FIGURE 3 | Weber fraction is correlated across protocol. w calculated
for each participant from the Panamath blocks plotted against w calculated
from the G&R blocks. Dotted line is unity, and solid line is the best-fit linear
regression (r = 0.335, p = 0.013).

noise given that Panamath was tested with fewer trials and more
numerical ratios than G&R and therefore fewer samples make up
each point.

Inter-test Reliability
We next examined the main finding of Clayton et al. (2015)
using our model. Clayton et al. (2015) found that accuracy
was not significantly correlated within subjects across protocols
(although it was trending in that direction). We fit each
participant’s data for the two protocols using the model described
above (collapsing across block), extracted the coefficients from
the fit, and calculated w from Eq. 5. This w coefficient is a
better measure of numerical acuity than w derived from other
methods and accuracy itself, because it is relatively insulated
from the influence of non-numerical stimulus features (DeWind
et al., 2015). We found that w, so calculated, was significantly

Frontiers in Psychology | www.frontiersin.org 5 March 2016 | Volume 7 | Article 310

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00310 March 5, 2016 Time: 18:35 # 6

DeWind and Brannon Reliability Across ANS Assessments

TABLE 2 | Inter-test reliability.

βnum βsize βspace w

r (p) 0.333 (0.014) 0.054 (0.697) 0.484 (<0.001) 0.335 (0.013)

Correlation coefficients between values calculated from Panamath blocks and from
G&R blocks.

correlated within subjects across protocols (r = 0.335, p = 0.013;
Figure 3). Table 2 shows the inter-test reliability of all the
coefficients produced by the model. Note that βnum and w
have very similar inter-test reliability; they are virtually the
same metric, one being proportional to the reciprocal of the
other. However, it is also clear that Panamath w were lower
than G&R w, a difference we will examine in more detail
below.

Test–retest Reliability
We also assessed the within protocol test–retest reliability of the
model coefficients. For each of the two stimulus protocols we refit
the model to each block for each participant and measured the
correlation across blocks (Table 3). Using Weber fraction derived
from our model (or βnum) we failed to observe the superior test–
retest reliability for the G&R protocol that Clayton et al. (2015)
observed. We did, however, find that Panamath reliability is very
low for βsize and did not meet statistical significance. This is likely
the reason that inter-test reliability was so low for βsize; if a metric
is uncorrelated with itself it is unlikely to be correlated with
anything else. Why Panamath yields such unreliable estimates
of the influence of dot size on numerosity judgments is not
immediately obvious.

We next performed the same test–retest reliability analyses on
the dataset collected by DeWind et al. (2015). We divided the 750
trials that participants completed into two consecutive artificial
pseudo-blocks of 375 trials each. We fit the model to each block
and measured the correlation of the resulting coefficients. βnum
reliability from the DeWind data set was higher than Panamath
and G&R, but did not differ significantly (Fisher r-to-z transform:
Panamath one-tailed p= 0.053; G&R one-tailed p= 0.064).

It is important to note that the length of a test plays a critical
role in its reliability. The reliability estimates given in Tables 2
and 3 reflect the reliability on only one block for each protocol.
The Spearman–Brown formula allows us to estimate reliability
of the whole test, if by whole test we mean administering two
blocks of each protocol or, in the case of inter-test reliability,
administering all four blocks of the G&R and the Panamath
protocol. Table 4 presents these corrected reliability correlations.

Acuity and Bias Differ Systematically
between Protocol
Figure 4 shows the coefficients calculated for each participant
in each protocol (collapsed across block) plotted against each
other. Figure 4A shows βnum plotted against βsize, and Figure 4B
shows βnum against βspace. A hypothetical unbiased participant
would have a positive βnum and zero βsize and zero βspace.
Such a participant would fall on the “Number” feature line in
Figures 4A, B. The height of the point (the magnitude of βnum)

is an indication of acuity in discriminating number; larger βnum
results in smaller w. Participants biased by non-numerical visual
features will deviate from the number feature line in one or both
of the plots. The degree of the deviation indicates non-numerical
feature bias.

The other feature lines in Figures 4A, B (e.g., convex hull,
item area, etc.) show the position of a hypothetical participant
that discriminated stimuli on the basis of that feature rather than
number. For example, if a participant always and only chose the
stimulus that had a larger convex hull, we would expect her to
fall along the convex hull feature line in Figure 4B (βnum and
βspace would be equal and positive and βsize would be zero). The
further from the origin the point on the convex hull feature line,
the greater her acuity in discriminating convex hull.

Table 5 shows the means and standard deviations of the
parameter estimates of the model fit to each protocol for each
participant (collapsing across block). The group mean of βnum
(Panamath t = 20.4, p � 0.001; G&R t = 25.4, p � 0.001)
and βspace (Panamath t = 15.1, p � 0.001; G&R t = 12.5,
p � 0.001) are significantly different from zero, however, βsize
was not (Panamath t = −1.3, p = 0.20; G&R t = 0.4, p = 0.67).
This means that overall, participants perceived more spaced out
dots to be more numerous, but were indifferent to the size of
the dots. Mean coefficient points were closer to the number
feature line than to the convex hull feature line indicating that
number was the primary determinate of participants’ choices in
both protocol conditions (βnum significantly greater than βspace :
Panamath paired t = 16.4, p � 0.001; G&R paired t = 20.4,
p� 0.001). Thus, although participants were biased by spacing,
they still utilized number more than any non-numerical feature.

Although participants showed the same overall pattern of
bias in both protocols, there were significant differences. The
coefficient weights for number and spacing were significantly
greater in Panamath than in G&R (paired t = 8.65, p � 0.001;
paired t = 9.69, p � 0.001 respectively). This explains the
lower w observed for the Panamath protocol in Figure 3;
overall, participants had higher acuity in the Panamath condition.
However, the larger coefficient for spacing in Panamath indicates
that they were also more biased toward spread out dots.

It is not immediately obvious which weighting of stimulus
features is better. As shown by the average βnum and βspace values
in Figure 4, Panamath stimuli result in higher acuity but more

TABLE 4 | Corrected reliability.

βnum βsize βspace w

G&R + Panamath 0.533 0.094 0.684 0.582

Panamath (120 trials) 0.614 0.395 0.622 0.638

G&R (192 trials) 0.635 0.839 0.805 0.519

DeWind (750 trials) 0.845 0.871 0.791 0.806

The first row shows the same values from Table 2 corrected for attenuation. These
are estimated inter-test reliabilities assuming no measurement error. The other three
rows show the same values from Table 3 corrected for the number of trials using
the Spearman–Brown formula. These values represent the estimated reliability for
actual number of trials administered (as opposed to the reliability of each split-half).
p-values are as in Tables 2 and 3.
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A B

FIGURE 4 | Coefficient space reveals differences in acuity and bias between protocol. Model coefficients were calculated for each participant separately for
each condition and plotted against each other: βnum × βsize (A) and βnum × βspace (B). Red circles show coefficients calculated from Panamath trials and blue “×”s
from G&R. The larger and darker red circle and blue “×” show the means for each protocol, and the small black cross in the center of these symbols indicates the
SEM. Acuity is equivalent to the height of a point and bias is indicated by its deviation from the vertical “Number” feature line.

spacing bias and G&R stimuli yield lower acuity with lower
bias. One possibility is that participants tuned their response
strategy to reflect the fact that convex hull is more correlated
with number in the Panamath stimulus set compared to the
G&R stimulus set. To test this hypothesis we generated predicted
responses on the G&R trials with the mean coefficients fit to the
Panamath protocol and vice-versa. In other words, we simulated
what would happen if participants had responded with the acuity
and bias of the opposite protocol condition. We found that
participants were better off with the acuity and bias induced by
the G&R protocol regardless of which stimulus set they were
discriminating (Table 6). Thus the trade-off of higher acuity but
more bias induced by the Panamath protocol does not appear to
be beneficial given that despite lower w, over-reliance on convex
hull results in poorer performance.

Finally, we investigated the time course of the protocol
induced differences in acuity and bias by analyzing the
coefficients separately fit to each block and each participant.
We were interested in both primacy effects depending on which
protocol was viewed first and learning effects across presentations
of the same protocol. We ran three repeated measures ANOVAs
predicting each of the three model coefficients with fixed effects
for time (first or second presentation of a protocol), protocol
presentation order (Panamath first or G&R first), and protocol
itself. Consistent with our previous analysis we found an effect
of protocol on βnum [F(1,215) = 100.53, p � 0.001] and βspace
[F(1,215)= 111.39, p� 0.001], but not for βsize [F(1,215)= 2.79,
p = 0.097]. There was also a significant effect of presentation
order on βnum[F(1,215) = 6.11, p = 0.017], but not βsize or
βspace (both p > 0.1). Examination of the data showed that

TABLE 3 | Test–retest reliability.

βnum βsize βspace w

Panamath (60 trials) 0.443 (<0.001) 0.246 (0.073) 0.451 (<0.001) 0.468 (<0.001)

G&R (96 trials) 0.465 (<0.001) 0.722 (<0.001) 0.673 (<0.001) 0.350 (<0.009)

DeWind (375 trials) 0.731 (<0.001) 0.771 (<0.001) 0.654 (0.002) 0.675 (0.001)

Correlation coefficients between values calculated from block one and block two separately for each protocol. p-values in parentheses.
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TABLE 5 | Mean and standard deviation of the parameter estimates.

βnum βsize βspace

Panamath M = 3.71, SD = 1.34 M = −0.06, SD = 0.33 M = 1.20, SD = 0.58

G&R M = 2.21, SD = 0.64 M = 0.01, SD = 0.10 M = 0.52, SD = 0.31

The model was fit to each participant’s data separately for each protocol, but collapsing across block. These are the same means plotted in Figure 4.

TABLE 6 | Alternative strategy analysis.

Actual
accuracy

Predicted accuracy with alternative
acuity and bias (according to model)

Panamath
stimulus set

71.7% 78.3% (with G&R acuity and bias)

G&R stimulus
set

70.1% 62.5% (with Panamath acuity and bias)

Estimated accuracy on each protocol if participants had had the same acuity and
bias calculated from the other protocol.

βnum was suppressed when participants were exposed to G&R
first compared to Panamath first, and that this deficit was
sustained across protocols throughout the experiment. There
was no effect of time, indicating that there was no significant
practice effect between the first and second administration of
either protocol (all p > 0.1). Thus, both protocol and order
of protocol affected stimulus feature weighting with the first
protocol leaving an impression on performance that remained for
at least the duration of the experiment.

DISCUSSION

We reanalyzed data collected by Clayton et al. (2015) and found
that ANS acuity as measured by w derived from the DeWind
et al. (2015) model showed significant inter-test reliability across
stimulus protocols. Clayton et al. (2015) and Smets et al.
(2015) found no significant correlation between accuracy in
different stimulus protocols. Clayton et al. concluded that,
“. . .dot comparison tasks created with protocols used by different
research groups do not appear to be measuring the same
construct.” Smets et al. (2015) similarly interpret the lack of
correlation in performance as evidence against the idea that ANS
can be reliably measured. Using the DeWind et al. (2015) model,
we find instead that w is indeed significantly correlated across
the Panamath and G&R protocols. We conclude that overlapping
cognitive mechanisms underlie performance in both protocols.

Although the correlation in w was significant across protocol
the correlation is not very strong, a point Clayton et al. (2015)
rightly emphasize with regards to accuracy. It is important to note
that test–retest reliability can impose an upper limit on inter-
test reliability and thus test validity; two tests cannot measure
the same thing as each other if they do not consistently measure
anything at all. Clayton et al. (2015) point out that accuracy
obtained from Panamath has low test–retest reliability, even after
accounting for the relative number of trials. Using our modeling
approach we found that βnum and w reliability were relatively
similar and low across G&R and Panamath. βsize from Panamath,
however, was not significantly reliable whereas it was from G&R;

this likely contributed to the low inter-test reliability for βsize. The
DeWind protocol had better reliability for βnum and w, although
the trend was not significant. In general, the effect of protocol on
reliability remains tenuous; if some protocols are more reliable
it is likely due to testing a larger range of numerical and non-
numerical ratios and decorrelating them from each other to the
extent possible. However, it is likely that the total number of trials
in the assessment has an equal or perhaps larger effect on test-
retest reliability and thus perhaps also on inter-test reliability.
The length of a test is known to influence its reliability, and
reliability can be improved with repeated administration of the
same items. Indeed, the number of trials in an ANS protocol
similar to Panamath was recently found to have a profound and
significant effect on reliability, with hundreds of trials required
for acceptable reliability (Lindskog et al., 2013). The same study
also found that a task that adapts ratio difficulty to individual
participants’ skill level gets good reliability in fewer trials. An
important future direction will be to empirically determine if
protocols with greater test-retest reliability, especially those using
more trials, show greater inter-test reliability than what we find
here and what Clayton et al. (2015) and Smets et al. (2015) found.

Without doubt studies examining the correlation between
performance on an ANS task and mathematical achievement
will lose power if the ANS assessment is too short to produce
a reliable w and improving reliability in assessments of ANS
acuity is an important goal for this research program. In some
cases, however, it may not be feasible to run many trials, and
reliability will necessarily be low. In these cases, low reliability can
be ameliorated by a larger sample of individuals. In this case the
ability to predict math performance of a given individual may be
very low, but correlations may still be apparent at the group level
(e.g., Halberda et al., 2012).

Although w and the other model coefficients that estimate
bias were correlated across the two protocols, we also found
statistically significant protocol induced differences. In particular,
the Panamath protocol induced a larger reliance on the spacing
of dots but also better numerical acuity, whereas the G&R
protocol resulted in greater focus on number itself, albeit at lower
acuity. Thus, our reanalysis of Clayton et al. (2015) supports
their original conclusion that different stimulus protocols affect
ANS measurement. An important question for future research is
whether protocol induced changes in bias and acuity affect the
correlation between ANS and mathematics.

There are two possible explanations for the differences in
coefficients that we observe here. They could be “item” effects,
caused by differences in the stimulus pairs on the current trial,
or they could be “context” effects caused by differences in the
pairs seen up to that point. The difference is subtle but is made
clearer by a hypothetical: if probe trials were included in both
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protocols that were visually identical, would the responses be
identical regardless of the protocol in which they were embedded?
If so then the effects we report here are purely item effects, if not
then the effects are at least partially contextual.

We know that item effects on accuracy exist; numerical, size,
and space ratios all affect performance. However, our analysis
approach attempts to account for as much of the item effect
as possible, and our previous work demonstrated that item
effects, as exemplified by non-numerical features being either
fully congruent or fully incongruent with number, on coefficient
estimates were negligible (DeWind et al., 2015). Thus, we think it
is likely that the differences in coefficients that we report here are
primarily a function of context rather than item. Furthermore,
our between-subject finding that protocol administration order
affected performance on later protocols demonstrates that at
least some effects were contextual: performance on the exact
same trials in the same protocol depended on which stimuli
participants previously had been exposed to.

The time course of the differences reported here is worth
considering. We observed no difference in performance between
the first and second administration of each protocol, thus we can
conclude that the contextual effects must establish themselves
within a few dozen trials. This result is reminiscent of the
findings by Odic et al. (2014) of experimental hysteresis whereby
measures of w are lower when participants are given easier
trials at the outset of a numerical comparison task (Odic et al.,
2014). In addition to the context effect established by the first
protocol, which lasted throughout the experiment, we also found
strong effects of the current protocol, suggesting that participants
continuously adapt their responses to the current stimuli. There
is evidence from the animal and human learning literature that
such changes may occur in steps rather than gradually (Gallistel
et al., 2004; Gaschler et al., 2015), and more sophisticated analysis
approaches might be able to tease out the temporal onset of these
effects.

Finally, future work will also need to assess exactly which
stimulus features affect bias and acuity. The G&R and Panamath
protocols differ along every dimension we considered in Table 1,
and, of course, these differences were not controlled to allow for
a careful analysis of their effects. However, we can make some
educated hypotheses regarding the features that play the most
important role. The biggest differences between the protocols
both in terms of the range of ratios and in terms of the correlation
with number were those related to the size of the items. However,
βsize did not change between protocols, and across subjects it
was close to zero. βspace exhibited differences across protocol,

and also was significantly positive overall. Thus, it seems likely
that small differences in the correlation between convex hull and
number play an important role in shaping the behavioral profile
of participants in numerical discrimination tasks in general.

CONCLUSION

Contrary to the findings of Clayton et al. (2015), we found that the
Panamath protocol and the G&R protocol show significant inter-
test reliability. Nevertheless, inter-test reliability was low, likely
due to low test–retest reliability. We recommend using more
trials to increase test–retest reliability which should ultimately
increase inter-test reliability. In agreement with Clayton et al.
(2015) we find that the two protocols influenced the acuity and
bias of participants. Panamath induces better acuity but also a
greater reliance on convex hull, whereas G&R focuses attention
to number, but at the cost of lower acuity. Thus more research
is needed to understand how contextual factors such as the
range of stimulus parameters influence discrimination and how
this affects our study of the relationship between the ANS and
symbolic mathematical abilities.
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