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The notion of salience has been singled out as the explanatory factor for a diverse

range of linguistic phenomena. In particular, perceptual salience (e.g., visual salience of

objects in the world, acoustic prominence of linguistic sounds) and semantic-pragmatic

salience (e.g., prominence of recently mentioned or topical referents) have been shown

to influence language comprehension and production. A different line of research has

sought to account for behavioral correlates of cognitive load during comprehension

as well as for certain patterns in language usage using information-theoretic notions,

such as surprisal. Surprisal and salience both affect language processing at different

levels, but the relationship between the two has not been adequately elucidated, and the

question of whether salience can be reduced to surprisal / predictability is still open.

Our review identifies two main challenges in addressing this question: terminological

inconsistency and lack of integration between high and low levels of representations

in salience-based accounts and surprisal-based accounts. We capitalize upon work in

visual cognition in order to orient ourselves in surveying the different facets of the notion

of salience in linguistics and their relation with models of surprisal. We find that work on

salience highlights aspects of linguistic communication that models of surprisal tend to

overlook, namely the role of attention and relevance to current goals, and we argue that

the Predictive Coding framework provides a unified view which can account for the role

played by attention and predictability at different levels of processing andwhich can clarify

the interplay between low and high levels of processes and between predictability-driven

expectation and attention-driven focus.

Keywords: attention, goals, language, predictive coding, predictability, relevance, salience, surprisal

1. INTRODUCTION: THE ATTENTIVE BRAIN AND THE

ANTICIPATING BRAIN

The perceptual experience we are continuously subjected to while awake is an “embarrassment
of riches” (Wolfe and Horowitz, 2004): for example, when we process a visual scene, we need
to focus our maximum visual acuity (the fovea) on the most useful or interesting parts of the
scene (Mackworth and Morandi, 1967). In doing so, we are guided by attention: the “attentive
brain” filters out the relevant information, prioritizing between stimuli and giving certain stimuli
a special status, thus easing the processing burden. The stimuli attracting attention are said to be
salient (literally, “standing out from the ground”, Chiarcos et al., 2011). The notion of salience
has been widely used in linguistics as the explanatory factor for a diverse range of phenomena:
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to indicate a property of a sociolinguistic variable that makes
it cognitively prominent and thus noticeable (Trudgill, 1986;
Kerswill and Williams, 2002; Rácz, 2013), or a property of
discourse entities exploited in anaphoric binding (Grosz et al.,
1995; Osgood and Bock, 1977; Prat-Sala and Branigan, 2000), but
also, according to a simulation view of language comprehension,
the property of prominent entities in the described situation
(Claus, 2011).

The predictability of the stimulus also affects our perceptual
experience. Our brain’s ability to anticipate new stimuli is key
to its adaptive success (Bar, 2011; Clark, 2013): the “anticipating
brain” keeps track of what it has experienced (and how often),
adapts to regularities, predicts upcoming stimuli based on
recent context, but also detects surprising stimuli and reacts to
unexpected ones if the predictions go wrong (Ranganath and
Rainer, 2003). For example, when looking at a series of static
pictures implying motion, people mentally simulate implicit
motion, going beyond what they see in the pictures and preparing
for what is coming next (Freyd, 1983; Hubbard, 2005). Language
is no exception: the linguistic units we process (at different
levels: phonemes, words, syntactic constituents) may be expected
or unexpected, depending on preceding context. The difference
between expected and unexpected stimuli is determined by their
frequency and conditional probability given preceding context.
Surprisal is a function of the input’s conditional probability given
preceding context, corresponding to how predictable the input
is, and has been shown to influence processing costs as well as
production choices (Hale, 2001; Levy, 2008).

Salience has been identified with (e.g., Rácz, 2013) or at
least related to surprisal / predictability (e.g., Blumenthal-Dramé
et al., 2014), and given the success of information-theoretic
models of language it would be tempting (and theoretically
elegant) to reduce salience to surprisal. While it is clear that
both predictability and salience(s) affect language processing, the
relationship between the two has not been adequately elucidated,
leaving the question open of whether salience can be reduced to
surprisal. The main goal of this review is to address this question
by disentangling the notions of salience and predictability and the
role they both play during linguistic processing, distinguishing
between their cognitive correlates and identifying their interplay.

The first challenge to face is undoubtedly a lack of
terminological consistency among linguists: while in visual
cognition the term salience refers to bottom-up stimulus-driven
perceptual salience, linguists use the term to refer either to
bottom-up, perceptual properties of incongruous stimuli (low-
predictability stimuli, expected to require additional processing
effort, Hanulíková et al., 2012; Blumenthal-Dramé et al., 2014),
or to top-down, discourse-driven properties of accessible,
congruous or recently accessed entities (high-predictability
stimuli, expected to facilitate processing, Claus, 2011). This
inconsistency leads to potentially contradictory hypotheses on
the relationship between predictability and salience (salience
corresponds to low-predictability vs. salience corresponds to
high-predictability).

The second challenge pertains to the interaction between
high- and low-level representations involved in language
processing. Predictability-based approaches to language

comprehension have shown that high-level information (e.g.,
what we know about the speaker or the situation) might influence
lower-level predictions, at a phoneme or word level. For example,
because of our world knowledge including the information that
men do not get pregnant, when we listen to a man’s voice we don’t
expect him to say he’s pregnant (van Berkum, 2009). However,
the interplay between low- and high-levels of processing and
representation has not been explicitly modeled. This interplay
becomes more clear if we factor in the role played by attention.
For example, people can overlook very unexpected events if
they are paying attention to other aspects of the scene: if people
are asked to count passes in a basketball video, they will not
notice a person in a gorilla costume walking across the scene
(inattentional blindness effect, Simons and Chabris, 1999).
Similarly, if asked How many animals of each kind did Moses put
on the Ark? (Van Oostendorp and De Mul, 1990) people might
be too focused on the high-level task of answering the question
to notice that, at the word-level, Noah should be in the place
of Moses (see Sanford and Sturt, 2002, for a review of similar
phenomena).

We will argue that the comprehender’s attentional focus
weights surprisal effects from one level or another, depending
on the current goals and on perceived rewards. The Predictive
Coding framework (Rao and Ballard, 1999; Friston, 2010; Clark,
2013) provides a unified view which can clarify the interplay
between low- and high-levels of processing and between bottom-
up, stimulus-driven salience and top-down, goal-directed
attentional control, and has the potential to reconcile low-level
computations of surprisal, high-level representations, and goal-
mediated attentional control.

We first give a brief overview of studies providing evidence for
predictability-driven language comprehension, with a particular
focus on recent results from information-theoretic approaches
(Section 2). We then address the notion of salience (Section
3), first by drawing from work in visual cognition and then
surveying the different facets of this notion in linguistics, seeking
for parallels with visual cognition. We look at visual cognition
because predictability and salience are arguably relevant to many
cognitive domains (such as vision and language) and reflect
very basic properties of cognition, but also because the field of
visual cognition provides us with tools and categories which have
been extensively modeled and discussed and have the potential
to bring some clarity in the rather contradictory terminology
employed in linguistics. We find that work on salience uncovers
aspects of linguistic processing that models of surprisal tend to
overlook, namely the role of attention,mediated by the perceiver’s
category system, by relevance to current goals and by affect. We
then focus on recent work in the Predictive Coding framework,
and on how surprisal and attention can be understood within this
framework (Section 4). Finally we discuss how surprisal models
can be extended to account for the role of salience and attention
(Section 5).

2. PREDICTABILITY AND LANGUAGE

Every linguistic stimulus we process comes with a context: for
example a visual scene, or a previously processed language
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input, or the situation we are in. Depending on previously
processed contextual information, a stimulus can be more or
less expected. Decades of experimental work in expectation-
based approaches to language processing (e.g., Altmann and
Kamide, 1999; Trueswell et al., 1994; Elman et al., 2005) have
shown that comprehenders draw context-based expectations
about upcoming linguistic input at different levels: they build
expectations for the next word (Morris, 1994; Ehrlich and
Rayner, 1981; McDonald and Shillcock, 2003), but also for
their phonological form (DeLong et al., 2005) and gender
inflection (van Berkum et al., 2005), for syntactic parses (Spivey-
Knowlton et al., 1993; MacDonald et al., 1994; Demberg and
Keller, 2008), for discourse relations (Köhne and Demberg,
2013; Drenhaus et al., 2014; Rohde and Horton, 2014), for
semantic categories (Federmeier and Kutas, 1999), for typical
event participants (Bicknell et al., 2010; Matsuki et al., 2011),
for the next referent to be mentioned (Altmann and Kamide,
1999), for the next event to happen in a sequence (Chwilla and
Kolk, 2005; van der Meer et al., 2005; Khalkhali et al., 2012),
and for typical implicit events (Zarcone et al., 2014). The effects
of predictability are measurable, as expectation-matching input
facilitates processing, and deviation from expectations produces
an increase in processing costs. Predictable words are read faster:
they are fixated for less time and are more likely to be skipped
than unpredictable words (Ehrlich and Rayner, 1981; Balota
et al., 1985; McDonald and Shillcock, 2003; Frisson et al., 2005;
Demberg and Keller, 2008); also, the amplitude of the N400
event-related potential increases in a graded way as a function
of a word’s predictability (Kutas and Hillyard, 1984; Federmeier
and Kutas, 1999; Kutas and Federmeier, 2011; Frank et al., 2013).

These and more studies have shown that during language
processing comprehenders do not just rely on transitional
probabilities between words (McDonald and Shillcock, 2003;
Frisson et al., 2005) but exploit various sources of information
to narrow down predictions for upcoming input, such as verb
subcategorization biases and thematic fit (Trueswell et al., 1993,
1994; Hare et al., 2003, 2009; van Schijndel et al., 2014), verb
aspect (Ferretti et al., 2007), but also visual context (Kamide
et al., 2003), generalized knowledge about typical events and
their participants (Ferretti et al., 2001; Bicknell et al., 2010),
knowledge about scenarios (van der Meer et al., 2002, 2005;
Khalkhali et al., 2012), discourse markers (Köhne and Demberg,
2013; Drenhaus et al., 2014; Xiang and Kuperberg, 2015), and
pragmatic inferences about the speaker’s identity and status (van
Berkum et al., 2008). These different types of information are
drawn upon by language comprehenders at multiple levels of
representation (syntactic, lexical, semantic, and pragmatic) at
each point in processing to reach a provisional analysis and
build expectations at multiple levels based on this provisional
analysis (van Berkum, 2010; Kutas et al., 2011; Kuperberg, 2016;
Kuperberg and Jaeger, 2016). The flow of information goes both
ways: the encountered input activates high-level representations
in a bottom-up fashion (e.g., triggering expectations for new
syntactic structures, event knowledge, scenarios), and, depending
on contextual information, high-level representations influence
low-level predictions (Kuperberg, 2016). For example, knowledge
about events and their participants cued by previous context (The

day was breezy so the boy went outside to fly a...) determines a
prediction for a word (... kite) but also triggers expectations for a
phonological realization of the article against another (a kite / an
airplane, DeLong et al., 2005).

2.1. Models of Surprisal
Information-theoretic notions, such as surprisal (Hale, 2001;
Levy, 2008), have been proposed to account for the relationship
between predictability and processing costs. Surprisal is a
function of the input’s conditional probability given preceding
context, corresponding to how predictable the input is and how
much information it carries (highly predictable input conveys
little information):

Surprisal(linguistic_unit) = − log P(linguistic_unit|context)

The surprisal of a word is equivalent to the difference between
the probability distributions of possible utterances before and
after encountering that word (Kullback-Leibler divergence),
quantifying the amount of information conveyed by that word
(Levy, 2008). Surprisal Theory has sought to account for certain
patterns in language usage as well as for behavioral correlates
of cognitive load during comprehension, with the underlying
linking hypotheses that cognitive load is proportional to the
amount of information conveyed by the input (its surprisal) given
preceding context, and that the speakers’ production choices
tend to keep the amount of information constant (Uniform
Information Density Hypothesis, Jaeger and Levy, 2007, see
also Jurafsky et al., 2001; Gahl and Garnsey, 2004). Surprisal
can be modeled at different levels (phonemes, phrases, words)
and is often estimated using relatively simple statistical models
such as n-gram language models or Probabilistic Context-Free
Grammars (Hale, 2001; Demberg and Keller, 2008; Frank, 2009;
Roark et al., 2009). A word’s surprisal has been shown to correlate
with its reading time (Hale, 2001; Demberg and Keller, 2008;
Levy, 2008; Fossum and Levy, 2012; Smith and Levy, 2013; van
Schijndel and Schuler, 2015) and with the amplitude of the N400
at the word (Frank et al., 2013).

2.2. Limitations of Models of Surprisal
A surprisal-basedmodel is typically defined by the linguistic units
it takes into consideration and by what level it can condition on.
Typically, surprisal-based models do not tackle the problem of
how different levels of representation interact with each other, as
the probability of a linguistic unit (e.g., a phoneme, a phrase, a
word, a situation model) is conditioned on the preceding units
at the same level (e.g., preceding phonemes, phrases, words,
situation models). Comprehenders, though, exploit information
at different levels to build expectations for upcoming input. There
have been some attempts at integrating surprisal estimates with
a model of semantic surprisal (Mitchell et al., 2010; Frank and
Vigliocco, 2011; Sayeed et al., 2015), but not a unified account
showing how the probability of lower-level units (e.g., perceptual
features) can be conditioned on higher-level units (e.g., situation,
world knowledge) to predict processing costs, or how to exploit
higher-level information to predictively pre-activate information
at lower levels of representation (Kutas et al., 2011; Kuperberg,
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2016). We will argue that such an account should include the role
played by attention in shifting the focus between different levels
to determine at what level surprisal influences processing costs.

Surprisal-based models rely on the linking hypothesis that
high surprisal corresponds to high processing costs. But does
this relationship between surprisal and processing cost always
hold? Kidd et al. (2012) have shown that infants focus their
visual attention to sequences whose complexity (surprisal) is
neither too low nor too high, but just right, that is, it falls
within certain optimal complexity margins (this effect is known
as the Goldilocks effect). Arguably, some sort of Goldilocks
effect also affects the attention of adult comprehenders, who
react to extreme values of the complexity/predictability spectrum
by diverting their attention from extremely complex stimuli
that is too demanding or unpredictable (for example, when
they are pushed beyond their memory capacity, see Nicenboim
et al., 2015, or when they hear a foreign language), or from
extremely predictable stimuli. For example, utterances about
very predictable events (“John went shopping. He paid the
cashier”) may trigger pragmatic inferences (John is a shoplifter,
Kravtchenko and Demberg, 2015), simply because we expect
our interlocutors to be informative (if they think it’s worth
mentioning that John paid the cashier, it must be an exceptional
event). Also, as noted by van Berkum (2010), “predictions
are even useful when they are wrong”: less expected (marked)
combinations (e.g., a cleft sentence construction) may be a way
of marking the delivery of a message as worthy of extra attention,
thus easing the processing burden on an otherwise surprising
stimulus. Previous context may also lead the hearer to expect
surprise, e.g., You’ll never believe it! The thing John was brushing
his teeth with was a knife the day before yesterday. (Futrell, 2012).

A third point concerns the relationship between the model
we use to estimate surprisal, and the input’s probability of
occurrence in the world. As observed by Pierrehumbert (2006),
(log-)frequencies of occurrences, while going a long way in
explaining processing costs, do not tell us the whole story:
between the frequencies of events and the frequency ofmemories,
“lies a process of attention, recognition, and coding which is not
crudely reflective of frequency.” What we store in our memory,
and then exploit in expectation-based processing, depends on
where our attention is focused, on what stimuli we consider
relevant but also on what valence we associate with them.We will
argue in Section 4 that we need to factor in the role played by the
affect system, that is the neural circuitry that processes valence
in the brain, to fill the gap between probability distributions of
events in the world and our memory’s probability distributions.

2.3. Bayesian Surprise and the

Snow-Screen Paradox
Surprisal does not quantify how useful or relevant the stimulus is,
but solely how predictable it is. Itti and Baldi (2009) introduced
a Bayesian theory of surprise, which weights the predictability
of a stimulus by its usefulness or relevance, determining how
unexpected we perceive the stimulus to be. The observer’s
background beliefs (for example, the probability of seeing CNN
or BBC when turning on the TV) are represented as a prior

probability distribution, which is updated using Bayes’ theorem
as new observations are made (e.g., CNN is on). Bayesian
surprise is the difference (Kullback-Leibler divergence) in the
belief distribution before and after an observation, indicating
howmuch the observation changed our beliefs about the world. If
CNN is the most expected outcome given our prior beliefs, when
we turn on the TV and see CNN the surprise will be minimal. If
BBC is shown instead, there will be a small amount of surprise
and a subsequent belief update. Every subsequent change on the
screen (a newscaster’s mouth moving, a commercial break) will
also update our beliefs and thus our predictions about upcoming
TV content accordingly.

Itti and Baldi (2009) illustrate the difference between surprisal
and surprise using the so-called “snow-screen paradox”: if a
random pixel pattern (known as snow or static) appears when
we turn on the TV or while we are watching it, we will be
highly surprised, because this outcome is extremely unexpected.
At a high level, our belief that the snow would appear was
very low (high surprise). At a low level, the pixel configuration
before the snow would not have helped us predict the random
black-and-white pixel configuration when it first appeared (high
surprisal). Also, the snow is interesting at a high-level, because
it signals a malfunction, so, after observing it, we will experience
a large shift between prior and posterior distributions, strongly
favoring the snow against other channels. But if the snow persists
after the belief update, it is no longer interesting, because it is
now the most expected outcome based on our updated belief
(low surprise). At a pixel level, though, the snow frames are
still continuously changing at random, making it impossible to
predict the status of any pixel at any moment (high surprisal). In
Itti and Baldi’s words (2009, p. 1297), “random snow, although in
the long term the most boring of all television programs, carries
the largest amount of Shannon information” (that is, surprisal).
Bayesian surprise differs from surprisal in that it quantifies
the belief update of the model given the observation, whereas
surprisal quantifies how much information the observation
conveys (how predictable it is) given a current model, without
taking into account a model update.

Griffiths and Tenenbaum (2007) also argue that
surprisingness / interestingness rather than mere low probability
determines the difference between a simply unlikely event and
what we consider to be a coincidence: a coincidence (e.g., many
coin flips, all turning out to be heads) is not only an unlikely
event, but it is an event which is less likely under our currently
adopted explanation for the observed state of things than under
an alternative explanation (the coin is unfair, or the person
flipping the coin can magically control it), which nevertheless
does not have enough support to be adopted through a belief
update. If interesting coincidences continue to occur, and if
we pay attention to them, then the coincidence can turn into
evidence and the alternative hypothesis can be supported via a
belief update.

The snow-screen paradox shows that the level of
representation that is most relevant to us determines how
affected we are by one outcome or the other, and so does our
category system: the snow is only interesting at its onset insofar
as it signals a malfunction, but its random pixel changes have
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no relevance for us. If the observer neither understands English
nor knows about different English-speaking channels, both CNN
and BBC are categorized as TV channels I don’t understand, and
it makes very little difference in her belief update which one is
showing. Similarly, language learners initially filter the L2-input
(and try to build predictions about it) using the categories in
their L1, which in turn determine what is surprising in the
L2-input and what is not. Also, they rely heavily on L1-L2
similarities, for example by exploiting overlapping categories in
the lexical aspect domain or in the grammatical aspect domain
(depending on what dimension is marked in their L1) in learning
the tense-aspect system of the new language (Izquierdo and
Collins, 2008; Shirai, 2009). Learners do not pay attention to the
snow in L2, that is to stimuli that are highly unpredictable to
them because they are beyond their level, but focus on stimuli
which they have a meaningful category for (see also Palm, 2012).

In a similar vein, Relevance Theory (Sperber and Wilson,
1986; Wilson and Sperber, 2004) argues that comprehenders are
driven by a search for relevance, under a presumption of optimal
relevance. As the goal of comprehension is to construct a plausible
hypothesis about the speaker’s meaning, stimuli are optimally
relevant if and only if (1) they are compatible with what we
know of the communicator’s abilities and preferences and (2)
they are worth the audience’s processing effort, because they
contribute to confirming or correcting our hypotheses about the
speaker’s meaning (Wilson and Sperber, 2004). Stimuli that are
not relevant enough or that do not yield any cognitive effect (that
is, do not confirm a hypothesis or correct a mistaken assumption
about the speaker’s meaning) are disregarded as not worth the
processing effort. Snow stimuli are not worth the processing effort
as they do not have any effect in confirming or correcting our
hypotheses.

Summary
Predictability-based models have been very successful in
accounting for processing costs during language comprehension,
but (at least in their current implementations) they seem to have
overlooked some aspects of linguistic processing, which suggest
that the unexpectedness of a stimulus may not be the only factor
determining how useful, interesting or difficult the stimulus is.
In the next section, we will pinpoint these aspects in terms of
salience and attention. In order to do so, we will first clarify
some terminological issues related to salience in linguistics and
its relation with predictability.

3. SALIENCE IN VISION AND SALIENCE IN

LANGUAGE

Salience is a widely used term in linguistics, often referring to
very different aspects of language comprehension and production
(Chiarcos et al., 2011; Blumenthal-Dramé et al., 2014), such
as the acoustic salience of the linguistic input (Rácz, 2013) or
of the visual salience of a scene during language-relevant tasks
(Kelleher, 2011), but also the discourse salience of referents
(Osgood and Bock, 1977) or the salience of entities in the
described situation (simulation-based or situation-based salience

Claus, 2011). As with visual cognition, language understanding
also seems to be influenced by low-level properties (of the visual
scene or of the linguistic stimulus) and by high-level conceptual
representations and goals. While in visual cognition salience
is mainly used to refer to perceptual salience driven by low-
level visual properties, in linguistics the same term is used to
refer to two potentially contrasting properties of the stimulus
(Blumenthal-Dramé et al., 2014): for example, acoustic salience
is typically meant to be a low-level perceptual property of the
signal (depending on its transitional probabilities), attracting
attention in a bottom-up fashion as visual salience does, whereas
discourse and simulation-based salience typically exert a top-
down influence which makes certain upcoming input more
expected.

This terminological inconsistency is not completely
unmotivated, as we will see in Section 3.3, but it leads to
an apparent paradox when it comes to linking these models
to measures of processing cost and to relating salience to
predictability. Bottom-up salience, being a property of low-
predictability stimuli, is expected to require additional processing
effort (Hanulíková et al., 2012), whereas top-down salience, being
a property of accessible, high-predictability or recently accessed
entities, is argued to facilitate processing (Claus, 2011). We will
now address this inconsistency by capitalizing on work on visual
search in order to clarify the relationship between predictability
and salience.

3.1. Salience in Visual Cognition
Attention is a cognitive necessity: the amount of information
our optic nerve receives1 far exceeds what our brain can process
and transform into conscious experience. Attention filters out
the relevant information, easing the processing burden (Wolfe
and Horowitz, 2004; Awh et al., 2012). Attention is also an
evolutionarily beneficial trait: our survival depends on our ability
to filter and prioritize useful or interesting parts of our perceptual
experience (attention-capturing or salient parts) over overtly
predictable or uninteresting ones, in order to quickly identify
and react to potentially dangerous or rewarding stimuli. Research
in visual cognition has long focussed on pinning down factors
that drive attention (Mackworth and Morandi, 1967; Loftus and
Mackworth, 1978), and has identified two main components of
attentional deployment (see Itti and Koch, 2000, for a review): a
bottom-up, fast mechanism based on the stimulus salience and a
slower, top-down mechanism based on goals and tasks.

Salience or saliency is defined by early features of the visual
stimulus, such as color, intensity and orientation, which are
claimed to drive preattentive selection (Koch and Ullman, 1985;
Itti and Koch, 2000), determining effects such as the pop-
out effect (observed when a target stimulus differs from its
background distractors on at least one feature dimension). Itti
and Koch (2000) describe a computational model of preattentive
selection based on saliency maps, where each unit is activated
based on low-level perceptual features and the competition
among active units determines a single, winning location (the
most salient one), predicting the location of gaze; the winning

1On the order of 108 bits per second, (Itti and Koch, 2000)
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location is then promptly inhibited and a new winning location
is chosen, predicting gaze at the next step, so that the map
is able to scan the visual input by visiting different parts in a
sequential fashion. Bruce and Tsotsos (2009) move from the idea
that efficient sampling should focus on the areas maximizing
information, and define salience in information-theoretic terms,
as local information (how informative / unexpected the content
of a region is, based on surrounding context). Salient parts of
the stimulus are outliers (Tatler et al., 2011), deviating from
the surrounding area, and are prioritized by efficient sampling
strategies as they carry the most information.

Salience is a good predictor of gaze during free visual search,
but top-down factors such as current goals, task relevance and
rewards (Folk et al., 1992; Yarbus, 1967; Hayhoe and Ballard,
2005) and recent selection history (see Awh et al., 2012, for
a review) have been shown to influence gaze and attention in
performance of a task and in presence of real-world scenes
with clear semantic content, competing with and prevailing
over bottom-up attention capture (Folk et al., 1992; Chen
and Zelinsky, 2006). The computational model in Rao et al.
(2002) captures such top-down effects by computing salience
as a function of the similarity between the low-level perceptual
features of the stimulus and a search target, creating a top-
down saliency map. Top-down factors pose the problem of
modeling local and global sources of information within the same
framework (e.g., Navalpakkam and Itti, 2005; Torralba et al.,
2006; Zelinsky et al., 2006), finding a suitable interaction between
bottom-up models such as the salience-based model in Itti and
Koch (2000) and top-down ones such as the target-based model
in Rao et al. (2002).

Torralba et al. (2006) argue that a holistic representation of
scene context needs to be taken into account when modeling
gaze in search tasks on real-world scenes: their Contextual
Guidance Model combines low-level saliency and global high-
level and context features (e.g., scene priors and tasks) to
create a scene-modulated saliency map selecting fixation sites.
Similarly, Henderson et al. (2009) show that visually non-salient
targets in expected locations are found more easily than salient
regions that are not likely target locations. According to their
Cognitive Relevance Framework, visual search is guided top-
down by cognitive relevance, that is by the need of the cognitive
system to make sense of the scene (based on task, semantic
knowledge about the type of scene and episodic knowledge about
the particular scene being viewed): objects will be prioritized
depending on current information-gathering needs over their
low-level visual salience.

Work in visual cognition has shown that the stimulus in
itself can capture the perceiver’s attention if it pops out from
the background due to its low-level perceptual features (its
visual salience), carrying information given its surround. Top-
down factors such as the perceiver’s goals, the features of a
search target, relevance to the task, recent selection history,
and cognitive relevance (prior semantic knowledge about the
scene and expected objects) can override bottom-up factors in
determining what locations capture attention. Linguistic salience
can also be defined as a property of linguistic stimuli “standing
out” from a ground. We will now show how this term has

been used in linguistics to refer to both low-level attention-
capturing properties of the stimulus and to top-down activation
of contextually-relevant elements.

3.2. Linguistic Salience as a

Stimulus-Specific Property
A common use of the term salience in linguistics indicates a
property of a sociolinguistic variable that makes it cognitively
prominent (Trudgill, 1986; Kerswill and Williams, 2002). For
example, Definite Article Reduction (DAR) in North England
is the realization of the definite article as a glottal stop before
consonants and vowels, which is cognitively salient (noticeable)
to a speaker of a different variety of English (Rácz, 2013). What
makes a variable in dialect D noticeable to a speaker of dialect
D′ is not its frequency per se, but a notable relative difference
between its occurrence in D and its occurrence in D′ that makes
the variable “stand out.” A speaker of D′ would not commonly
expect a glottal stop between vowels or before a stressed vowel:
the DAR occurs in positions in D where it is much less likely
to occur in D′, and therefore has a low transitional probability
(large surprisal) for a speaker ofD′. A variable that has cognitively
salient realizations can, in turn, be a marker of social indexation,
becoming socially salient.

These studies indicate that transitional probabilities may
guide attention by selecting interesting parts of the acoustic
signal, which crucially are those with high surprisal / high
information content. Similarly, marked (and less frequent)
prosodic or syntactic constructions (Lambrecht, 1994) can be
used by the speaker to direct the listener’s focus on a part of
the signal, emphasizing it by way of the low predictability of the
construction (e.g., It was Moses who put two animals of each kind
on the ark, see also Givón, 1988). Acoustic salience and syntactic
focus are low-level properties of the linguistic signal that capture
the hearer’s attention in a bottom-up fashion (similarly to pop-out
effects in visual cognition) and that depend on the transitional
probabilities of the relevant segments, that is on their surprisal.
Identifying linguistic salience with surprisal is a tempting and,
arguably, a theoretically elegant option. Salience in linguistics,
on the other hand, has also been used to indicate aspects of
processing that are not as easily accounted for by models of
predictability and that we will now review.

3.3. Linguistic Salience as a

Situation-Driven Property
The term salience has been used in linguistics not only to refer
to the property of a stimulus that stands out from a perceptual
ground, but also to qualify entities that are prominent in the
discourse model or the situation and influence comprehension
in a top-down fashion, as in the case of discourse salience and
situation-based salience (also referred to as semantic-pragmatic
salience, see also Giora, 2003). The idea behind these notions of
salience is that, when understanding language, comprehenders
maintain in their working memory a model of the evolving
discourse context (Kamp, 1981; Asher, 1993; Kamp and Reyle,
1993; Grosz et al., 1995; Lascarides and Asher, 2007) or, in a
simulation-view of language comprehension, they run a mental

Frontiers in Psychology | www.frontiersin.org 6 June 2016 | Volume 7 | Article 844

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Zarcone et al. Salience and Surprisal in Language

simulation of the described situation (Zwaan and Radvansky,
1998). If perceptual attention is necessary because we cannot
focus on every aspect of the stimulus simultaneously, here the
focus is on a different cognitive necessity, that is the limited
capacity of our working memory: “only a few elements of
the situation are available at any one time, that is the most
salient ones at a particular time during processing” (Claus,
2011). Salience is then accessibility in the discourse or situation
model. High-accessibility entities are available for anaphoric
binding and are likely to be mentioned in upcoming context
(Grosz et al., 1995; Osgood and Bock, 1977; Levelt, 1989;
Vogels et al., 2013). Discourse- and situation-based salience drive
top-down predictions (derived from high-level information,
be it the discourse model or the situation model) for what
is going to be mentioned next, that is high-predictability
entities.

Several factors may make an entity cognitively
accessible / salient. An entity may be accessible because it
perceptually available in the shared visual context (Kelleher,
2011, see Section 3.4), because it is mentioned (and possibly
highlighted) in discourse2 (for example, if it is the subject, Vogels
et al., 2013), or because of a mental simulation of the described
situation. Consider this example discussed by Claus (2011):

1. John was preparing for a marathon in August. After doing a few
warm-up exercises, he put on / took off his sweatshirt and went
jogging. He jogged halfway around the lake without too much
difficulty. (Glenberg et al., 1987).

In the first version (put on), the sweatshirt is still part of the
situation involving John at the end of the story (it is part of
the Here and Now of the protagonist, Claus, 2011), whereas in
the second version (took off ) it is not: the entity’s accessibility
depends on the situational representation. The Here and Now of
the protagonist does not only include what is visible to her, but
also what she can act upon, what is relevant to her goals and to her
mental state (see also Carreiras et al., 1997; Radvansky andCuriel,
1998; Zwaan et al., 2000; Borghi et al., 2004), and determines
which elements are accessible and likely to be mentioned next.

Situation-based salience can drive predictions that are
different than those coming from lower-level representations.
Consider the following examples:

1. For breakfast the boys / the eggs would only eat / bury toast and
jam. (Kuperberg et al., 2003).

2. A huge blizzard ripped through town last night. My kids ended
up getting the day off from school. They spent the whole day
outside building a big snowman / towel / jacket in the front yard.
(Metusalem et al., 2012).

As in visual cognition, when the context evokes a clear scenario
(the breakfast scenario, the playing in the snow scenario),
relevant elements, perfectly congruent with the scenario, are
activated (eggs and eating in the first, snowman and jacket
in the second). In one case, though, the scenario-fitting

2Arguably, highlighting an entity through syntactic focus affects its bottom-up

salience. The acquired focus will then cause the entity to be salient in the discourse

model, exerting a top-down influence on predictions, see also Section 3.4.

element (the eggs would only eat and building a big jacket)
does not fit the verb’s selectional preferences: the higher-
level predictions coming from the scenario are incompatible
with lower-level predictions coming from the lexical semantic
level. The congruity with the scenario reduces the N400
effect, which is evoked by a semantic violation due to
the scenario-incongruent element (They spent the whole day
outside building a big towel) and by a verb which is not
supported by context (For breakfast the boys would only bury).
High-level salient representations are activated and generate
predictions for upcoming input even when they would be an
anomalous continuation from the lower, lexical-semantic level of
representation.

High-level predictions depend on generalized knowledge
about real-world events and their typical participants, which
is acquired both from first-hand participation or from second-
hand experience (including language) and stored in our long-
term memory (McRae and Matsuki, 2009). An interesting open
question, in line with the discrepancy between frequency of
events and frequency of memories which we brought up in
2.2, is how we map between our experience of these events
and our representations. When we experience people making
coffee, inferring the protagonist’s goals and intentions may
be as important as observing what things typically happen
in the sequence. We might remember better to use filtered
water rather than tap water if we know that the point is to
avoid limestone deposits in our coffee machine: knowing why
(inferring goals) may help us remember what is part of the
scenario, making a difference between an uninteresting detail
in the scenario and a relevant, even if infrequent, step in
the process. Between experience and memory there is again a
process of “attention, recognition, and coding,” mediated by the
affect system (see Section 4) and shaped by hypotheses about
what is relevant to us and to other people, that shapes our
memory’s probability distributions. Current models of surprisal,
which work on the linguistic signal as it is, currently lack a
mechanism to weight certain aspects of the signal more than
other.

We have classified existing notions of salience in linguistics
into two main categories, while also clarifying how they
relate to predictability-driven language processing: stimulus-
specific attributes, which attract the comprehender’s attention
in a bottom-up fashion, and situation- and discourse-driven
accessibility of entities, which guides the comprehender’s top-
down predictions for upcoming stimuli. These two categories
have something in common: they are properties of entities
“standing out” from a ground (perceptual in one case, cognitive
in the other) and are properties we rely on to deal with
limitations of our cognitive resources (attention in one case
and working memory in the other). Nevertheless, salience as
a stimulus-specific property is characterized as high surprisal,
whereas entities which are salient with regard to the discourse
or to the situation are highly predictable (low surprisal). We
will now clarify how one type of salience may influence the
other and interact with visual salience, and we will then
explain the interaction between bottom-up focus and top-down
predictions.
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3.4. Interactions between Bottom-Up

Visual and Linguistic Salience and

Situation-Driven Salience
Given that language comprehension and production often take
place within a non-linguistic, perceptual context, predictions
in language processing will in many cases be shaped by a
combination of linguistic and visual salience. Indeed, there is
ample evidence that speakers and listeners use stimulus-based
properties of the visual environment in language planning and
processing (e.g., Clark et al., 1983; Tanenhaus et al., 1995; Coco
and Keller, 2009; Koolen et al., 2015). It is less clear how stimulus-
specific visual cues interact with either bottom-up linguistic
salience or with top-down situation-driven salience. Results from
scene description experiments have suggested that visual cues
can tap directly into the lexical-syntactic representation of the
sentence, allowing them to interact with the lexical accessibility of
a reference to an entity (e.g., Tomlin, 1997; Gleitman et al., 2007).
More recent studies (e.g., Vogels et al., 2013; Coco and Keller,
2015), however, corroborate the view that visual cues only play a
role in the high-level global apprehension of the scene, which in
turn affects lower (lexical-syntactic) levels of linguistic processing
(Griffin and Bock, 2000; Bock et al., 2004). Hence, stimulus-
driven visual salience influences the situation model, but only
situation-driven salience in turn affects linguistic formulation.

In this view, low-level visual features help “set the scene,” using
attention to filter out what is important or relevant information.
In language production, this influences how information is
structured in an utterance (e.g., what is mentioned first). In
language comprehension, visual saliency cues may be used to
give weight to an entity (provided the listener has access to
the same visual environment as the speaker), so as to adjust
predictions about what will be mentioned next. Hence, what
starts as a perceptual bottom-up, high-surprisal cue can become
a top-down, high-predictability cue: a visually salient entity pops
out as surprising, which gives it a salient status within the
situation model; next, the mental representation of the salient
entity will be highly accessible by virtue of its high news value.
Consequently, this entity will be likely to be mentioned, and
hence is predictable. Salience is thus a way to describe what
is in the current focus of attention, even though in one stage
of processing this attentional focus may be due to a bottom-
up surprising stimulus, whereas in a later stage of processing
the same stimulus may be in focus because it is now highly
predictable.

Top-down predictions arising from low-level visual cues
may interact with predictions coming from other sources. For
example, bottom-up linguistic salience can also focus attention
on a certain entity, as when it is marked as new information or
as ‘in focus’ (in the information structural sense, as in “Once
upon a time there was a girl”). As pointed out in Section 3.3,
this may influence top-down accessibility at different levels of
representation (situation-level, discourse-level, lexical-syntactic).
In turn, each level of representation sprouts its own predictions
and production choices, such as ‘which topic will be discussed
next?’ (situation level) or “what linguistic form is appropriate
here?” (lexical-syntactic level). These predictions may be either in

line or in conflict with predictions induced by the visual context
(e.g., when the girl is either very visually prominent or not at
all), and hence may lead to reduced or increased processing cost,
respectively. In addition, linguistic saliency cues from different
levels of representation may be either in line or in conflict with
each other, which may show up as a modulation in correlates of
processing cost (as with the breakfast-eggs example).

In general, when multiple saliency cues from different sources
(visual, linguistic, bottom-up, top-down) can potentially be used
to weight parts of the perceptual input, they may affect language
planning and processing in different ways: they may influence
either the same level or separate levels of processing, and their
combined influence may show up as interactive or additive
effects, or one cue may override the others. Hence, the effect
of bottom-up salience on processing difficulty and production
choices can either be boosted or tempered by the integration
with other stimulus-based cues or simulation-driven predictions.
Crucially, whether one cue takes precedence over another is
highly dependent on current task goals. For example, visual
salience may play a different role in an object naming task than
in a memorization task or a visual search task, because different
parts of the scene will be relevant in each task (Coco et al., 2014;
Montag and MacDonald, 2014). Comprehenders will also use
their beliefs about the speaker’s intention to guide their focus of
attention.

In sum, comprehenders’ predictions as well as speakers’
production choices are influenced by different stimulus-based
and situation-based saliency cues at different levels of processing:
salience on a situation-model level may influence predictions
about the likelihood of mention of an entity, while local linguistic
predictions, such as which lexical form will be used, may be
influenced by salience on a more local, lexical-syntactic level
(Kaiser and Trueswell, 2008; Vogels et al., 2013). At the same
time, low-level, stimulus-based salience (surprisal) may also exert
an influence on high-level, situation-model salience, resulting
in a complex interplay between predictions at different levels
of representation. Finally, the weighting of all those different
saliency cues will be highly dependent on task goals and speaker
intentions.

Summary
Work in visual cognition has shown that the stimulus low-
level perceptual features (its visual salience) as well as top-
down factors (goals, tasks, cognitive relevance) determine
what locations capture attention. Salience-based approaches
to language do not typically tackle the interaction between
stimulus-specific properties of the linguistic signal and discourse-
and situation-based salience, often adopting a misleading
terminology by calling both salience, and ultimately are not
explicit with regards to the relationship between salience(s) and
surprisal. We have shown that some aspects of linguistic salience
(e.g., acoustic salience, markedness of prosodic or syntactic
constructions), which capture the comprehender’s attention in
a bottom-up fashion, can be easily conflated with surprisal, but
discourse- and situation-based salience cannot, as they are deeply
intertwined with goals, tasks, and attention.
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Predictability-based approaches go a long way in accounting
for processing costs, but current surprisal-based models of
language comprehension do not include a mechanism to focus
on relevant levels of representation or on relevant parts of
the stimulus based on the comprehender’s task or on the
recognition of the speaker’s or the protagonist’s goals. We will
now review the Predictive Coding framework, illustrating how
high- and low-level representations can influence expectations
at the relevant level of processing, how top-down information
can focus attention to particular stimuli and how stimulus
properties can in turn capture attention and influence top-
down predictions, and how attention, goals, and salience can be
reconciliated with surprisal.

4. THE PREDICTIVE CODING

FRAMEWORK

Early studies in visual cognition argued that “perception is
no passive sampling from external events” (Mackworth and
Morandi, 1967) and that there is “no perception without
recognition” (Hake, 1957). With the Predictive Coding
framework (Rao and Ballard, 1999; Friston, 2010; Clark,
2013) cognitive science completed a paradigm shift from the
view of the brain as a “transformer of ambient sensations into
cognition” to “a generator of predictions and inferences that
interprets experience” (Mesulam, 2008, p. 368). Predictive coding
is fully compatible with the results from predictability-based
approaches to language reviewed in Section 2 and has been
argued to be the most appropriate framework to shed light on
the interaction between high- and low-level representations in
prediction-driven language comprehension (van Berkum, 2010;
Kuperberg, 2016; Kuperberg and Jaeger, 2016). Additionally,
we argue that it provides a unique way to integrate surprise,
surprisal and attention, and is thus an ideal candidate to model
the interplay between salience and predictability.

In the Predictive Coding framework, the brain is
conceptualized as a hierarchical architecture in which high-
and low-level representations can influence predictions for
expected input, and top-down models predict the flow of sensory
data by modeling the source of the sensory input, that is by
actively generating a representation of the upcoming input
before perceiving it. The information flow is bidirectional:
perception involves explaining away the sensory input by
cascading predictions from high-level units down to lower-level
units, generating the desired activity in the units, and then
matching the predictions against the input and transmitting only
the prediction error back to the higher levels. The prediction
error or surprisal is the mismatch between the expected
representation and the perceived representation. For example, if
we are watching a video, our brain prepares for the next frame
by predicting a representation of the figure in motion in the next
stage of its movement. If the next frame depicts the expected
continuation of movement, then the prediction error will be
low, if the motion is interrupted, or changes trajectory, or if
the frame shows something completely unexpected, then the
prediction error will be high. Perceptually similar items and

items that tend to occur in similar contexts will share a high
degree of similarity in their representations. The prediction error
is transmitted by dedicated “error units” and is used in turn to
adjust future predictions to better match the input, resulting in
a continuous cycle of prediction and error correction (Rao and
Ballard, 1999).

The brain attempts to minimize prediction error, through
perception, action and attention. Perception minimizes
prediction error by trying to infer the nature of the signal
source from the varying input signal and extracting repeating
patterns and statistical regularities from its environment, guided
by the statistical history of events in our environment, and
action is used by the observer to move the sensors to resample
the world by actively seeking expected stimuli (for example,
by moving the body so to receive a better signal). But not all
error-unit responses have the same weight: attention is a means
to weight reliable / relevant error-unit responses more than
non-reliable / irrelevant ones (Clark, 2013). We will now see how
the brain encodes prediction as well as how it can use top-down
information to inhibit bottom-up information, maximizing
attention to task-relevant stimuli and suppressing task-irrelevant
ones.

4.1. Neural Correlates of Top-Down and

Bottom-Up Processes
Communication in the brain occurs through neural firing,
but, in order to parallelize operations, the brain operates
multiple simultaneous communication channels at different
firing frequencies (frequency-division multiplexing). Bottom-up
information from perceptual stimuli is generally thought to be
processed using high-frequency brain waves, such as those found
in the gamma band (30–100 Hz; e.g., Roux and Uhlhaas, 2014).
Top-down information, on the other hand, is generally thought
to be stored as low-frequency brain waves, as in the theta (4–7Hz)
or alpha (8–12 Hz) bands, and several studies have suggested that
lower frequencies serve to gate higher frequencies as a top-down
control mechanism (e.g., Klimesch et al., 2007; Sauseng et al.,
2010; Jensen et al., 2012; Roux and Uhlhaas, 2014).

Theta-band frequencies are thought to provide top-down
envelopes that modulate the activation of bottom-up sequential
information (Lisman and Buzsáki, 2008; Sauseng et al., 2009;
Holz et al., 2010; Roux and Uhlhaas, 2014). Essentially, the
phase of the lower frequency encodes sequence positions, so
when a high-frequency encoding of a stimulus is associated
with a particular phase angle (sequence position) in the low-
frequency signal, a corresponding association is made between
the given stimulus and the selected sequence position. During
each phase angle of the low-frequency brain wave, the amplitude
of any associated bottom-up neural firing is boosted, producing
a stronger signal for that percept. This mechanism, where the
phase of a given frequency modulates the amplitude of a higher
frequency, is called phase-amplitude coupling and uses frequency-
division multiplexing to distinguish separate operations and
time-division multiplexing to distinguish separate items (that is,
each item corresponds to a separate point in the low-frequency
phase).
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In contrast to sequence-based prediction, perceptual salience
is controlled by phase-amplitude coupling between gamma-band
and alpha-band frequencies (Jensen et al., 2002; Klimesch et al.,
2007; Sauseng et al., 2009; Bonnefond and Jensen, 2015). Alpha-
band waves generally inhibit other neural activation, so at
the peak of an alpha wave, other signals can be completely
suppressed. As the alpha wave transitions to a lower-power
phase of its cycle, it exerts less inhibitory influence on other
signals and can reveal those signals it would otherwise suppress
(Klimesch et al., 2007; Jensen et al., 2012). Conversely, as the
alpha wave transitions back to its peak, other signals will become
increasingly (re-)suppressed, which can produce an effect known
as attentional blink, whereby having an alpha-band signal at a
certain phase can inhibit or completely suppress processing of
a stimulus such that the subject will not perceive the stimulus
at all (Raymond et al., 1992; Olivers, 2007). Subjects seem to
exploit this mechanism by adjusting the phase and power of their
alpha waves in reponse to bottom-up observations, maximizing
exposure to task-relevant stimuli and maximally suppressing
task-irrelevant distractors (e.g., Worden et al., 2000; Sauseng
et al., 2005; Mathewson et al., 2009; Bonnefond and Jensen,
2012, though see Firestone and Scholl, 2015, for a dissenting
review).

Phase-amplitude coupling thus uses the phase of top-down
low-frequency control signals to increase the activation of
select bottom-up high-frequency information signals, which
literally increases the importance (salience) of those signals.
Therefore, the communication frameworks that underlie our
neurological operations seem to rely on simultaneous but
distinct top-down and bottom-up processing signals, which can
be independently measured during processing. For example,
a future study might test how the N400 is modulated
by varying target predictability (measurable by theta-gamma
phase-amplitude coupling) and by varying the amount of
target perceptual salience (measurable by alpha-gamma phase-
amplitude coupling) afforded by the chosen task. Such a
study would not have to rely on a priori, extrinsic measures
of predictability (e.g., computed from n-gram statistics or
incremental parsers) or salience (e.g., the number of words since
a previous referent mention) but could instead model the actual
probability and salience of each target and determine how those
factors (as actually manifested during the experiment) influence
processing.

Phase-amplitude coupling has already provided some support
for the Predictive Coding framework (in addition to a wide array
of other neurological evidence; see Lewis and Bastiaansen, 2015,
for a review of evidence from other neuralmeasures). Intracranial
electroencephalography (iEEG) studies (e.g., Zion Golumbic
et al., 2013; Fontolan et al., 2014) have shown that top-down
neural firing entrains to task-relevant auditory input, amplifying
relevant input while suppressing irrelevant input. These results
also suggest that top-down attention in auditory association
cortex is modulated as a function of bottom-up information
from primary auditory cortex. Thus, top-down frequencies tune
attention by focusing on aspects of bottom-up input that are
made relevant both by the task and by accumulated sources of
prediction error.

4.2. Attention and Goals
Attention balances the interaction between top-down predictions
and bottom-up influences, weighting reliable / useful sources of
prediction error more, and ultimately determining what levels
and what parts of the stimulus are relevant at each moment.
Attention is thus an ideal candidate to switch between levels
of processing, which can account for a number of task- and
goal-related effects in language comprehension.

Experimental work has shown that task influences the level
of processing: Chwilla et al. (1995) contrasted a lexical decision
task (is the target a Dutch word?) and a physical task (did the
target appear in uppercase?) and observed a semantic priming
effects (on the N400 and on reaction times) only when the
task required accessing word meaning level (lexical decision
task). Rayner and Raney (1996) showed that frequency effects
found in a reading task disappeared if participants were given
the task of searching for a target word in the text, while in
Kaakinen and Hyönä (2010) and Schotter et al. (2014) the
effect of frequency was instead increased in a proofreading task
compared to a reading-for-comprehension task. Schotter et al.
(2014) additionally showed that the size of the frequency effect
increased in the proofreading if misspelled words were non-
words, while the size of the predictability effect increased if the
relationship between words was crucial to identify spelling errors
(that is, if misspelled words happened to be real words and
the spelling mistake was only revealed by context). Xiang and
Kuperberg (2015) contrasted a reading-for-comprehension task
and a coherence rating task, showing that the coherence rating
task facilitated a deeper situation-level representation of context
and subsequent prediction of upcoming words. Tasks and goals
determine what level we pay attention to, which level is relevant
in the architecture and ultimately how detailed and specified our
predictions are.

4.3. Attention and Affect
Both the ability to predict what comes next and the ability to focus
our attention on relevant stimuli are evolutionarily beneficial
traits. The interoceptive and exteroceptive sensations perceived
by our body (affective bodily changes, Barrett and Bar, 2009;
Craig, 2009) determine the valence of perceived stimuli, that
is their being perceived as pleasant and rewarding or painful
and dangerous, which is possibly even more important for our
survival. Valence is arguably also involved in language processing:
van Berkum (2010) argues that language use, being an instance
of social interaction, is entrenched in valence and affect, which
arguably are part of the representations of not only emotionally-
loaded lexical items, such as abortion or euthanasia, but of all
lexical semantic content which is grounded in experience. The
affect system is the neural circuitry that processes valence, and
includes a broad set of cortical and subcortical brain areas such
as the amygdala, the ventral striatum, the orbitofrontal cortex,
the ventromedial prefrontal cortex, the cingulate cortex, the
hypothalamus, and autonomic control centers in the brainstem
(Barrett and Bar, 2009; LeDoux, 2000).

Valence is an integral dimension of perception and attention:
the neurotransmitter dopamine, a key player in motivated and
goal-directed behavior and in the resampling of stimuli that
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have been associated with rewards (reinforcement learning,Wise,
2004), is also activated by surprising stimuli, such as sudden
visual or auditory stimuli, that have never been associated
with rewards (Horvitz, 2000). Kakade and Dayan (2002) have
proposed that dopamine activations are novelty bonuses that
increase the probability of re-sampling not only typically
rewarding stimuli, but also surprising stimuli (see Barto et al.,
2013, for a discussion of novelty vs. surprise), acting as a
facilitator of exploratory action and perception. These properties
make dopamine an ideal candidate for encoding precision
of error units in the Predictive Coding framework (Fletcher
and Frith, 2009; Clark, 2013). Interestingly, dopamine is also
involved in the ‘stamping-in’ of memory (Wise, 2004), by loading
environmental stimuli with motivational importance. Attention,
affect and value drive learning, determining the strength of
learned representations and ultimately making learning possible.
The somatic marker hypothesis (Damasio, 1994) and, more
recently, the affective prediction hypothesis (Vuilleumier, 2005;
Barrett and Bar, 2009) and the interoceptive Predictive Coding
model (Seth et al., 2011) suggest that affect and valence do
not follow perception but instead are an integral part of
it, for example driving object recognition. In a similar vein,
Clark (2013) argues that nearly every aspect of perception is
permeated by goal- and affect-laden expectations, and that the
very division between emotional and non-emotional components
may prove to be illusory. The affect system is arguably also
the missing piece of the puzzle between physical experience
and memory, reflecting a process which is not just reflective
of frequency, but also of our attention processes and valence
systems.

Summary
The studies reviewed here show that surprisal is not the only
factor determining processing costs. The stimuli’s relevance to
the perceiver’s goals, their valence and, crucially in the case
of linguistic communication, their relevance to what we know
of the speaker’s abilities and preferences and their utility in
confirming or correcting our hypotheses about the speaker’s
meaning determine what we pay attention to and what we are
surprised by. At the two extremes of the predictability scale,
stimuli can turn out to be too predictable (thus incompatible with
what we assume to be relevant for the speaker’s communicative
goals), or too unpredictable (too costly and irrelevant, not worth
the processing effort, or impossible to accommodate within our
system of categories) and we may divert our attentions from
both. On the other hand, relevant, unattended stimuli can be
prioritized over task-irrelevant ones (for example, we can become
aware of a deer by the side of the road, Jensen et al., 2012), or
incongruent objects may capture our attention if their perceptual
salience is high enough (Coco et al., 2014). Tasks and goals
determine what level of processing is relevant and thus what
level we pay attention to. A linking hypothesis aimed at indexing
predictability and salience needs to account for these phenomena:
high-level surprise may only be influenced by the relevant level
of processing at each time, and surprisal at lower levels may not
influence the behavioral response (unless it surpasses a certain
threshold).

Predictive Coding provides an interesting framework
for reconciling low-level computations of surprisal, high-
level representations and hypotheses about the world and
attentional focus mechanisms. We have reviewed recent work
in neuroscience showing how our brain exploits multiple
simultaneous channels at different firing frequencies to process
perceptual stimuli bottom-up using high-frequency brain waves,
while top-down information, at low-frequency brain waves,
maximizes exposure to task-relevant stimuli by modulating the
activation of relevant bottom-up information and suppressing
task-irrelevant distractors. Attention is the mechanism we use
to weight error-unit responses (in response to high-surprisal,
attention-capturing input, or in response to relevant, interesting
input, or as a function of the stimulus valence) over less
interesting or informative ones. By weighting reliable sources
of prediction error, attention and affect are the filter between
perception and learned representations, and in the long-term
shape our memories and beliefs. In the next section we will
discuss in what way current surprisal models can be conceptually
extended to yield more accurate accounts of language processing
behavior.

5. IMPLICATIONS FOR MODELS OF

PROCESSING DIFFICULTY: SURPRISE,

ATTENTION, AFFECT

As discussed in this article, surprisal is a promising measure.
Nevertheless, if our goal is not only to measure the amount
of information contained in the linguistic signal, but also to
describe how this amount of information relates to human
processing difficulty, we need to also take into account effects of
attention, namely (a) attention shifts from extremely predictable
or too unpredictable stimuli, (b) the interplay of high- and
low-level representations during language processing, mediated
by attention and relevance, (c) the goal-dependent influence
of higher-level representations, and (d) affect and valence and
their influence on the learning of higher-level abstractions. We
have argued that predictability and attention find a natural
integration in the Predictive Coding framework, which accounts
for how and why comprehenders generate predictions at multiple
levels when processing language. In this framework, bottom-up
properties of the signal are integrated with predicted percepts
based on stored representations at multiple levels and grains
of representation (van Berkum, 2010; Farmer et al., 2013;
Kuperberg and Jaeger, 2016). During processing, a new percept
will in turn be used to generate updated predictions about
the next part of the input. The Predictive Coding framework
is however not an implemented computational model that
we can run on a new text (or multi-modal input) to obtain
processing difficulty predictions. Therefore, we will now propose
how a computational model of surprisal could be extended to
account for effects of attention. In particular, we argue that
each representational level (auditory / visual, lexical, structural,
situational) might need its own attention modulation.

Surprisal models are trained to accurately account for
upcoming words, that is, the objective function during training
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of such models is to minimize prediction error. Consider for
example an n-grammodel, which predicts the surprisal of a word
wi based on the preceding sequence of n words, formalized as

Surprisal(wi) = − log P(wi|wi−n..wi−1)

In n-gram models there is no explicit modeling of syntax,
semantic similarities, situational context representations or
world knowledge. These models might therefore miss important
generalizations or phenomena that are conditioned on words
outside a window of n preceding words. However, with a lot of
data and large contexts, many of the relevant statistics may be
learned and represented by the model implicitly. N-gram models
might therefore deliver good surprisal estimates for upcoming
words, i.e., they might successfully predict upcoming words.
Unfortunately, though, it is not clear how attention-based effects
could be implemented in a model where the representation of
linguistic knowledge is merely implicit. In such a model, the
surprisal estimates would represent a combination of prediction
errors and updates at all representation levels, i.e., they would be
an approximation of the overall prediction error of a hierarchical
architecture transmitting the prediction error up through all
higher levels, and passing new updated anticipatory activations
down. In order to adapt to a different task (e.g., reading for
comprehension vs. spell checking), the model would have to
be re-trained with a different objective function reflecting task-
dependent costs of prediction errors.

A potential solution for modeling the hierarchical prediction
process could therefore be in building models that also
have a hierarchical architecture. Models with richer internal
representations of linguistic structure and situational knowledge
have been recently proposed. For instance, syntactic surprisal
models internally represent syntactic structure (syntax tree t ∈ T)
to estimate the predictability of upcoming words by calculating
the difference in prefix probabilities (that is, the probability of
observing sentence prefix w1..wi) before vs. after observing a
word wi. As Levy (2008) shows, the formula is equivalent to our
the definition of surprisal− log P(wi|w1..wi−1).

Surprisal(wi) = − log
∑

t∈T

P(t,w1..wi)+ log
∑

t∈T

P(t,w1..wi−1)

There have also been attempts to further extend computational
models to capture topic context (e.g., Griffiths et al., 2007),
semantic surprisal (e.g., Mitchell et al., 2010) or situation and
event sequence knowledge (Frank et al., 2008; Venhuizen et al.,
2016). A situation model representing situations S compatible
with the prefix perceived so far and syntactic trees T that
are consistent with the sentence prefix w1..wi−1 could be
represented as3

Surprisal(wi) = − log
∑

s∈S

∑

t∈T

P(t, s,w1..wi)

+ log
∑

s∈S

∑

t∈T

P(t, s,w1..wi−1)

3S and T are chosen for the sake of the example, we do not intend to specifically

argue for cognitive representations of syntax trees.

A hierarchical model (see also Farmer et al., 2013; Kuperberg,
2016; Kuperberg and Jaeger, 2016) then allows us to calculate the
surprisal at each different level of representation. We can dissect
the overall joint prefix probability that we use to calculate the
information update from one word to the next in order to obtain
prefix probabilities with respect to each level of representation:

− log
∑

s∈S

∑

t∈T

P(t, s,w1..wi) = − log
∑

s∈S

∑

t∈T

P(s|t)

× P(t|w1..wi)× P(w1..wi)

The information update can thus be calculated separately for each
specific level of representation, and is equivalent to Itti and Baldi’s
(2009) Bayesian surprise for that level. With such a hierarchical
model, it would be possible to attach a separate linking theory to
each level of representation. These could then be used to model
the time course of processing, or specific ERPs.

In our review, we observed that attention is distributed among
incoming stimuli and processing levels, that goals may affect
processing and attention and that not all error signals, even if
large, will necessarily affect higher-level representations. We will
now briefly discuss how each of these aspects can be addressed
by a hierarchical model with separable linking theories per
representation level.

Attention is limited and hence has to be distributed among
different stimuli. The reviewed evidence also supports the idea
that not all representations and levels of processing need to
be actively “at work” to the same extent in all tasks, i.e., for
some tasks like spell-checking, others which are not relevant
to the task (e.g. coherence, meaning) may not get much
attention allocated to them, and contribute little to observable
processing difficulty. Sanford and Sturt (2002) make the case
for underspecified representations: we do not need to fully
specify the linguistic signal at all possible levels, but we only
need full specification for the levels of representation that are
in the focus of attention, whereas those which are not in the
focus of attention may be subject to more shallow processing
or incomplete pattern specification. Sanford and Sturt (2002)
also observe that sometimes underspecified representations lead
to errors, such as semantic illusions, which are easily avoided
by manipulating focus (e.g., It was Moses who put two of each
kind of animal on the ark. Bredart and Modolo, 1988). In
order to model phenomena like semantic illusions, the lexical
semantic representation layer for the actor (Moses/Noah) would
not be in the focus of attention during the critical region of this
stimulus, and hence elicit only a small (or no) prediction error.
The mismatch may therefore fail to propagate to other levels
of representation, and not affect overall interpretation (that is,
slip through unnoticed). The hierarchical model could specify
a different linking function for each level of representation. It
could then naturally account for task-dependent effects, such as
the different strengths of predictability effects for different tasks.

Another apparent paradox that we discussed in Section 2.3
was the snow-screen paradox (Itti and Baldi, 2009): processing
difficulty for an uninteresting fixed screen (e.g., a blue screen)
and a randomly-changing snow screen are intuitively similar,
even though the amount of surprisal of these two percepts
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is extremely different. While prediction error when viewing
a snow screen may be very large at the level of the visual
cortex, this prediction error does not serve to update higher-level
representations of the relevant semantics, as no interpretation
of exact snow-screen patterns exists in the viewer’s mind (the
relevant categorization that can react to the incoming prediction
error is not in place). The formulation of higher-level surprise
also makes it explicit that a prediction error at a lower level
only affects probability estimates at higher-level representations
in as far as those prediction errors also change higher-level
probability distributions: an exact pattern of snow might be
very unpredictable, but the probability distribution over TV
programmes P(TV_program|pixels) will not be affected by the
likelihood of the exact pixel arrangement in the snow (at
least not after already having perceived a few snow screens).
Hence, these higher-level representations do not show any
prediction error, and so the overall processing difficulty is
low.

A similar situation could occur when a comprehender
listens to somebody speaking in English (a language that the
listener understands) and then switches to Finnish (a language
she doesn’t understand). In that case, processing difficulty
would not go to infinity, but more likely she would stop
predicting and processing the Finnish input in-depth: while
there may be a very high prediction error at the word level,
this prediction error does not serve to update any of the
other representational layers, as it cannot be interpreted. During
L2 language acquisition, new higher-level representations are
learned. These can then “react" to certain input patterns from
lower levels. This mechanism would then also naturally explain
Goldilocks effects during learning, where learners only react
to some types of prediction errors, most easily those that
have representations in their own language as well, or those
that are at the just right level of predictability, providing a
theoretical explanation for observations in the language learning
literature.

6. CONCLUSIONS

Prediction is a key aspect of cognition and in particular
of language processing: comprehenders draw context-based
expectations about upcoming input at different levels, relying and
conditioning on multiple levels of representation at each point
in processing, and experiencing a decrease in processing costs
when the expectations are met and an increase when they are
not. Current surprisal models go a long way in accounting for
processing costs, but they still leave certain aspects unaccounted
for, namely (1) phenomena at the extremes of the predictability
scale (extremely high or low predictability), (2) the interaction
between high- and low-levels of processing, (3) effects of task
and goals, and (4) the influence of affect and valence. Work
on linguistic salience, by putting the emphasis on attention and
relevance, has the potential of accounting for these aspects, but

has not exhaustively elucidated the interplay of salience and
surprisal.

We have resolved terminological inconsistencies related
to salience in linguistics by showing that, while perceptual
acoustic salience and prosodic or syntactic focus can be
accounted for in terms of surprisal-driven bottom-up
attentional capture, discourse- and situation-based salience
require an account of goal-driven attentional deployment
that current models of surprisal lack. The Predictive Coding
framework provides an integral account of prediction-driven
perception, where perception, action, and attention share the
common task of minimizing prediction error, respectively
by trying to extract statistical regularities from the signal, by
moving the sensors to resample the world to actively seek
expected stimuli and by weighting reliable / goal-relevant
and affect-laden error-unit responses more than non-reliable
/ irrelevant ones. The Predictive Coding framework is thus
an ideal candidate to reconcile surprisal with attention and
salience and to account for how these guide comprehenders
in expectation-driven language processing at different
levels.

We argued that current models of surprisal need to
be extended to account for the role played by attention
and goals. This extension can potentially be achieved by
providing the model with richer internal representations of
linguistic structure, situational knowledge, event sequence
knowledge, and beliefs and by weighting predictions at
different levels with regard to their relevance, that is to the
way they affect the interpretation at higher levels. These
models would potentially be able to calculate surprisal at
different levels, modeling the comprehension process in more
detail and activating or inhibiting irrelevant processing levels
or irrelevant parts of the stimulus in order to model
processing difficulty as a function of task-mediated attentional
focus.
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