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Difficulties initiating sleep are common in several disorders, including insomnia and

attention deficit hyperactivity disorder. These disorders are prevalent, bearing significant

societal and financial costs which require the consideration of new treatment strategies

and a better understanding of the physiological and cognitive processes surrounding

the time of preparing for sleep or falling asleep. Here, we search for neuro-cognitive

associations in the resting state and examine their relevance for predicting sleep-onset

latency using multi-level mixed models. Multiple EEG recordings were obtained from

healthy male participants (N = 13) during a series of 5 min eyes-closed resting-state

trials (in total, n = 223) followed by a period–varying in length up to 30 min–that either

allowed subjects to transition into sleep (“sleep trials,” nsleep = 144) or was ended while

they were still awake (“wake trials,” nwake = 79). After both eyes-closed rest, sleep and

wake trials, subjective experience was assessed using the Amsterdam Resting-State

Questionnaire (ARSQ). Our data revealed multiple associations between eyes-closed

rest alpha and theta oscillations and ARSQ-dimensions Discontinuity of Mind, Self,

Theory of Mind, Planning, and Sleepiness. The sleep trials showed that the transition

toward the first sleep stage exclusively affected subjective experiences related to Theory

of Mind, Planning, and Sleepiness. Importantly, sleep-onset latency was negatively

associated both with eyes-closed rest ratings on the ARSQ dimension of Sleepiness

and with the long-range temporal correlations of parietal theta oscillations derived by

detrended fluctuation analysis (DFA). These results could be relevant to the development

of personalized tools that help evaluate the success of falling asleep based on measures

of resting-state cognition and EEG biomarkers.

Keywords: Amsterdam Resting-State Questionnaire (ARSQ), consciousness, mind wandering, sleep, multilevel

modeling

INTRODUCTION

Insomnia, the reduced ability to initiate or maintain sleep, is the most commonly occurring
sleep disorder, with up to a third of the general populace experiencing at least a mild form and
6–10% even meeting diagnostic criteria for insomnia syndrome (Morin et al., 1994; Spiegelhalder
et al., 2012; Baglioni et al., 2014). It, therefore, poses a costly societal problem, both in terms
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of psychophysical well-being as well as financial losses, e.g.,
treatment costs and diminished productivity (Daley et al.,
2009, 2015). Although, pharmacological intervention remains
common the associated side-effects along with a focus on
combating symptoms rather than causes leave ample room for
alternative strategies, such as psychological intervention (Morin
et al., 1994; Murtagh and Greenwood, 1995) or manipulation of
body temperature (Raymann and Van Someren, 2008).

Given the well-defined electrophysiology of sleep-onset
and the transition toward deeper sleep stages and in light of
recent technological advances, novel approaches to combating
insomnia involving neurofeedback may be on the verge of
becoming feasible practical solutions (Diaz et al., 2012). Besides
physiological characteristics, subjective experience exhibits
marked changes during the transition from wakefulness to
sleep (Yang et al., 2010) and may play a significant role in
determining the success of falling asleep (Harvey, 2002; Harvey
and Greenall, 2003). Identifying contributing factors, both
in terms of cognition and electrophysiology, associated with
sleep-onset latency therefore could be of great value for the
development of novel treatments based on neurofeedback.

A useful context for investigating these potential contributors
is the frequently employed eyes-closed resting state, as it
resembles the initial mental and physical condition of the waking
state prior to sleep onset. The past decade has witnessed a
tremendous interest in the study of resting-state neurophysiology
(Linkenkaer-Hansen et al., 2005; Stam et al., 2006; Montez
et al., 2009; Massar et al., 2014) and cognition (Smallwood and
Schooler, 2006; Delamillieure et al., 2010; Killingsworth and
Gilbert, 2010; McVay and Kane, 2010), largely sparked by the
discovery that the resting-state is likely associated with a default-
mode of brain functioning (Raichle et al., 2001; Raichle, 2006;
Raichle and Snyder, 2007; Zhang and Raichle, 2010). Therefore,
the principalmotivation behind this study was to explore whether
a combination of resting-state cognition and EEG measures can
explain variability in sleep-onset latency, i.e., the time it takes
for an individual to enter stage 1 sleep (Rechtschaffen and Kales,
1968). To address this question, we focused on alpha (8–12 Hz)
and theta-band (4–7 Hz) EEG activity, given their well-studied
association with cognition and pronounced reactivity to arousal
changes (Başar et al., 2001; Grunwald et al., 2002; Hermens
et al., 2005; Sauseng et al., 2010; Yang et al., 2010; Spiegelhalder
et al., 2012; Mathes et al., 2014). To characterize resting-state
cognition, we used the Amsterdam Resting-State Questionnaire
(Diaz et al., 2013, 2014), which is a self-report survey developed
to characterize thoughts and feelings in the resting state along 10
dimensions.

Our main research question is whether or not the resting-
state provides both electrophysiological as well as cognitive
information relevant to the prediction of sleep-onset latency
(SOL). We begin by exploring the relationship between spectral
and dynamical-systems biomarkers, such as the DFA-exponent,
of theta and alpha-band activity (Linkenkaer-Hansen et al., 2005;
Hardstone et al., 2012; Smit et al., 2013) and ARSQ dimensions
(Diaz et al., 2013, 2014) during 5 min of eyes-closed rest (ECR).
Subsequently, it was tested whether subjective experience after
each sleep or wake trial could be explained from predictors

obtained from these sleep or wake trials as well as the preceding
ECR trial. In order to differentiate between effects of merely
being at rest for extended periods of time and genuine sleep-
onset effects, sleep trials were matched by trials of equal duration
where the subject had not fallen asleep (wake trials). Finally, by
combining the results of the previous two stages of analysis, we
show how sleep-onset latency can be associated with cognitive
and electrophysiological measures obtained from the preceding
eyes-closed rest trial alone.

MATERIALS AND METHODS

Participants
Healthy male subjects (n = 13) were drafted from the VU
University Amsterdam student population (Mage = 24 ± 4
years, range 18–32 years). Exclusion criteria were a history
of neurological pathology, medication, drug/alcohol abuse, or
scores >5 on the Pittsburgh Sleep Quality Index (Buysse
et al., 1989). The study was approved by the Medical Ethical
Assessment Committee (METc) of the VUMedical Center.

Experimental Design
Participants were scheduled for two visits to the EEG laboratory
at the Center for Neurogenomics and Cognitive Research, each
exactly 1 week apart and each starting between 9:00–10:00 A.M.
On the first day, participants reviewed the instructions together
with the experimenter and gave written informed consent prior
to partaking in any of the experimental trials. During each visit,
following EEG preparation, participants underwent up to nine
experimental blocks that all started with a 5 min eyes-closed
rest (ECR) trial during which subjects received the instruction
“Please keep your eyes closed, relax, and try not to fall asleep.”
Subsequently, subjects either participated in a sleep or a wake trial
(Figure 1). In both cases, participants were lying in a comfortable
bed in a dark room (20◦C ambient temperature) for a maximum
of 30 min. Although, informed about the various trial types,
participants did not know which type of trial to expect, either
sleep or wake, after the eyes-closed rest trial. Therefore, the
only instruction given to participants was “Please keep your eyes
closed and relax.”

In order to match the duration of sleep trials as best as
possible, given that no explicit instruction was given to stay
awake, a special procedure was followed (Figure 1). Before each
experimental block, it was randomly determined whether the
trial should be a sleep or wake trial. In case of a sleep trial,
participants were allowed to fall asleep. In case of a wake
trial, a sleep-onset latency was randomly selected from a list
of previous, individual sleep-onset latencies. After the selected
amount of time had passed, the participant was interrupted
and asked to fill out the ARSQ and the matched SOL was
removed from the list. This procedure necessitated that the
first trial was a sleep trial (or otherwise no matching SOL
could be derived for a subsequent wake trial, in which case
the trial was discarded and retried). In addition, participants
could fall asleep before the allotted time, in which case the trial
counted as a sleep trial. In practice, this procedure resulted in
a wake to sleep trial ratio of ∼1:2, as participants tended to
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FIGURE 1 | Each experimental block consisted of a 5 min eyes-closed rest trial, and a subsequent sleep or wake trial (chosen at random) followed by

the ARSQ. Participants did not know beforehand whether they would be allowed to fall asleep. Therefore, in order to create a matching wake trial, a sleep-onset

latency (SOL) was randomly selected from a list of previously obtained latencies and the awake participant would be interrupted after the selected time had passed.

This matching would allow for differentiating between cognitive effects genuine to sleep-onset and those associated with merely spending time at rest.

habituate to the experimental conditions and fell asleep more
readily as time progressed (Figure 3 and Table S2). In between
experimental blocks participants were allowed rest and (self-
selected) refreshments for 5–10 min. A 30 min break was offered
halfway through the measurements, during which the EEG
equipment was checked (e.g., electrode impedance). A successful
sleep trial was defined as two consecutive 30 s periods of <50%
alpha activity corresponding to 1 min of stage one (S1) sleep
(Rechtschaffen and Kales, 1968) within a 30 min interval. The
transition to S1 sleep was chosen because most individuals have
been shown to still possess consciousness at this stage or are even
unware they fell asleep (Yang et al., 2010). Immediately after each
of the ECR and sleep/wake trials, subjects were asked to fill out
the Amsterdam Resting-State Questionnaire (Diaz et al., 2013,
2014). The final data set contained a total of 446 observations
(144 sleep trials and 79 wake trials and 223 preceding ECR trials)
from 13 subjects over 2 measurement days.

Assessment of Resting-State Cognition
Resting-state cognition was assessed using the ARSQ version 1.0
(Diaz et al., 2013), consisting of 50 items related to thoughts and
feelings that may be experienced during (typically) a state of rest.
All items were scored on a scale from “Completely Disagree” to
“Completely Agree” on a 5-point scale. The ARSQ allows the

derivation of the following cognitive dimensions by averaging
the raw score over all corresponding items: Discontinuity of
Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort,
Somatic Awareness, and Health Concern. All dimensions were
obtained using the updated structure from the more recent
ARSQ 2.0 (Diaz et al., 2014). The dimensions “Verbal Thought”
and “Visual Thought” were not included in the analyses, as the
complementary items introduced in the ARSQ 2.0 were not
present in the current data set.

Electrophysiology
High-density electroencephalographic recordings (EEG) were
obtained using a 256 channel gel-based LTMHydroCel Geodesic
Sensor Net coupled to a Net Amps 300 amplifier (Electrical
Geodesics Inc., Eugene OR, USA). After EEG acquisition, EEG
data were exported to MATLAB (The Mathworks Inc., Natick,
MA), down-sampled from 1000 to 500 Hz and band-pass
filtered between 1 and 45 Hz using finite impulse response
(fir) filters. Data cleaning and artifact rejection was done
using the automated algorithms in the MATLAB toolboxes
FASTER (Nolan et al., 2010) to detect and interpolate bad
channels and epochs and ADJUST (Mognon et al., 2011) to
remove eye movement and muscle artifacts using independent
component analysis. Signals were then re-referenced to common
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average reference. Analyses and EEG biomarker extraction was
performed using EEGLAB (Delorme and Makeig, 2004) and
the Neurophysiological Biomarker Toolbox (Hardstone et al.,
2012). Here, we focused on theta-band (4–7 Hz) and alpha-
band (8–12 Hz) absolute power and long-range temporal
correlations as captured by detrended fluctuation analysis (DFA),
over the complete duration of each recording (e.g., 5 min
during eyes-closed rest and up to 30 min during sleep or
wake trials) given their relevance in relating cognition to
electrophysiology and sensitivity to arousal changes such as
the transition into sleep (Rechtschaffen and Kales, 1968; Başar
et al., 2001; Grunwald et al., 2002; Hermens et al., 2005;
Linkenkaer-Hansen et al., 2005; Spiegelhalder et al., 2012; Feige
et al., 2013). Furthermore, we included the alpha-theta ratio
(absolute alpha-power/theta-power) as an additional biomarker,
which we expected to be informative considering the inverse
relationship between alpha and theta as sleep-onset approaches,
i.e., increased theta power accompanied by alpha drop-out.
This expectation was confirmed by testing the effect of trial
condition (sleep or wake) on each (absolute power) biomarker
(see Figure 2).

In order to restrict (model) complexity, the number of
biomarker EEG-locations was reduced by first selecting only
those channels corresponding to the 10–20 standard, except
for temporal locations (as participants tended to sleep on
their sides, resulting in strong muscle artifacts in the affected
regions) and, subsequently, averaging the values of the 3 channels
corresponding to frontal (F), parietal (P), central (C), occipital
(O) regions, and 2 channels for the pre-frontal (Fp) region,
because the pre-frontal electrodes are lateralized and contain
only two channels in the 10–20 system. This resulted in five
regions of averaged EEG power for the four selected biomarkers
(Figure 2).

Data Analyses and Statistics
The experimental design of this study was characterized by a
large number of observations unequally distributed over the
sleep and wake trials (n = 223, 144 sleep trials) as well
as missing observations (partial drop-out of one participant)
within a comparatively small sample of participants (N = 13).
This prevents the use of classical regression and repeated-
measures analysis of variance1 as the observations cannot
be considered independent (Aarts et al., 2014). We therefore
made use of (multi-level) linear mixed models (LMM) where
residual variation does not necessarily exhibit independence
and/or constant variance (Verbeke and Molenberghs, 2000;
Xu, 2003; Jaeger, 2008; Quené and van den Bergh, 2008;
Bolker et al., 2009; Chen et al., 2013). This is achieved
by modeling random variation at different levels. Applied
to this study, all trials (level 1) can be grouped within
subjects (level 2). Conceptually, one may imagine a separate
regression line being fit through all the trials of each subject,

1Prior to analyzing the data with linear-mixed models (LMM) we compared the

LMM fit to the same fit using classical linear models without random term, to

test the possibility of intra-individual variability being on par with inter-individual

variability which would suggest that observations could be treated as independent.

In all cases, linear mixed models provided a significantly better fit.

i.e., providing individual slope and intercept terms. These
individual slope and intercept terms may be viewed as random
normal fluctuations around an estimated overall mean (see
Figure S1) and are hence referred to as random effects. Other
explanatory variables, such as subject age, ARSQ-rating or
EEG biomarker values, are treated similar to the predictors in
classical regression and are denoted fixed effects. Fixed effect
variation was furthermore explicitly partitioned into within-
and between subject variation (van de Pol and Wright, 2009)
using within-group centering. This made it possible to attribute
effects to within-subject variability or between-subject differences
(Figure S2).

We specified a separate multi-level model for each of the
eight ARSQ-dimensions, with random effects being the subject
id (intercept) and the experimental day (slope). As we expected
habituation to occur over days (Figures 3B,C, this specification
allowed for individual variation in the rate of habituation (i.e.,
the slope coefficient) and its correlation to the average response
(e.g., allowing for high ratings to correlate with high increases
over time). Model fit was assessed by a χ2-difference test, i.e.,
only those predictors were retained in the model that resulted
in a significant increase in fit compared to a reduced version of
the model, with the base model only including the intercept and
random effect of subject id and experimental day.

Data preparation and analysis were performed in both
MATLAB 2014a (The Mathworks Inc., Natick, MA) and R
3.1.1. (R Core Team, 2014). Testing the relationship between
ARSQ rating, EEG biomarkers and sleep-onset latency was
performed in R, primarily using the “lme4” package (Bates
et al., 2014) for model estimation supported by the “pbkrtest”
package (Halekoh and Højsgaard, 2014) for deriving degrees of
freedom and p-values based on Kenward-Roger approximation.
Finally, centered subject age, experimental day, trial duration
(equivalent to sleep-onset latency for sleep trials, in minutes)
and overall experiment duration on a given day (in hours
starting from the first ECR recording) were included as
covariates.

RESULTS

Resting-State EEG Biomarkers Are
Associated with Subjective Experience
In order to assess the effect of resting-state brain activity
on subsequent ARSQ-ratings, we fit a separate linear mixed
model (LMM) for each cognitive dimension, in which its
post-eyes-closed rest (ECR) ARSQ-rating was regressed on
EEG biomarkers (separated into within-, and between-subject
components) and potential confounders, i.e., experimental day,
experiment duration on a given day, and participant age (see
Materials and Methods). The general form of these models
(where subscript “i” denotes the ARSQ-dimensions 1 to 8) was:

ARSQECR
i = EEGwithin + EEGbetween + Age+ Day+

Duration+ random effects

We found (see Table 1) significant associations between
EEG biomarkers and six of the eight dimensions from the
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FIGURE 2 | In line with previous reports (Rechtschaffen and Kales, 1968; Hori et al., 1994) (A) EEG biomarkers of absolute band power in the alpha and

(B) theta range exhibit an opposing relationship during sleep-onset at central and occipital electrode locations. (C) To capture this quality in a single

variable we included the alpha-theta ratio as additional biomarker variable.

FIGURE 3 | Pooling all sleep trials shows that participants tended to fall asleep within the first 10 min of the recording (A), with an average sleep onset

latency of 8 min. However, sleep onset latency shortened over experimental days (B) and over subsequent sleep trials (C), suggesting significant (individual)

habituation over the course of the experiment.

ARSQ. Both the occipital theta-band DFA exponent (positive)
and parietal alpha/theta-ratio (negative) were significant
within-subject predictors of post eyes-closed rest ratings of
Discontinuity of Mind. Alpha-power appeared a significant
positive within-subject predictor for Theory of Mind (frontal)
and Comfort (parietal). Frontal theta-power was a significant
positive within-subject predictor for Self, whereas parietal
theta-power significantly predicted Sleepiness, also restricted

to the within-subject effect. Finally, the alpha/theta-ratio
exhibited significant positive within-subject and between-subject
effects on Sleepiness, but interestingly and opposing within-
subject (positive) and between-subject (negative) effect on
Planning. Apparently an increased alpha-theta ratio may effect
increased ratings on Planning across the observations of a single
participant, whereas between participants a higher average ratio
is associated with less planning.
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TABLE 1 | Resting-state brain activity in the alpha and theta bands offers significant predictors of post eyes-closed rest ratings on six ARSQ-dimensions.

Post-ECR ARSQ-rating: (n = 223) Discontinuity of Mind Theory of Mind Self Planning Sleepiness Comfort

Degrees of freedoma 21 22 16 18 33 15

FIXED EFFECTS (COEF.EST. ± SE)

Participant age 0.06±0.02*

DAY

Duration [hours] −0.15 ± 0.03***

Theta abs. powerb Frontal Parietal

Within-subject effect 0.55 ± 0.24* 1.02 ± 0.34**

Between-subject effect 0.06±.42 0.19±.23

Theta DFA-exponent Occipital

Within-subject effect 3.17 ± 1.22*

Between-subject effect 3.72 ± 3.41

Alpha abs. power Frontal Parietal

Within-subject effect 1.09 ± 0.35** 0.39 ± 0.11***

Between-subject effect −0.14 ± 0.29 −0.10 ± 0.14

Alpha/Theta ratio Parietal Parietal Parietal

Within-subject effect −0.54 ± 0.19** 0.76 ± 0.28** −0.96 ± 0.21***

Between-subject effect −0.20 ± 0.20 −0.62 ± 0.24* −0.77 ± 0.33*

RANDOM EFFECTS (SD)

Participant ID (β0) 0.25 0.55 0.47 0.52 0.63 0.48

Day (β1) 0.24 0.58 0.16 0.62 0.26 0.07

Correlation β0,β1 0.03 −0.56 −0.39 −0.89 −0.34 −0.06

Residual 0.56 0.76 0.60 0.89 0.70 0.43

Explained variance (�2
0 )
c

0.41 0.42 0.47 0.35 0.54 0.61

NB, Shown are estimated model coefficients ± Standard Error (the fixed effects, excluding intercept term) and random effect estimates. aDegrees of freedom and p-values based on

Kenward-Roger approximation. bEEG Biomarkers were within-group centered (van de Pol and Wright, 2009). cApproximates oveHall model fit, similar to R2 in classical regression (Xu,

2003). *p ≤ 05, **p < 0.01, *** p < 0.001. Significant results in bold face.

Sleep-Onset Reduces Theory of Mind and
Planning
We were specifically interested in the effects of sleep-onset on
the subsequent ARSQ-ratings, therefore following each ECR trial,
participants either underwent a sleep trial or stayed awake for the
duration of a previous sleep trial (Figure 1). As with the resting-
state trials, for each cognitive dimension we fitted a separate
linear mixed model (LMM), in which its post-sleep or post-wake
ARSQ-rating was regressed on EEG biomarkers and potential
confounders, i.e., experimental day, experiment duration on a
given day, and participant age. In addition to EEG biomarkers
obtained from the wake and sleep trials and post-trial ARSQ-
ratings, we included the EEG biomarkers and ARSQ-ratings
from the preceding resting-state trial in these models, because
significant correlations between dimensional scores over time
were expected (Diaz et al., 2014). Analogous to the resting-
state trials, the general form of these models, with subscript “i”
denoting the corresponding ARSQ-dimension, was:

ARSQPost-trial
i = TrialSleep + EEGwithin + EEGbetween +

ARSQECR
i, within + ARSQECR

i, between +

Age+ Day+ Duration+ random effects

where “TrialSleep” denotes an indicator variable designating
whether or not the trial type was a sleep (1) or wake (0) trial.

The results (Table 2) of predicting post-trial cognition suggest
that only on three ARSQ-dimensions did the transition from
wakefulness to stage 1 sleep have a significant effect on
cognition compared to the wake trials: ratings on Theory of
Mind and Planning were both reduced, whereas Sleepiness—
not surprisingly—was increased during sleep trials. The effects of
the EEG biomarkers in each of these three models were limited
to a significant between-subject effect of parietal theta power
on post-sleep ratings of Sleepiness and a significant negative
effect of frontal alpha-theta ratio on Theory of Mind. Finally, in
line with our hypothesis, ratings of subjective experiences from
the eyes-closed rest trial preceding the sleep trials on the other
hand were highly significant predictors of subsequent ARSQ-
ratings.

Resting-State Theta-Activity and
Sleepiness Ratings Are Associated with
Sleep-Onset
The preceding analyses suggest that both resting-state ARSQ-
ratings and in-trial EEG-measures, especially in the theta-
band, may be used to predict post sleep-trial cognition.
To assess whether the cognitive and electrophysiological
data from the eyes-closed resting-state could also be used
to predict the time to sleep onset, the so-called sleep
onset latency (SOL), we specified a linear mixed model
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TABLE 2 | ARSQ-dimensions Theory of Mind, Planning, and Sleepiness are

shown to be sensitive to sleep-onset.

Post-trial ARSQ-

rating: (nsleep = 144,

nwake = 79)

Theory of Mind Planning Sleepiness

Degrees of Freedoma 15 17 17

FIXED EFFECTS (COEF. EST. ± SE)

Preceding ECR ARSQ rating

Within-subject effect 0.20 ± 0.06*** 0.15 ± 0.05** 0.39 ± 0.05***

Between-subject effect 0.93 ± 0.28*** 0.80 ± 0.18*** 0.77 ± 0.09***

Sleep trial −0.19 ± 0.09* −0.34 ± 0.09*** 0.27 ± 0.08**

Alpha/Theta Ratiob Frontal

Within-subject effect −0.95 ± 0.43*

Between-subject effect −0.60 ± 0.34

Theta abs. power Parietal

Within-subject effect 0.22 ± 0.24

Between-subject effect 0.41 ± 0.16*

RANDOM EFFECTS (SD)

Participant ID (β0) 0.32 0.26 0.10

Experimental day (β1) 0.49 0.15 0.26

Correlation β0,β1 −0.48 0.99 0.91

Residual 0.65 0.64 0.58

Explained variance

(�2
0 )
c

0.53 0.46 0.62

NB, Shown are estimated model coefficients± Standard Error (the fixed effects, excluding

intercept term) and random effect estimates. aDegrees of freedom and p-values based

on Kenward-Roger approximation. bEEG Biomarkers were within-group centered (van de

Pol andWright, 2009). cApproximates overall model fit, similar to R2 in classical regression

(Xu, 2003). *p ≤ 0.05, **p < 0.01, ***p < 0.001. Significant results in bold face.

based on exclusively the sleep trials (nsleep = 144) as
follows:

SOL = EEGECR
within + EEGECR

between + ARSQECR
within + ARSQECR

between +

Age+ Day+ Duration+ random effects

where both EEG and ARSQ variables potentially include all
relevant biomarkers and ARSQ-dimensions. However, after
testing several models, only the post resting-state Sleepiness
rating and the parietal theta-power DFA-exponent over the
resting-state period appeared significant negative predictors
of sleep-onset latency, predominantly through their within-
subject components, apart from the included covariates.
The effect of experimental day and the overall duration
of the experimental session produced the strongest effect,
confirming the profound habituation exhibited by participants
(Table 3).

DISCUSSION

Here, we have shown that alpha- and theta-band EEG
measures are significant predictors of post resting-state ratings
of Discontinuity of Mind (theta DFA-exponent and the ratio
of alpha/theta power), Theory of Mind (alpha power), Self
(theta power), Planning (alpha/theta ratio), Sleepiness (both

TABLE 3 | Sleep onset may be predicted from a combination of

resting-state ARSQ-ratings on Sleepiness and the theta-band derived

DFA-exponent.

(n = 144) Sleep-onset latency [minutes]

Degrees of freedoma 16

FIXED EFFECTS (COEF. EST. ± SE)

Experiment day −4.15 ± 1.36**

Experiment duration [hours] −1.20 ± 0.15***

Sleepiness

Within-subject effect −0.60 ± 0.28*

Between-subject effect −1.39 ± 0.95

Theta DFA-exponentb Parietal

Within-subject effect −13.53 ± 6.68*

Between-subject effect 36.24 ± 19.87

RANDOM EFFECTS (SD)

Participant ID (β0) 4.0

Experimental day (β1) 4.68

Correlation β0,β1 −0.84

Residual 2.1

Explained variance (�2
0)
c 0.83

NB: Shown are estimated model coefficients± Standard Error (the fixed effects, excluding

intercept term) and random effect estimates. aDegrees of freedom and p-values based

on Kenward-Roger approximation. bEEG Biomarkers were within-group centered (van de

Pol andWright, 2009). cApproximates overall model fit, similar to R2 in classical regression

(Xu, 2003). cApproximates overall model fit, similar to R2 in classical regression (Xu, 2003).

* p ≤ 0.05, **p < 0.01, *** p < 0.001. Significant results in bold face.

theta power and alpha/theta ratio), and Comfort (alpha power).
Although, previous studies have shown relationships between
EEG power and spontaneous cognition using regular probes
(Lehmann et al., 1995, 1998), to our knowledge, the current
report is the first showing that variation in EEG can be linked to
retroactive self-reports of subjective experiences in the classical
eyes-closed rest condition.

Furthermore, the effects on ARSQ-ratings following the
transitioning from wakefulness to S1 sleep were identified
(Table 2). Although (severe) changes in conscious cognition
are expected as individuals descend further into successive
sleep stages (Rechtschaffen and Kales, 1968; Yang et al., 2010),
our results show that at least during early stage 1 sleep,
ARSQ ratings differ only on Theory of Mind and Planning
(apart from Sleepiness itself) from the ratings obtained during
wake trials. Although, an in-depth analysis of topographical
dynamics was beyond the scope of the current study, the
significant effects at frontal electrodes, especially the alpha/theta
ratio, found for Theory of Mind may be in line with
earlier reports suggesting frontal involvement for Theory of
Mind related function (Sabbagh and Taylor, 2000; Shamay-
Tsoory et al., 2005; Spreng et al., 2008; Spreng and Grady,
2009). In combination with the commonly observed frequency
slowing and anterior-posterior shift in EEG-power during the
transition toward sleep (Werth et al., 1997; De Gennaro et al.,
2001), a disproportional decrease in theta-power at frontal
electrodes could explain the observed increase in the alpha/theta
and the associated decrease in ARSQ-ratings on Theory
of Mind.

Frontiers in Psychology | www.frontiersin.org 7 April 2016 | Volume 7 | Article 492

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Diaz et al. Resting-State Experience and Sleep-Onset Latency

Interestingly, the expected effect of sleep-trial theta-power
on Sleepiness was limited to differences between participants,
due to very little variation in theta-power irrespective of the
observed rating within an individual’s observations. This is in
contrast to the eyes-closed rest case, where parietal theta-power
in relation to Sleepiness exhibited the opposite pattern of a
dominant within-subject effect. These findings could suggest
the existence of two different theta generating processes: one
active during eyes-closed rest and individually associated with
experienced sleepiness, whereas the other appears reminiscent of
a default “background” process triggered during the sleep/wake
trials, possibly due to the familiar context associated with
sleeping (i.e., lying in bed for an extended duration), and—on an
individual basis—not related to the experience of sleepiness at all.
Interestingly, neither the duration of the trial nor the interaction
(results not shown) between trial type (sleep or wake) and theta
power were significant. A potential explanation may therefore
lie in either the physical context differences between ECR and
the sleep/wake trials (sitting versus supine position) or the subtle
difference in instruction given: only during eyes-closed rest were
participants instructed to avoid falling asleep.

By integrating the results from these two analyses a successful
attempt was made to predict sleep-onset latency using only
predictors derived from the preceding 5 min eyes-closed rest
trial. Sleepiness proved a significant negative predictor, with
each unit increase above the within-subject average lowering
sleep-onset latency by roughly 40 s (see Table 3). Although, the
effect of Sleepiness was anticipated, we would have expected
that ARSQ-dimensions such as Discontinuity of Mind, Comfort,
or Somatic Awareness to yield stronger effects. One possibility
is that participants showed a proportional awareness of their
own susceptibility to fall asleep, although the reliability of this
self-awareness in terms of when participants would be likely
to fall asleep, has been shown to be rather low (Kaplan et al.,
2007)—which highlights the need to combine self-assessments
with physiological markers. At the EEG level, the parietal theta
DFA exponent was shown to be a particularly strong positive
predictor of sleep-onset latency, with each unit increase above
the within-group average leading to a potentially more than 13
min decrease in sleep-onset latency. Still, the raw magnitude of
this effect should be interpreted with care, as full unit increases in
the DFA-exponent are unlikely. It nevertheless does suggest that
not only do increasing long-range temporal correlations in the
parietal theta-band appear to be associated with faster transition
toward sleep (with about 1.35 min per 0.1 increase in Theta
DFA-exponent), but also that the DFA exponent could be a more
sensitive measure of within-subject variability.

Despite, these results, certain caveats need to be considered,
most prominently the effect of experimental day and duration
of the experimental session. We observed strong habituation
across trials with substantial variation both within and between
individuals. Although, we specified our models to accommodate
these effects by specifically allowing for individual trends across
trials and correlation between random slopes and intercepts.
For example, participants with relatively high initial sleep-
onset latencies—resulting in higher global averages and intercept
values—could rapidly habituate to much lower latencies,

resulting in a steep negative trend correlated to the above average
intercept. Another side effect of this sleep-trial habituation
is that matching their duration for use in the wake trials
becomes more of a challenge. This may in part explain the quite
uniformly observed ratio of sleep to wake trials of ∼1:2 (see
Table S2). Future designs (see below) should take these effects
into consideration to avoid potential overshadowing effects of
these covariates. In addition, having access to participant sleep
history and other chronotype related informationmay help refine
methodology further. We do note however, that the arousal level
of participants as assessed by alpha and theta power during the
eyes-closed rest measurements did not differ with respect to
the subsequent trial type, i.e., we did generally not observe for
instance higher theta power during rest preceding a sleep trial
(see Figure S4). Finally, the absence of reliable items probing
visual and verbal experiences in the current study due to the
use of the older ARSQ 1.0 unfortunately prevents relating our
findings to the rich literature on hypnagogic experiences which
appear to strongly feature visual mentation (Foulkes et al., 1966;
Foulkes and Fleisher, 1975; Schacter, 1976; Hori et al., 1994;
Tanaka et al., 1998; Wackermann et al., 2002). Analyses based
on the single items “I thought in images” and “I thought in
words,” respectively, could not be associated with sleep/wake trial
EEG and effects were mostly limited to between-subject effects of
preceding resting-state ratings (see Table S1).

The pioneering character and largely exploratory nature
demanded certain methodological choices to be made. This
primarily translates to the high degree of aggregation of the
electrophysiological data. Reduction of the 256-channel EEG-
recordings to a simple average of frontal, central, parietal and
occipital 10–20 system regions, potentially foregoes much of the
spatial dynamics associated with both the transition toward sleep
as well as the resting-state. Similarly, the EEG biomarkers utilized
here only focus on the total activity within a set period, discarding
much of the temporal dynamics involved with changes in brain
states (Lehmann et al., 1998). Although, this study focused on the
alpha and theta band frequency ranges, it is important to note
that gamma-band activity has been shown to play an important
role in cognition (Fries, 2009; Köster et al., 2014; Roux and
Uhlhaas, 2014) as well. More importantly, despite the already
extensive reduction of EEG-channel data in the analyses, only
single electrode locations were used in the statistical models
instead of using all five locations. The reason behind this choice
was that EEG biomarkers exhibited strong correlations (even at
false-discovery rate corrected p-values at an α-value of 0.001)
not only over channels but also between frequency bands (see
Figure S3), which could lead to spurious or unstable effects
potentially due to a high degree of collinearity. It should also be
noted that given the observed effects, future studies may attempt
to further dissect the EEG-activity of the transition period
between wakefulness and S1 sleep, for instance by utilizing the
subdivisions introduced by Hori (Hori et al., 1994; Tanaka et al.,
1998). With regard to the participant sample, besides expanding
the number of volunteers, including female participants would
seem a logical step given the potentially interesting differences
between sexes to be found (Van Der Sluis et al., 2010; Miller
and Halpern, 2014). The motivation to exclusively employ male
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volunteers was primarily dictated by pragmatism: short hair
significantly reduces preparation time and simplifies electrode
adjustment.

These above caveats notwithstanding, the presented results
suggest that resting-state cognition in combination with EEG
may be used to predict sleep-onset latency. In order to confirm
the practical utility of such a prediction, i.e., assess its reliability
and accuracy, one may adapt the current experimental design
by (1) expanding the participant pool while simultaneously
decreasing the number of trials per participant and (2) abolish the
matching between sleep and wake trials, giving all participants a
fixed time interval to fall asleep (e.g., 30 min). This would open
the possibility to use logistic regression to model the probability
of falling asleep as a function of pre-trial resting-state cognition
and EEG biomarkers. Provided a useful relationship can be
established, such a result could then eventually be translated
into working prototypes of neurofeedback equipment aimed at
facilitating sleep-onset. For instance, a device that probes an
individual’s sleepiness in combination with processing theta-
band activity may be able to provide a forecast of how long
it would take to fall asleep—potentially quite useful source
of information for the numerous individuals suffering from
sleep-onset insomnia (Ohayon, 2002; Van der Heijden et al.,
2007). The device could, for example, recommend alternative
activities to going to bed if the person is not in a suitable
combination of EEG and cognitive state for a short sleep-
onset latency. While the efficacy of neurofeedback focused on
regulation of inner states, for example in the treatment of
ADHD-symptoms (Lofthouse et al., 2011), has been less self-
evident (Diaz et al., 2012), neurofeedback in the form of brain-
computer interfaces has booked tremendous successes in the past
decade by harnessing reliable physiological signals such as P300
evoked potentials and slow-cortical potentials providing relief
for certain groups of patients unable to otherwise communicate

with their environment (Birbaumer et al., 1999; Kleih et al.,
2011). The results presented here may be viewed as one possible
route toward the development of a health-monitoring device
for individuals suffering from sleep-onset insomnia, possibly in
conjunction with existing therapies, providing a useable estimate
of the likelihood to successfully fall asleep in combination with
advice on what to do to promote sleep onset.
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