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The Cronbach’s alpha is the most widely used method for estimating internal consistency

reliability. This procedure has proved very resistant to the passage of time, even if

its limitations are well documented and although there are better options as omega

coefficient or the different versions of glb, with obvious advantages especially for applied

research in which the ítems differ in quality or have skewed distributions. In this paper,

using Monte Carlo simulation, the performance of these reliability coefficients under

a one-dimensional model is evaluated in terms of skewness and no tau-equivalence.

The results show that omega coefficient is always better choice than alpha and in the

presence of skew items is preferable to use omega and glb coefficients even in small

samples.

Keywords: reliability, alpha, omega, greatest lower bound, asymmetrical measures

The α coefficient is the most widely used procedure for estimating reliability in applied research. As
stated by Sijtsma (2009), its popularity is such that Cronbach (1951) has been cited as a reference
more frequently than the article on the discovery of the DNA double helix. Nevertheless, its
limitations are well known (Lord and Novick, 1968; Cortina, 1993; Yang and Green, 2011), some of
the most important being the assumptions of uncorrelated errors, tau-equivalence and normality.

The assumption of uncorrelated errors (the error score of any pair of items is uncorrelated)
is a hypothesis of Classical Test Theory (Lord and Novick, 1968), violation of which may imply
the presence of complex multidimensional structures requiring estimation procedures which take
this complexity into account (e.g., Tarkkonen and Vehkalahti, 2005; Green and Yang, 2015).
It is important to uproot the erroneous belief that the α coefficient is a good indicator of
unidimensionality because its value would be higher if the scale were unidimensional. In fact the
exact opposite is the case, as was shown by Sijtsma (2009), and its application in such conditions
may lead to reliability being heavily overestimated (Raykov, 2001). Consequently, before calculating
α it is necessary to check that the data fit unidimensional models.

The assumption of tau-equivalence (i.e., the same true score for all test items, or equal factor
loadings of all items in a factorial model) is a requirement for α to be equivalent to the reliability
coefficient (Cronbach, 1951). If the assumption of tau-equivalence is violated the true reliability
value will be underestimated (Raykov, 1997; Graham, 2006) by an amount whichmay vary between
0.6 and 11.1% depending on the gravity of the violation (Green and Yang, 2009a). Working with
data which comply with this assumption is generally not viable in practice (Teo and Fan, 2013); the
congeneric model (i.e., different factor loadings) is the more realistic.
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The requirement for multivariant normality is less known and
affects both the puntual reliability estimation and the possibility
of establishing confidence intervals (Dunn et al., 2014). Sheng
and Sheng (2012) observed recently that when the distributions
are skewed and/or leptokurtic, a negative bias is produced when
the coefficient α is calculated; similar results were presented by
Green and Yang (2009b) in an analysis of the effects of non-
normal distributions in estimating reliability. Study of skewness
problems is more important when we see that in practice
researchers habitually work with skewed scales (Micceri, 1989;
Norton et al., 2013; Ho and Yu, 2014). For example, Micceri
(1989) estimated that about 2/3 of ability and over 4/5 of
psychometric measures exhibited at least moderate asymmetry
(i.e., skewness around 1). Despite this, the impact of skewness on
reliability estimation has been little studied.

Considering the abundant literature on the limitations and
biases of the α coefficient (Revelle and Zinbarg, 2009; Sijtsma,
2009, 2012; Cho and Kim, 2015; Sijtsma and van der Ark, 2015),
the question arises why researchers continue to use α when
alternative coefficients exist which overcome these limitations. It
is possible that the excess of procedures for estimating reliability
developed in the last century has oscured the debate. This would
have been further compounded by the simplicity of calculating
this coefficient and its availability in commercial softwares.

The difficulty of estimating the ρxx′ reliability coefficient
resides in its definition ρxx′ = σ 2

t /σ
2
x , which includes

the true score in the variance numerator when this is by
nature unobservable. The α coefficient tries to approximate this
unobservable variance from the covariance between the items or
components. Cronbach (1951) showed that in the absence of tau-
equivalence, the α coefficient (or Guttman’s lambda 3, which is
equivalent to α) was a good lower bound approximation. Thus,
when the assumptions are violated the problem translates into
finding the best possible lower bound; indeed this name is given
to the Greatest Lower Bound method (GLB) which is the best
possible approximation from a theoretical angle (Jackson and
Agunwamba, 1977; Woodhouse and Jackson, 1977; Shapiro and
ten Berge, 2000; Sočan, 2000; ten Berge and Sočan, 2004; Sijtsma,
2009). However, Revelle and Zinbarg (2009) consider thatω gives
a better lower bound than GLB. There is therefore an unresolved
debate as to which of these two methods gives the best lower
bound; furthermore the question of non-normality has not been
exhaustively investigated, as the present work discusses.

ω COEFFICIENTS

McDonald (1999) proposed the ωt coefficient for estimating
reliability from a factorial analysis framework, which can be
expressed formally as:

ωt =

(∑
λj

)2
[(∑

λj
)2

+
∑

(1− λ2j )
] =

(∑
λj

)2
[(∑

λj
)2

+
(∑

ψ
)] (1)

Where λj is the loading of item j, λ2j is the communality of

item j and ψ equates to the uniqueness. The ωt coefficient, by

including the lambdas in its formulas, is suitable both when tau-
equivalence (i.e., equal factor loadings of all test items) exists
(ωt coincides mathematically with α), and when items with
different discriminations are present in the representation of the
construct (i.e., different factor loadings of the items: congeneric
measurements). Consequently ωt corrects the underestimation
bias of α when the assumption of tau-equivalence is violated
(Dunn et al., 2014) and different studies show that it is one of
the best alternatives for estimating reliability (Zinbarg et al., 2005,
2006; Revelle and Zinbarg, 2009), although to date its functioning
in conditions of skewness is unknown.

When correlation exists between errors, or there is more
than one latent dimension in the data, the contribution of each
dimension to the total variance explained is estimated, obtaining
the so-called hierarchical ω (ωh) which enables us to correct the
worst overestimation bias of α with multidimensional data (see
Tarkkonen and Vehkalahti, 2005; Zinbarg et al., 2005; Revelle
and Zinbarg, 2009). Coefficients ωh and ωt are equivalent in
unidimensional data, so we will refer to this coefficient simply
as ω.

GREATEST LOWER BOUND (GLB)

Sijtsma (2009) shows in a series of studies that one of the
most powerful estimators of reliability is GLB—deduced by
Woodhouse and Jackson (1977) from the assumptions of
Classical Test Theory (Cx = Ct + Ce)—an inter-item covariance
matrix for observed item scoresCx. It breaks down into two parts:
the sum of the inter-item covariance matrix for item true scores
Ct; and the inter-item error covariance matrix Ce (ten Berge and
Sočan, 2004). Its expression is:

GLB = 1−
tr (Ce)

σ 2
x

(2)

where σ 2
x is the test variance and tr(Ce) refers to the trace of the

inter-item error covariancematrix which it has proved so difficult
to estimate. One solution has been to use factorial procedures
such as Minimum Rank Factor Analysis (a procedure known as
glb.fa). More recently the GLB algebraic (GLBa) procedure has
been developed from an algorithm devised by Andreas Moltner
(Moltner and Revelle, 2015). According to Revelle (2015a) this
procedure adopts the form which is most faithful to the original
definition by Jackson and Agunwamba (1977), and it has the
added advantage of introducing a vector to weight the items by
importance (Al-Homidan, 2008).

Despite its theoretical strengths, GLB has been very little used,
although some recent empirical studies have shown that this
coefficient produces better results than α (Lila et al., 2014) and
α and ω (Wilcox et al., 2014). Nevertheless, in small samples,
under the assumption of normality, it tends to overestimate the
true reliability value (Shapiro and ten Berge, 2000); however its
functioning under non-normal conditions remains unknown,
specifically when the distributions of the items are asymmetrical.

Considering the coefficients defined above, and the biases and
limitations of each, the object of this work is to evaluate the
robustness of these coefficients in the presence of asymmetrical

Frontiers in Psychology | www.frontiersin.org 2 May 2016 | Volume 7 | Article 769

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Trizano-Hermosilla and Alvarado Best Options to Cronbach’s Alpha

items, considering also the assumption of tau-equivalence and
the sample size.

METHODS

Data Generation
The data were generated using R (R Development Core Team,
2013) and RStudio (Racine, 2012) software, following the
factorial model:

Xij =

∑k

k = 1
λjk Fk +

√(
1−

∑k

k = 1
λ2
jk

)
× ej (3)

where Xij is the simulated response of subject i in item j, λjk
is the loading of item j in Factor k (which was generated by
the unifactorial model); Fk is the latent factor generated by a
standardized normal distribution (mean 0 and variance 1), and
ej is the randommeasurement error of each item also following a
standardized normal distribution.

Skewed items: Standard normal Xij were transformed to
generate non-normal distributions using the procedure proposed
by Headrick (2002) applying fifth order polynomial transforms:

Yij = c0 + c1Xij + c2X
2
ij + c3X

3
ij + c4X

4
ij + c5X

5
ij (4)

The coefficients implemented by Sheng and Sheng (2012)
were used to obtain centered, asymmetrical distributions
(asymmetry ≈ 1): c0 = −0.446924, c1 = 1.242521, c2 =

0.500764, c3 = −0.184710, c4 = −0.017947, c5 = 0.003159.

Simulated Conditions
To assess the performance of the reliability coefficients (α, ω,
GLB and GLBa) we worked with three sample sizes (250, 500,
1000), two test sizes: short (6 items) and long (12 items), two
conditions of tau-equivalence (one with tau-equivalence and one
without, i.e., congeneric) and the progressive incorporation of
asymmetrical items (from all the items being normal to all the
items being asymmetrical). In the short test the reliability was
set at 0.731, which in the presence of tau-equivalence is achieved
with six items with factor loadings= 0.558; while the congeneric
model is obtained by setting factor loadings at values of 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8 (see Appendix I). In the long test of 12 items
the reliability was set at 0.845 taking the same values as in the
short test for both tau-equivalence and the congeneric model (in
this case there were two items for each value of lambda). In this
way 120 conditions were simulated with 1000 replicas in each
case.

Data Analysis
The main analyses were carried out using the Psych (Revelle,
2015b) and GPArotation (Bernaards and Jennrich, 2015) packets,
which allow α and ω to be estimated. Two computerized
approaches were used for estimating GLB: glb.fa (Revelle, 2015a)
and glb.algebraic (Moltner and Revelle, 2015), the latter worked
by authors like Hunt and Bentler (2015).

In order to evaluate the accuracy of the various estimators
in recovering reliability, we calculated the Root Mean Square

of Error (RMSE) and the bias. The first is the mean of the
differences between the estimated and the simulated reliability
and is formalized as:

RMSE =

√∑
(ρ̂ − ρ)2

Nr
(5)

where ρ̂ is the estimated reliability for each coefficient, ρ the
simulated reliability and Nr the number of replicas. The % bias is
understood as the difference between the mean of the estimated
reliability and the simulated reliability and is defined as:

% bias =

∑
(ρ̂ − ρ)

Nr
× 100 (6)

In both indices, the greater the value, the greater the inaccuracy
of the estimator, but unlike RMSE, the bias may be positive
or negative; in this case additional information would be
obtained as to whether the coefficient is underestimating or
overestimating the simulated reliability parameter. Following the
recommendation of Hoogland and Boomsma (1998) values of
RMSE< 0.05 and % bias< 5% were considered acceptable.

RESULTS

The principal results can be seen in Table 1 (6 items) and
Table 2 (12 items). These show the RMSE and % bias of the
coefficients in tau-equivalence and congeneric conditions, and
how the skewness of the test distribution increases with the
gradual incorporation of asymmetrical items.

Only under conditions of tau-equivalence and normality
(skewness < 0.2) is it observed that the α coefficient estimates
the simulated reliability correctly, like ω. In the congeneric
condition ω corrects the underestimation of α. Both GLB and
GLBa present a positive bias under normality, however GLBa
shows approximatively ½ less % bias than GLB (see Table 1). If
we consider sample size, we observe that as the test size increases,
the positive bias of GLB and GLBa diminishes, but never
disappears.

In asymmetrical conditions, we see in Table 1 that both α and
ω present an unacceptable performance with increasing RMSE
and underestimations which may reach bias > 13% for the α

coefficient (between 1 and 2% lower for ω). The GLB and GLBa
coefficients present a lower RMSE when the test skewness or the
number of asymmetrical items increases (see Tables 1, 2). The
GLB coefficient presents better estimates when the test skewness
value of the test is around 0.30; GLBa is very similar, presenting
better estimates than ω with an test skewness value around 0.20
or 0.30. However, when the skewness value increases to 0.50 or
0.60, GLB presents better performance than GLBa. The test size
(6 or 12 ítems) has a muchmore important effect than the sample
size on the accuracy of estimates.

DISCUSSION

In this study four factors were manipulated: tau-equivalence or
congeneric model, sample size (250, 500, and 1000), the number
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TABLE 1 | RMSE and Bias with tau-equivalence and congeneric condition for 6 items, three sample sizes and the number of skewed items.

Skewed items SK n Cond RMSE % bias

α ω GLB GLBa α ω GLB GLBa

NORMALITY

0 items 0.0 250 tau 0.03 0.03 0.07 0.04 −0.20 0.00 6.30 3.50

cong 0.03 0.02 0.07 0.04 −1.60 −0.10 6.10 3.40

500 tau 0.02 0.02 0.06 0.03 0.00 0.00 5.70 2.50

cong 0.02 0.02 0.06 0.03 −1.50 0.00 5.50 2.50

1000 tau 0.01 0.01 0.06 0.02 −0.10 −0.10 4.90 1.70

cong 0.02 0.01 0.06 0.02 −1.50 −0.10 5.00 1.70

2 items 0.3 250 tau 0.06 0.06 0.04 0.03 −5.50 −5.00 2.70 −0.80

cong 0.06 0.04 0.05 0.03 −5.40 −3.00 3.90 0.90

500 tau 0.06 0.05 0.04 0.03 −5.20 −4.90 1.80 −1.90

cong 0.06 0.03 0.04 0.02 −5.10 −2.80 3.20 −0.10

1000 tau 0.06 0.05 0.03 0.03 −5.20 −5.00 1.00 −2.70

cong 0.05 0.03 0.04 0.02 −5.20 −2.90 2.40 −1.00

4 items 0.6 250 tau 0.11 0.10 0.04 0.06 −10.00 −9.60 −0.80 −4.70

cong 0.11 0.09 0.04 0.05 −10.70 −8.10 0.20 −3.50

500 tau 0.10 0.10 0.04 0.06 −9.70 −9.40 −1.60 −5.80

cong 0.11 0.08 0.03 0.05 −10.50 −8.00 −0.30 −4.60

1000 tau 0.10 0.10 0.04 0.07 −9.60 −9.50 −2.50 −6.80

cong 0.08 0.05 0.03 0.04 −7.70 −5.20 0.80 −3.10

All items 0.9 250 tau 0.14 0.14 0.06 0.09 −13.10 -12.80 −3.00 −7.50

cong 0.15 0.13 0.05 0.08 −13.80 −11.80 −2.50 −6.80

500 tau 0.13 0.13 0.06 0.09 −12.70 −12.50 −4.10 −8.80

cong 0.14 0.12 0.05 0.09 −13.50 −11.70 −3.40 −8.00

1000 tau 0.13 0.13 0.06 0.10 −12.70 -12.60 −5.00 −9.90

cong 0.14 0.12 0.06 0.09 −13.40 −11.60 −4.10 −9.00

RMSE, Root Mean Square of Error; SK, test skewness; n, sample size; cond, Condition; tau, tau-equivalent model; cong, Congeneric model; α, coefficient alpha; ω, coefficient omega;

GLB, Greatest Lower Bound (GLB.fa); GLBa, Greatest Lower Bound (GLB.algebraic); bold RMSE ≥ 0.05 or % bias ≥ |5%|

of test items (6 and 12) and the number of asymmetrical items
(from 0 asymmetrical items to all the items being asymmetrical)
in order to evaluate robustness to the presence of asymmetrical
data in the four reliability coefficients analyzed. These results are
discussed below.

In conditions of tau-equivalence, the α and ω coefficients
converge, however in the absence of tau-equivalence
(congeneric), ω always presents better estimates and smaller
RMSE and % bias than α. In this more realistic condition
therefore (Green and Yang, 2009a; Yang and Green, 2011),
α becomes a negatively biased reliability estimator (Graham,
2006; Sijtsma, 2009; Cho and Kim, 2015) and ω is always
preferable to α (Dunn et al., 2014). In the case of non-violation
of the assumption of normality, ω is the best estimator of all the
coefficients evaluated (Revelle and Zinbarg, 2009).

Turning to sample size, we observe that this factor has a
small effect under normality or a slight departure from normality:
the RMSE and the bias diminish as the sample size increases.
Nevertheless, it may be said that for these two coefficients, with
sample size of 250 and normality we obtain relatively accurate

estimates (Tang and Cui, 2012; Javali et al., 2011). For the GLB
and GLBa coefficients, as the sample size increases the RMSE and
the bias tend to diminish; however they maintain a positive bias
for the condition of normality even with large sample sizes of
1000 (Shapiro and ten Berge, 2000; ten Berge and Sočan, 2004;
Sijtsma, 2009).

For the test size we generally observe a higher RMSE and bias
with 6 items than with 12, suggesting that the higher the number
of items, the lower the RMSE and the bias of the estimators
(Cortina, 1993). In general the trend is maintained for both 6 and
12 items.

When we look at the effect of progressively incorporating
asymmetrical items into the data set, we observe that the
α coefficient is highly sensitive to asymmetrical items; these
results are similar to those found by Sheng and Sheng (2012)
and Green and Yang (2009b). Coefficient ω presents similar
RMSE and bias values to those of α, but slightly better, even
with tau-equivalence. GLB and GLBa are found to present
better estimates when the test skewness departs from values
close to 0.
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TABLE 2 | RMSE and Bias with tau-equivalence and congeneric condition for 12 items, three sample sizes and the number of skewed items.

Skewed items SK n Cond RMSE % bias

α ω GLB GLBa α ω GLB GLBa

NORMALITY

0 items 0.0 250 tau 0.02 0.02 0.05 0.04 −0.10 −0.10 4.80 3.90

cong 0.02 0.01 0.05 0.04 −0.90 −0.10 4.40 3.80

500 tau 0.01 0.01 0.04 0.03 −0.10 −0.10 4.20 2.80

cong 0.01 0.01 0.04 0.03 −0.80 −0.10 3.70 2.70

1000 tau 0.01 0.01 0.04 0.02 0.00 0.00 3.70 2.00

cong 0.01 0.01 0.03 0.02 −0.80 0.00 3.10 2.00

2 items 0.2 250 tau 0.03 0.02 0.04 0.03 −1.90 −1.70 3.60 2.60

cong 0.03 0.02 0.04 0.03 −2.00 −1.00 3.70 3.10

500 tau 0.02 0.02 0.03 0.02 −1.80 −1.70 2.90 1.40

cong 0.02 0.01 0.03 0.02 −2.00 −1.00 3.00 1.90

1000 tau 0.02 0.02 0.03 0.01 −1.80 −1.70 2.40 0.60

cong 0.02 0.01 0.03 0.01 −1.90 −1.00 2.30 1.10

4 items 0.3 250 tau 0.04 0.04 0.03 0.02 −3.60 −3.50 2.40 1.40

cong 0.04 0.03 0.03 0.02 −3.90 −2.80 2.50 1.80

500 tau 0.04 0.04 0.02 0.01 −3.50 −3.40 1.70 0.10

cong 0.04 0.03 0.02 0.01 −3.80 −2.70 1.70 0.60

1000 tau 0.04 0.04 0.02 0.01 −3.50 −3.40 1.00 −0.80

cong 0.04 0.03 0.02 0.01 −3.80 −2.70 1.00 −0.30

6 items 0.5 250 tau 0.06 0.06 0.02 0.02 −5.40 −5.20 1.30 0.20

cong 0.06 0.06 0.02 0.02 −6.10 −5.20 1.00 0.30

500 tau 0.05 0.05 0.02 0.02 −5.20 −5.10 0.40 −1.20

cong 0.06 0.05 0.02 0.02 −6.00 −5.10 −0.10 −1.10

1000 tau 0.05 0.05 0.02 0.02 −5.20 −5.10 −0.40 −2.20

cong 0.06 0.05 0.02 0.02 −5.90 −5.10 −0.80 −2.10

8 items 0.6 250 tau 0.07 0.07 0.02 0.02 −6.90 −6.70 0.20 −1.00

cong 0.08 0.07 0.02 0.02 −7.30 −6.20 0.20 −0.50

500 tau 0.07 0.07 0.02 0.03 −6.80 −6.70 −0.70 −2.50

cong 0.07 0.06 0.02 0.02 −7.20 −6.10 −0.80 −1.90

1000 tau 0.07 0.07 0.02 0.04 −6.70 −6.60 −1.50 −3.60

cong 0.07 0.06 0.02 0.03 −7.10 −6.10 −1.70 −3.00

10 items 0.8 250 tau 0.09 0.09 0.03 0.03 −8.30 −8.10 −0.70 −2.00

cong 0.09 0.08 0.02 0.03 −8.80 −7.70 −0.90 −1.60

500 tau 0.08 0.08 0.03 0.04 −8.10 −8.00 −1.70 −3.60

cong 0.09 0.08 0.03 0.04 −8.60 −7.60 −1.60 −3.10

1000 tau 0.08 0.08 0.03 0.05 −8.10 −8.00 −2.40 −4.80

cong 0.09 0.08 0.03 0.04 −8.60 −7.60 −2.40 −4.30

All items 1.0 250 tau 0.10 0.10 0.03 0.04 −9.40 −9.20 −1.40 −2.80

cong 0.10 0.09 0.03 0.03 −9.50 −8.50 −1.30 −2.30

500 tau 0.09 0.09 0.03 0.05 −9.20 −9.10 −2.30 −4.60

cong 0.10 0.09 0.03 0.04 −9.40 −8.40 −2.30 −3.90

1000 tau 0.09 0.09 0.04 0.06 −9.20 −9.10 −3.20 −5.90

cong 0.09 0.08 0.04 0.05 −9.30 −8.30 −3.20 −5.20

RMSE, Root Mean Square of Error; SK, test skewness; n, sample size; cond, Condition; tau, tau-equivalent model; cong, Congeneric model; α, coefficient alpha; ω, coefficient omega;

GLB, Greatest Lower Bound (GLB.fa); GLBa, Greatest Lower Bound (GLB.algebraic); bold RMSE ≥ 0.05 or % bias ≥ |5%|.
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Considering that in practice it is common to find
asymmetrical data (Micceri, 1989; Norton et al., 2013; Ho
and Yu, 2014), Sijtsma’s suggestion (2009) of using GLB as
a reliability estimator appears well-founded. Other authors,
such as Revelle and Zinbarg (2009) and Green and Yang
(2009a), recommend the use of ω, however this coefficient only
produced good results in the condition of normality, or with
low proportion of skewness items. In any case, these coefficients
presented greater theoretical and empirical advantages than
α. Nevertheless, we recommend researchers to study not only
punctual estimates but also to make use of interval estimation
(Dunn et al., 2014).

These results are limited to the simulated conditions and it
is assumed that there is no correlation between errors. This
would make it necessary to carry out further research to evaluate
the functioning of the various reliability coefficients with more
complex multidimensional structures (Reise, 2012; Green and
Yang, 2015) and in the presence of ordinal and/or categorical data
in which non-compliance with the assumption of normality is the
norm.

CONCLUSION

When the total test scores are normally distributed (i.e., all items
are normally distributed) ω should be the first choice, followed

by α, since they avoid the overestimation problems presented by
GLB. However, when there is a low or moderate test skewness
GLBa should be used. GLB is recommended when the proportion
of asymmetrical items is high, since under these conditions the
use of both α and ω as reliability estimators is not advisable,
whatever the sample size.
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APPENDIX I

R syntax to estimate reliability coefficients from Pearson’s
correlation matrices. The correlation values outside the
diagonal are calculated by multiplying the factor loading of
the items: (1) tau-equivalent model they are all equal to 0.3114
(λiλj = 0.558 × 0.558 = 0.3114) and (2) congeneric model they
vary as a function of the different factor loading (e.g., the matrix
element a1,2 = λ1λ2 = 0.3 × 0.4 = 0.12). In both examples the
true reliability is 0.731.

# Example 1. Tau-equivalent model with λ = 0.558 for the six

items

> library(psych)
> library(Rcsdp)
> Cr<-matrix(c(1.00, 0.3114, 0.3114, 0.3114, 0.3114, 0.3114,

0.3114, 1.00, 0.3114, 0.3114, 0.3114, 0.3114,
0.3114, 0.3114, 1.00, 0.3114, 0.3114, 0.3114,
0.3114, 0.3114, 0.3114, 1.00, 0.3114, 0.3114,
0.3114, 0.3114, 0.3114, 0.3114, 1.00, 0.3114,
0.3114, 0.3114, 0.3114, 0.3114, 0.3114, 1.00),
ncol= 6)

> omega(Cr,1)$alpha # standardized Cronbach’s α

[1] 0.731

> omega(Cr,1)$omega.tot # coefficient ω total
[1] 0.731

> glb.fa(Cr)$glb # GLB factorial procedure
[1] 0.731
> glb.algebraic(Cr)$glb # GLB algebraic procedure
[1] 0.731

# Example 2. Congeneric model with λ1 = 0.3, λ2 = 0.4, λ3 =

0.5, λ4 = 0.6, λ5 = 0.7, λ6 = 0.8

> Cr<-matrix(c(1.00, 0.12, 0.15, 0.18, 0.21, 0.24,
0.12, 1.00, 0.20, 0.24, 0.28, 0.32,
0.15, 0.20, 1.00, 0.30, 0.35, 0.40,
0.18, 0.24, 0.30, 1.00, 0.42, 0.48,
0.21, 0.28, 0.35, 0.42, 1.00, 0.56,
0.24, 0.32, 0.40, 0.48, 0.56, 1.00),
ncol= 6)

> omega(Cr,1)$alpha # standardized Cronbach’s α

[1] 0.717
> omega(Cr,1)$omega.tot # coefficient ω total

[1] 0.731
> glb.fa(Cr)$glb # GLB factorial procedure

[1] 0.754
> glb.algebraic(Cr)$glb # GLB algebraic procedure

[1] 0.731
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