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The central nervous system (CNS) underlies memory, perception, decision-making, and
behavior in numerous organisms. However, neural networks have no monopoly on the
signaling functions that implement these remarkable algorithms. It is often forgotten
that neurons optimized cellular signaling modes that existed long before the CNS
appeared during evolution, and were used by somatic cellular networks to orchestrate
physiology, embryonic development, and behavior. Many of the key dynamics that
enable information processing can, in fact, be implemented by different biological
hardware. This is widely exploited by organisms throughout the tree of life. Here,
we review data on memory, learning, and other aspects of cognition in a range of
models, including single celled organisms, plants, and tissues in animal bodies. We
discuss current knowledge of the molecular mechanisms at work in these systems, and
suggest several hypotheses for future investigation. The study of cognitive processes
implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has
many implications for evolution, cell biology, regenerative medicine, computer science,
and synthetic bioengineering.
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INTRODUCTION

Survival in a complex, dynamic, and highly competitive environment requires biological systems to
make numerous decisions with respect to possible activities (Conrad, 1996; Holcombe and Paton,
1998). Evolutionary pressure to optimize decision-making has led to the inevitable exploitation of
past history (memory) and information processing (computation). Importantly however, decisions
are made at every level of biological organization. For example, multicellular organisms, such
as animals and higher plants, exhibit multilayer complex goal-directed behaviors also at their
cellular and subcellular levels. Underlying physiological systems must maintain homeostasis
and predict future conditions (Freddolino and Tavazoie, 2012) in the face of unpredictable
changes in environmental conditions, while cells must coordinate their activity in an exquisite 3-
dimensional ballet of embryogenesis and complex organ regeneration. At the extremes of the scale
of organization, dynamic self-organizing subcellular components like cytoskeleton and molecular
networks (Albrecht-Buehler, 1985; Craddock et al., 2012; for plant cells see Volkmann and Baluška,
1999; Barlow and Baluška, 2000) and colonies of organisms (Shapiro, 1998; Couzin, 2009) perform
similar functions in their own contexts. Here, “cognition” refers to the total set of mechanisms
and processes that underlie information acquisition, storage, processing, and use, at any level of
organization (Lyon, 2015).
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Memory is an essential component of these processes, at all
levels. For our purposes, memory can be defined as experience-
dependent modification of internal structure, in a stimulus-
specific manner that alters the way the system will respond to
stimuli in the future as a function of its past. This requires a labile
yet stable medium, to provide the necessary latency. The process
may or may not involve a degree of intelligence, in the sense
of the ability to compress prior stimuli into informationally-
compact representations (inference). In essence, sensory memory
is a message to one’s future self – a view reminds us that memory
is thus another instance of biological communication (which, as
exchange of signals, is ubiquitous among all levels of biological
organization). Put this way, we can see that in principle many
biological mechanisms can be exploited for this purpose. The
updates in the configuration (or state) of a system, as occurs also
during sensory memory formation in all organisms, is formally
known as “computation” in computer science.

These concepts are quite general. However, outside of the
unconventional cognition community (Calvo and Baluška, 2015)
or biological computation community (Adamatzky et al., 2008),
it is widely assumed that memory is the exclusive province of
brains, or even complex animals. Older work exploring these
issues in plants (reviewed by Gremiaux et al., 2014), non-neural
somatic tissues (Mackie, 1970), and even inorganic media (Bose,
1926), have been largely forgotten in favor of the remarkable
advances in recent cognitive neurosciences with their focus on the
brain. Nevertheless, plant cells are known to be able to use action
potentials to control their movements and behavior since times
when Charles Darwin and Jagadis Chandra Bose turned their
interest toward plants (Darwin, 1880; Shepherd, 2005; Baluška
et al., 2009a). Currently, surprisingly, higher plants are emerging
as behaviorally active organisms, enjoying bio-communication
and showing plant-specific cognition and intelligence (Trewavas,
2005, 2014; Karban et al., 2014a,b; Calvo and Baluška, 2015;
Calvo, 2016).

Here, we survey a wide-ranging literature on memory
and sensory systems-based cognition in organisms (biological
systems) lacking animal/human-type brains. Our goal is to
acquaint readers interested in cognition with numerous aneural
model systems in which this subject can be pursued, and
to draw the attention of bench biologists working on those
systems to cognitive, information-focused perspectives on the
mechanisms they are studying. Importantly, in discussing
cognitive performance in the various systems, we do not mean
the full-blown human-like cognitive performance, or human-
type of self-awareness and consciousness. We are avoiding
issues of the ‘Hard’ problem of cognitive science, and do
not claim anything like higher-order symbolic representations.
Our definition is purely functional and minimalist (Calvo
and Baluška, 2015), drawing attention to the similarities in
computational tasks performed by diverse biological systems,
at all levels of complexity, other than animal and human
brains. Figure 1 illustrates the full spectrum of cognitive levels
and capabilities upon which the various systems we discuss
can be placed (Rosenblueth et al., 1943). Our review begins
with a consideration of the familiar substrate of cognition:
neural dynamics, and of mechanisms that blur the boundaries

between neural and non-neural cell functions. We then
proceed through progressively more divergent cognitive systems,
considering molecular networks, single cell behaviors, networks
of cells in various tissues, and organism-wide information
processing during regenerative repair. We conclude with some
common threads of cognition across levels of organization,
which suggest a unified perspective on these highly diverse
systems.

NEURONS: THEIR POWERS,
EVOLUTIONARY HISTORY, AND
BEYOND

Recent work has begun to encompass cognition in ex vivo
systems, with studies that have shown training and learning in
cultured minimal neural networks (DeMarse and Dockendorf,
2005; Dranias et al., 2013; Pimashkin et al., 2013). Even in vivo, it
is increasingly recognized how much processing happens before
signals get to the brain of the central nervous system (CNS); a
recent example is the discovery that neurons in the skin perform
edge detection (Pruszynski and Johansson, 2014).

Importantly, CNS neurons do not embody cognition due to
any magical, unique property. Their computational powers derive
from the dynamics of networks of linked elements that propagate
and integrate signals, and the ability to alter connectivity among
those elements (network topology) based on prior activity. In
fact, these basic properties are present in biological systems
at many complexity scales (from subcellular protein networks
to coupled tissues). Might they too underlie some aspects of
cognitive-like information processing? Indeed, neurons did not
invent their special tricks – they merely optimized them for speed
to drive adaptive behavior. These functions, and the molecular
mechanisms that implement them – ion channels, electrical
synapses (gap junctions), and neurotransmitter molecules are all
ancient (Goldsworthy, 1983; Baluška, 2010; Brunet and Arendt,
2016; Moroz and Kohn, 2016). Neural networks evolved from
far older signaling pathways that orchestrated development,
physiology, and other cellular functions long before the CNS
arrived on the evolutionary scene (Buznikov et al., 1996; Levin
et al., 2006; Keijzer et al., 2013). Already simple cells of bacteria
enjoy sensory systems feeding into cognitive-behavioral circuits
and showing many other neural features (Miller and Koshland,
1977; Koshland, 1980; Lyon, 2015). Electrical long-distance
signaling and information exchange via spatially propagating
waves of potassium is synchronizing bacterial biofilms (Beagle
and Lockless, 2015; Nunes-Alves, 2015; Prindle et al., 2015).
Integrated bacteria within the biofilm community appear to
act as some kind of ‘microbial brain’. Obviously, the neuronal
communication has bacterial origins (Baluška and Mancuso,
2009).

The main principles by which neural networks store and
process information – plasticity, excitability, and experience-
dependent change (Daoudal and Debanne, 2003) are readily
applicable to numerous cell types. Indeed, the computational
powers of glia and other non-spiking cells in the brain are
increasingly appreciated in their contributions to mammalian
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FIGURE 1 | A scale of cognitive levels. There are many types of cognition, from simple reflexive behaviors all the way to systems that can internally model
themselves and their environment to compute counterfactuals and make complex choices. Various biological systems can be considered cognitive to the extent that
modeling them at one of these levels provides improved (more accurate or efficient) predictive and control capabilities. Reproduced from Rosenblueth et al. (1943).

cognition and intelligence (Oberheim et al., 2009; Goldman et al.,
2015). Astrocyte networks perform computations (Schummers
et al., 2008), and models of memory have long been proposed
that rely on non-spiking neurons (Aur, 2012), revealing that
neural-specific, discrete action potentials are not a pre-requisite
for memory dynamics.

At the same time, tissues other than neurons are able to
conduct the kind of signaling impulses that are considered the
sine qua non of cognition. For example, excitation and impulse
propagation have been shown in skin (Roberts and Stirling, 1971;
James and Soffe, 2011). The evolution of neurons from excitable
precursors has been reviewed elsewhere (Mackie, 1970; Baluška
and Mancuso, 2009; Baluška, 2010; Moroz and Kohn, 2016),
as have the many similarities between neurons and other cell
types (Bharti and Arnheiter, 2005; Yaar and Park, 2012). In this
overview, we cast our net even broader, examining examples
of cognition outside of the CNS domain of life (Calvo and
Baluška, 2015; Lyon, 2015; Calvo, 2016), with or without spiking,
in cellular networks of complex metazoans, or within single-
cells. We also review some of the mechanisms that underlie this
cognition which is inherent to cellular life at all levels of biological
complexity, and suggest a few novel experimental directions that
may exploit the deep lessons suggested by the ubiquitous nature
of aneural cognition.

CROSSOVER BETWEEN NON-NEURAL
AND NEURAL MECHANISMS

The interplay of neural and non-neural signaling has been shown
in several regenerative systems. Neural inputs are required for
amphibian limb regeneration (Singer, 1952; Kumar and Brockes,
2012), although curiously, this is not a hardwired requirement
but must be learned: limbs that grew without the presence of
a nerve later do not require nerve to regenerate, unlike normal
limbs. This phenomenon has been termed “nerve addiction”
(Yntema, 1959a,b; Filoni et al., 1995), extending the principle
of experience-dependent long term change to limb regeneration.
Neural inputs are also needed for maintenance of tissue structure
in the rodent tongue (Takeda et al., 1996; Sollars et al., 2002),
suppression of tumors in rabbits (Pawlowski and Weddell, 1967;
Pawlowski, 1970), and regulation of specific pattern in distal tail
regeneration in amphibia (Mondia et al., 2011).

Neural and non-neural information systems must cooperate
especially when pattern formation and memory intersect.
A unique model system for these studies is planaria, the
free-living flatworm (Gentile et al., 2011); this is a unique
model system that regenerates every part of its body (Reddien
and Sánchez Alvarado, 2004) and also possesses a true
centralized brain (Sarnat and Netsky, 1985; Pagán, 2014) and
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learning capabilities (Wells, 1967; Sheiman and Tiras, 1996;
Nicolas et al., 2008). In this model species, the dynamics
of behavioral memory can be studied during complete brain
regeneration [in the axolotl, this can also be done, albeit
with only partial brain regeneration (Pietsch and Schneider,
1969)]. Classical studies (McConnell et al., 1959; Corning,
1966), as well as more recent work performed using automated
analysis methods (Shomrat and Levin, 2013), showed that
memories in planaria survive decapitation – tail fragments
trained on a task regenerate brains and then show evidence
of recall of the original information. This requires the
body to store learned information and imprint it on the
nascent brain after it is rebuilt. The mechanisms of this
interaction are completely unknown, but offer an unprecedented
opportunity to study transfer between neural and somatic
memory systems.

MOLECULAR MECHANISMS OF
NON-NEURAL COGNITION

Memory, and often the intermediate processes of computation,
requires that “stimuli produce a permanent record written on the
irritable substance” (Semon and Simon, 1921). What underlying
mechanisms have been implicated in non-neural memory and
related processes?

One of the best candidates for mechanisms underlying
information processing at the single cell level is the cytoskeleton
(Albrecht-Buehler, 1985; Craddock et al., 2010; Sahu et al., 2013),
which has all of the necessary properties: it is a large, complex
structure that is readily modified by a variety of molecular
pathways (writing data), is interpreted by numerous motor
proteins and other machinery (reading data), and implements
a rich set of discrete transition states that could implement
computational operations (Hameroff and Watt, 1982; Lahoz-
Beltra et al., 1993; Volkmann and Baluška, 1999; Craddock
et al., 2012). The cytoskeleton has long been a favorite locus
of information storage and control in single-celled organisms,
where it regulates behavior (Eisenstein, 1967; Hamilton, 1975)
and serves as a non-genomic repository for permanent somatic
changes such as cell surface chirality changes (Nelsen et al., 1989).
The dynamic actin cytoskeleton behaves as excitable medium
(Khan et al., 2012).

Another medium for information processing is within
chemical networks, such as reaction-diffusion (RD) dynamics
that underlie pattern formation in embryogenesis (Kondo, 2002;
Kondo and Miura, 2010; Raspopovic et al., 2014). Recent work
has revealed that RD systems and similar excitable chemical
media can be designed so as to execute specific computations, and
are being used for the design of minimal cognition controllers
(Dale and Husbands, 2010) and other kinds of computation
including planning (Adamatzky et al., 2003; Adamatzky et al.,
2008; Costello et al., 2009). Remarkably, it was shown long ago
(Rosen, 1968) that Rashevsky’s 2-factor systems (a model for
neuronal excitation) is formally equivalent to Turing’s RD scheme
for self-organizing morphogenesis (Turing, 1952). Grossberg
then described extensive parallelism between signal processing

in chemical gradients during development and neural memory
and visual processing (Grossberg, 1978). RD systems are Turing-
complete (Scarle, 2009) and support semantical interpretations
(Schumann and Adamatzky, 2009), making them an excellent
candidate for complex computations. Recent work used in silico
evolution of chemical networks to show that simple, plausible
reactions can be found which perform associative learning and
Bayesian behavior which includes memory traces (McGregor
et al., 2012). These data are especially exciting in that they imply
that associative learning can readily evolve in metabolic, gene
regulatory, or intracellular signaling networks.

The transcriptional control machinery that guides
embryogenesis has also been modeled as cognitive processes.
Gene regulatory networks can be modeled as neural networks
(Watson et al., 2010), with genes representing nodes and
functional links representing inductive or repressive relationships
among those genes. That landmark study showed that changes to
the connections in the regulatory net represent a kind of Hebbian
plasticity (as genes whose expression is up-regulated in specific
environments tend to become co-regulated and thus expressed
together). In part due to this fire-together-wire-together process,
a GRN will develop an associative memory of phenotypes
selected in the past. This view sheds important light on the
relationship between homeostasis and evolvability and shows
that a transcriptional network can develop memory and recall
capabilities often thought to be reserved for classical cognitive
systems. As a consequence of memory, genetic networks can
exhibit predictive ability, enabling anticipatory behavior with
respect to physiological stimuli (Tagkopoulos et al., 2008).
A similar result was obtained for protein networks, showing
that signaling via the tumor suppressor P53 could be modeled
as a neural net (Ling et al., 2013), while MAP kinase pathways
implement specific decision-making processes (McClean et al.,
2007). Embryos make use of genetically encoded cellular
memory, for example in the case of HOX gene expression
patterns, which constitute a form of positional memory – “an
internal representation by a cell of where it is located within
a multicellular organism” (Chang et al., 2002; Rinn et al.,
2006; Wang et al., 2009), and hysteresis in Hedgehog protein
signaling (Balaskas et al., 2012), all of which are used to guide the
subsequent activity of cells as a function of prior “experience”.

Additional memory media include the extracellular matrix
(Becchetti et al., 2010; for plant cell walls see Humphrey et al.,
2007; Seifert and Blaukopf, 2010; Hamann, 2015) and chromatin
complex markings (Francis and Kingston, 2001; Maurange and
Paro, 2002; Ringrose and Paro, 2004), both of which are ideal
media for recording traces representing specific environmental
and/or physiological events. These are examples of internal
stigmergy – activity that leaves traces in a labile intracellular
or extracellular medium which can be read as memories in the
future by cells making decisions for migration, differentiation,
apoptosis, or signaling (Theraulaz and Bonabeau, 1999; Ricci
et al., 2007).

Importantly, many cell types communicate electrically, not
just excitable nerve and muscle (McCaig et al., 2005; Levin,
2007a,b, 2012a; Bates, 2015). Recent molecular data show that
developmental bioelectricity is an important modality by which
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cell networks process information that instructs patterning
during regeneration, development, and cancer suppression
(Levin, 2014a,b,c). Thus, one obvious candidate for cognition
outside the brain is via the same mechanism used in the brain –
bioelectrical networks (Levin and Stevenson, 2012; Mustard and
Levin, 2014). Indeed it is likely that the processing in the brain
is a direct extension (and speed optimization) of far older
mechanisms used originally for morphogenesis (Buznikov and
Shmukler, 1981; Levin et al., 2006). Developmental bioelectricity
in animal systems features slowly-changing, continuous voltage
changes as opposed to millisecond discrete (binary) spiking
usually studied in the brain. However, the brain also includes
non-spiking neurons (Victor, 1999) that have computational
compartments similar to the membrane voltage domains
observed in embryonic and other non-neural cells (Levin,
2007b; Adams and Levin, 2012). It has recently been proposed
(Levin, 2012b, 2013; Mustard and Levin, 2014) that non-
neural tissues support the same two types of plasticity as seen
in the brain: changes of connectivity via electrical synapses
(gap junctions) which corresponds to synaptic plasticity, and
changes of ion channel function which corresponds to intrinsic
plasticity (Marder et al., 1996; Turrigiano et al., 1996; Daoudal
and Debanne, 2003). In addition to computation via changes
in resting potential, which is a primary regulator of pattern
memory in embryogenesis and regeneration (Adams, 2008; Funk,
2013; Levin, 2014b), as well as of processing in the brain
(Sachidhanandam et al., 2013; Yamashita et al., 2013), ion pumps
such as the ubiquitous sodium-potassium ATPase, have been
suggested as computational elements (Forrest, 2014).

Most of these bioelectrically active systems are based on
ion dynamics at membranes which modify bioelectric fields
via activities of ion channels and transporters (Taylor, 1974;
Wayne, 1993, 1994; Hille, 2001). These membrane-associated
electric fields feed-back on membranes and associated proteins
(Jaffe, 1977; Tsong and Astumian, 1986; Westerhoff et al., 1986;
Bezanilla, 2002, 2006, 2008). They also control endocytosis and
vesicle trafficking (Antov et al., 2005; Baluška and Wan, 2012).
Relevantly, even biochemical reactions are under electric control
(Aragoněs et al., 2016; Xiang and Tao, 2016), as is transcription
(Pai et al., 2015b) and chromatin modification (Carneiro et al.,
2011; Chernet and Levin, 2014).

COGNITIVE CAPABILITIES OF SINGLE
CELLS

While the dominant model of neural-based cognition relies
on the signaling dynamics among networks of neurons, it’s
becoming increasingly appreciated that single neurons can
execute subtraction, addition, low- and band-pass filtering,
normalization, gain control, saturation, amplification,
multiplication, and thresholding with respect to the input-
output relations they implement (Koch and Segev, 2000).
Memory and computation is thus not exclusively a multi-cellular
phenomenon, and is not restricted to somatic neural cells.
Recent computational studies have revealed conditions under
which cells expressing ion channels can keep a stable memory

with respect to resting potential, and these conditions do not
specifically require neuronal cell identity – they can be fulfilled by
numerous cell types, somatic as well as free-living (Ramanathan
and Broach, 2007; Cervera et al., 2014; Law and Levin, 2015).

The amoeba of Dictyostelium discoideum migrate by extending
pseudopods in an alternating pattern. The specific pattern of
the pseudopods’ zig-zag behavior was recently shown to be
predictable by viewing the cell surface as an excitable medium.
In this model, the appearance of a pseudopod makes the local
cortex temporarily more excitable (a kind of potentiation),
while globally new pseudopods are inhibited. This model thus
includes a memory of previous pseudopod locations, and
quantitatively fits data from cell tracking experiments and the
known chemotactic sensitivity of these cells (Cooper et al., 2012).

Budding yeast also keep a history which influences their future
behavior – a memory of past events. They avoid pheromone-
induced cessation of cell cycle after a deceptive mating attempt
(failure to reach a putative partner cell within a specific time
period). The mechanisms of this are beginning to be unraveled
(driven by the dynamics of the maternally segregating G1/S
inhibitor Whi3), and the authors term the macromolecular
assemblies that mediate this memory “mnemons”, cellular
structures that encode previous environmental conditions
(Caudron and Barral, 2013). With respect to the search for the
molecular substrate of specific memories, this yeast work may be
ahead of similar efforts in the brain (Ungar, 1972, 1974a,b).

The flexible and versatile responses of bacteria to their
environment has drawn significant attention of synthetic,
molecular, and evolutionary biologists, as well as those interested
in unconventional computational media (Miller and Koshland,
1977; Koshland, 1980; Ben-Jacob, 2009; Norris et al., 2011). Single
bacteria are able to migrate toward beneficial targets, and away
from noxious stimuli. The control algorithm for this behavior has
long been the subject of investigation, with respect to the short-
term memory needed for following gradients (Vladimirov and
Sourjik, 2009) as well as “infotaxis” policies that do not require
gradient sensing (Vergassola et al., 2007). Especially exciting are
the recent findings that bacterial communities (biofilms) process
information and make decisions about nutrient distribution and
metabolism as an integrated whole, using ion channels (Prindle
et al., 2015) and a kind of volume transmission as occurs in
the brain (Agnati et al., 2006; Fuxe et al., 2013; Zhang et al.,
2013). Ciliates (protozoa) exhibit learning and a form of memory,
which even survives loss of nuclei and some cytoplasm (Gelber,
1962; Applewhite et al., 1969; Hamilton, 1975; Clark, 2013). The
mechanism is unknown, but may involve electrical signaling
(Applewhite, 1972; Kunita et al., 2014).

In addition to cells that make their living independently, single
somatic cells from metazoan organisms also exhibit memory
and decision-making (Albrecht-Buehler, 1985) during directed
steering (Albrecht-Buehler, 1982) – a capability that also extends
to cell fragments (Albrecht-Buehler, 1980) and even human
sperm that adjust their flagellar beat to reach the egg via calcium-
dependent tracking of chemical attractants (Alvarez et al., 2013).

The immune system has long been a paradigm of pattern
recognition and classification (Carter, 2000). While the
mainstream view of immune function is that of an evolutionary
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system driven by selection, a cognitive perspective has been
proposed (Cohen, 1992a,b) as an alternative theoretical
framework for understanding the body’s remarkable ability to
distinguish self from non-self and adapt via immunological
memory. It is interesting that the converse proposal has been
made as well, to understand brain dynamics via a selectionist
model (Fernando et al., 2012). Thus, in some sense, evolutionary
and cognitive dynamics could be parallel (isomorphic?) ways
to explain complex systems. If true in general, it may have
significant implications for evolutionary theory.

An interesting kind of cognitive process is revealed by
drug addiction. The increased tolerance with exposure is
desensitization (one kind of basic memory element). Drug
addiction reactions have been shown in somatic mammalian cells
in culture (Corssen and Skora, 1964; Manner et al., 1974; Higgins
et al., 1978), suggesting that this form of memory is not always a
body-level phenomenon that necessarily involves the brain.

SLIME MOLDS: BETWEEN
UNICELLULAR LIFE AND METAZOAN
BODIES

Physarum polycephalum is a slime mold that has been extensively
used in studies of biological information processing (Nakagaki
et al., 2004; Saigusa et al., 2008). By computing optimal paths
for nutrients throughout its syncytial body, the organism can
implement behavior that solves challenging spatial optimization
problems, such as solving mazes and finding efficient highway
layouts (Nakagaki et al., 2004; Saigusa et al., 2008; Adamatzky
and Alonso-Sanz, 2011). This organism shows how the internal
dynamics of morphogenesis, even at this primitive step toward
a multicellular bodyplan, can implement decision-making and
computation. It is particularly interesting that in this system, a
kind of variational (least-action, or minimization) principle is
explicitly implemented by a biological medium (Friston, 2010;
Friston et al., 2015), providing a much-needed “base case” for
starting to understand the common features of goal-directed
activity across levels of organization from cells to body structures
to organism behavior.

Physarum also shows evidence of memory. In their study of
the Traveling Salesman Problem (requiring an optimal strategy
for connecting regions in space), Zhu et al. (2013) found that
when two individuals were created by dividing one individual,
they remained correlated in their exploration even though they
were spatially separated, suggesting the presence of a long-term
memory in the intrinsic dynamics.

COGNITION IN PLANTS

Although plants are still considered generally to be outside of
neuronal and cognitive organisms, due to their lacking of animal-
type of neurons and brains, plant cells have many features which
are considered neuronal, including plasma membrane excitability
supporting action potentials, acentriolar microtubules, motile
Trans Golgi Networks, and synaptic-like actin-enriched cell-cell

adhesion domains (Wayne, 1993, 1994; Barlow and Baluška,
2000; Baluška et al., 2003, 2005, 2008, 2009b; Baluška, 2010).
Especially cells in root apices are very active in these neuronal-
like activities and act as brain-like command centers (Baluška
et al., 2004, 2009a,b, 2010; Baluška and Mancuso, 2009, 2013),
navigating growing roots in their search for water and mineral
nutrients in soil, and active root avoidance or escape from toxic,
stressful and dangerous situations (Burbach et al., 2012; Yokawa
et al., 2014; Yokawa and Baluška, 2015, 2016).

The classic studies on plants showing animal-like features
and activities were accomplished more that 150 years ago
by Charles Darwin, assisted with his son Francis Darwin,
and Claude Bernard (Darwin, 1880; Bancroft and Richter,
1930; Perouansky, 2012). Later, Jagadis Bose accomplished his
sophisticated experiments on plants, confirming and extending
the previous results obtained by Charles Darwin and Claude
Bernard (Shepherd, 2005). Despite the fact that plant action
potentials are known for more than 150 years now, and these are
known to control many plant processes (Wayne, 1993, 1994; Masi
et al., 2009; Volkov et al., 2010; Sukhov et al., 2011; Böhm et al.,
2016; Hedrich et al., 2016), plant action potentials are still ignored
by the mainstream. For example, there is no single mention of
plant action potentials in the book Plant Physiology by Lincoln
Taiz, which represent the most accepted view of plants in biology
(Taiz, 2010).

Claude Bernard performed many anesthetic experiments. He
expanded experimental materials from animals to plants. He
showed that the Mimosa plant (Mimosa pudica), closing leaves
upon touch, was unresponsive when exposed to a diethyl ether
atmosphere which immobilized mice. Claude Bernard arrived at
the conclusion that plants and animals share a common biological
principle that is disrupted by anesthetics. He hypothesized that
similarly as animals, also plants are able to actively sense their
environment. He called this ability plant “sensitivity”. In order to
test his ideas, he performed anesthesia on plants and the results
of these experiments were presented in 1878 in “Leçons sur les
phénomènes de la vie communs aux animaux et aux végétaux”
(Bernard, 1878; Bancroft and Richter, 1930). Later, sensitivity of
plants to anesthetics was confirmed not only for Mimosa and
Dionea, but also for many other plants (Milne and Beamish, 1999;
De Luccia, 2012; Gremiaux et al., 2014).

Similarly as neurons, plant cells are excitable and plant-specific
action potentials serve for long-distance communication and
integration of plant bodies. Action potential also control rapid
plant organ movements such as closing the Dionea traps or
touch-induced movements of Mimosa leafs (Volkov et al., 2010;
Böhm et al., 2016; Hedrich et al., 2016). Our preliminary data
with Dionea traps suggest that anesthetics block action potentials
(Yokawa et al., in preparation). Moreover, action potentials
control also nutrient transporters in Dionea prey-stimulated
traps (Böhm et al., 2016; Hedrich et al., 2016). In the root apex,
the transition zone is very active not only in electric activities
(Masi et al., 2009), and synaptic-like cell-cell communication
(Baluška et al., 2003, 2004, 2005, 2009a,b, 2010; Baluška and
Mancuso, 2013), but also in sensory-based control of root growth
navigation associated with high electric activity. Root apex
navigation is based on complex computations as roots sample
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continuously huge amounts of abiotic and biotic information
from their environment in order to find water and nutrient rich
zones in soil; and to avoid dry, toxic and dangerous zones. Our
data suggest that root navigation is controlled via computations
accomplished at the root apex synapses and associated with
electric activities (Masi et al., 2009).

Plants are emerging as excellent biological computational
systems. For example, leaves maintain stable temperature near
their surfaces despite large fluctuations of temperature in
the atmosphere (Helliker and Richter, 2008; Pincebourde and
Woods, 2012). They relay in leaf stomata which acts as plant
thermostats tissue, with individual stomata acting as autonomous
units showing collective behavior (Hetherington and Woodward,
2003; Peak et al., 2004). In the case of plant leaves, stomata
are simultaneously the sensors of external information, the
processing units that calculate gas exchange rates and sensitively
regulate their controls. Plants solved the dilemma of optimal gas
exchanges via elegant parsimonious computational techniques in
which input, output, and processing are all accomplished by using
the same hardware.

Additional nice examples of plant computation include the
ability of plants to compute starch synthesis and degradation
rates (Scialdone et al., 2013; Webb and Satake, 2015), root
apex computation of numerous abiotic and biotic parameters
to navigate optimally root growth in complex environment of
patchy soil (Baluška et al., 2009a,b, 2010; Masi et al., 2009; Baluška
and Mancuso, 2013), as well as computations accomplished via
Dionea leaf traps (Volkov et al., 2010; Böhm et al., 2016). Action
potentials are relevant for most (perhaps all) of plant-specific
computations (Masi et al., 2009; Volkov et al., 2010; Böhm et al.,
2016; Hedrich et al., 2016).

In the root apex transition zone, cells and their membranes
oscillate in almost all their activities (Baluška and Mancuso,
2013). These root apex transition zones resemble presomitic
mesoderm segmentation clocks underlying vertebrate embryo
segmentation (Moreno-Risueno et al., 2010; Traas and Vernoux,
2010; Moreno-Risueno and Benfey, 2011).

ANIMAL CELL PHYSIOLOGY AS
INFORMATION PROCESSING

A number of non-neural cells have been shown to exhibit
memory, with respect to somatic position (Carlson, 1983; Chang
et al., 2002; McCusker and Gardiner, 2014) or differentiation
(Xiong and Ferrell, 2003), implemented via long-term stable
changes in bioelectric state (Marder et al., 1996; Turrigiano et al.,
1996; Rosen and Cohen, 2006) and transcriptional profile (Kragl
et al., 2009; Wang et al., 2009). These are now beginning to be
understood via physiological modeling and dynamical systems
theory that views memories as attractors in transcriptional,
bioelectric, or epigenetic state space (Huang et al., 2005; Cervera
et al., 2015; Law and Levin, 2015).

Moving up in organization, several tissues have been suggested
to exhibit memory. One is bone, which has many similarities
to a neural network, both molecularly and functionally (Turner
et al., 2002). For example, the neurotransmitter glutamate plays a

role in cell-to-cell communication among bone cells. Glutamate
of course is a key neurotransmitter for learning and memory
in the hippocampus. Bone cells exhibit habituation (to repeated
mechanical stimuli) and sensitization (to mechanical loading) –
two of the most basic components of memory. Skull bones react
quite differently to mechanical loading and hormones than do
long bones, and it has been speculated that the past history of
weight bearing imparts long-term cellular memory to the bone
cell network, manifesting as differential responses to a variety
of stimuli. A model involving long-term potentiation via the
NMDA receptor has been proposed to explain memory of past
stresses, and its subsequent influence over growth control, has
been proposed (Spencer and Genever, 2003; Ho et al., 2005).
Muscle comprises of some of the largest cells of animals, and
also process, store and retrieve information via muscle-specific
memory which can last from 15 years up to the entire lifetime in
humans (Bruusgaard et al., 2010; Gundersen, 2016).

A most interesting set of studies have examined the
phenomenon of cardiac memory. This is a clinically important
pathway, in which specific changes of heartbeat pattern can
persist stably (Otani and Gilmour, 1997; Goldberger and Kadish,
1999; Rosen and Plotnikov, 2002). This phenomenon has been
modeled as a simple memory-like quantity that determines
the relationship among the durations and amplitudes of action
potentials (Otani and Gilmour, 1997). Most importantly,
a specific mathematical model has been proposed for
cardiac memory, taken after Hebbian plasticity in the brain
(Chakravarthy and Ghosh, 1997; Zoghi, 2004).

The most recent addition to this body of work is the study
of pancreas physiology (Goel and Mehta, 2013), which studied
gap junctions (electrical synapses used for ionic communication
in the brain, heart, and other organs), and their role in
secretion of insulin from the pancreatic islets of Langerhans
in response to glucose stimulation. Gap junctions synchronize
oscillations of resting potentials among beta cells, and thus
control insulin secretion. Past measurements of gap junctional
conductance was unable to explain systemic properties, such as
diminished junctional coupling in type-2 diabetes. In contrast
to the prevailing tendency to focus on bottom-up views of
the molecules involved and their interactions, Goel and Mehta
viewed the process top–down, as a learning-like adaptation.
Modeling gap junctions as links in a network of beta cells,
subjected to homeostatic plasticity, they elucidated the system-
level properties of this tissue, explaining why reductions in
gap junction-mediated coupling in diabetes is necessary for an
increase in blood insulin levels following hyperglycemia. It is not
yet known if these mechanisms also underlie classical studies
by Pavlov and others (Gantt, 1974, 1981; Gantt et al., 1987) on
the classical conditioning of body organs to sugar, adrenaline,
histamine, and other physiological stimuli.

We next consider larger-scale multicellular systems, at the
level of organs or whole bodyplans (Levin, 2012b). Many species’
bodies exhibit pattern memory during regeneration (Baddour
et al., 2012; Lobo et al., 2014), and even transplanted organs
maintain spatial information, such as transplanted eyes which
send out optical axons to penetrate the brain on the side
corresponding to its former location in a donor animal (Koo

Frontiers in Psychology | www.frontiersin.org 7 June 2016 | Volume 7 | Article 902

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00902 June 17, 2016 Time: 13:17 # 8

Baluška and Levin Aneural Memory and Cognition

and Graziadei, 1995). It should be noted that one challenge to
multicellularity is the ever-present danger of cancer – defection
of somatic cells from the anatomical goals of the organism
toward more primitive “every man for himself ” behavior of
individual cells and tumors (Johnston et al., 1992; Vincent,
2012; Chen and He, 2016). The interplay between the tumor
and host has been analyzed using game theory (Dingli et al.,
2009; McEvoy, 2009), consistent with each being an autonomous
system with internal and external information channels, goals,
and functional capabilities. Control networks regulating cancer
have been analyzed from the perspective of learning (Gyurko
et al., 2013), which represents an interesting new area for further
research. Interestingly, recent data implicate in carcinogenesis the
same bioelectric mechanisms that orchestrate pattern regulation
and keep cells away from tumorigenesis (Chernet B. and Levin,
2013; Chernet B.T. and Levin, 2013; Yang and Brackenbury, 2013;
Bates, 2015).

SOMATIC PATTERN MEMORIES:
NON-NEURAL BIOELECTRICITY

The first task of any animal body is to assemble the progeny of
a fertilized egg cell into a specific 3-dimensional pattern during
embryogenesis. Then comes the need to maintain anatomical
integrity over the lifespan, despite individual cell senescence,
injury, and neoplastic conversion. Thus, long before animals
developed brains to execute adaptive behaviors, cells had to
have ways to coordinate their activity in an exquisite ballet
that self-assembles, and then continuously remodels and repairs,
a complex anatomical form. Some animals (e.g., salamanders)
can regenerate their limbs, eyes, jaws, hearts, and portions
of the brain (Sanchez Alvarado and Tsonis, 2006). Mammals
have reduced powers of regeneration, but deer regenerate antler
bone (adding up to 1 cm per day) every year, while humans
regenerate their livers, and children regenerate their fingertips.
Tails grafted onto the sides of salamanders slowly remodel into
limbs (a structure more appropriate to their new location), and
mammalian embryos can be split in half or combined together,
resulting in normal embryos (reviewed in (Mustard and Levin,
2014)). All of these capabilities require significant information
storage and processing, and many take place prior to (or without)
the presence of the CNS.

Embryogenesis, regeneration, and metamorphosis stop
precisely when the correct anatomical shape has been produced;
this is a process akin to goal-directed behaviors, in the sense
that the system can pursue multiple paths toward the same
(anatomical) goal state, can accommodate unpredictable external
perturbations (is not hardwired but flexible), and rests when
it is satisfied (can recognize when its goal is achieved). All of
these examples show the remarkable information processing
that cells carry out, in order to create and maintain specific
shapes (Levin, 2012b). Analogously to how brains implement
goal-seeking behavior via information processing, non-neural
cell networks process information about current and future
anatomical shape. While the brain operates muscles and glands
in service of activity in ecological space, the computational

processes of non-neural somatic networks control cell behaviors
(differentiation, migration, proliferation) to optimize the body’s
movement through morphospace (Stone, 1997; Rasskin-Gutman
and Izpisua-Belmonte, 2004; Newman and Bhat, 2009).

A primary goal of developmental biology, synthetic
bioengineering, and regenerative medicine is to learn to
understand and control patterning networks, for applications
in birth defects, organ regeneration, and cancer reprogramming
(Ingber and Levin, 2007; Doursat et al., 2013). In particular it is
crucial to tame the endogenous closed-loop pattern regulatory
systems (flexible remodeling and regeneration pathways), as these
offer the opportunity to exploit modularity to achieve needed
changes in growth and form without micromanaging the details.
What mechanisms underlie the ability of tissues to measure
large-scale shape, detect deviations from a “remembered” correct
target morphology, implement remodeling toward repairing
that shape, and know when to stop (Levin, 2011)? Recent
work has shown that as in the brain, these control networks
make use of ion channels, gap junctions (electrical synapses),
and neurotransmitters (Levin, 2012a; Tseng and Levin, 2013).
A parsimonious hypothesis is that this is no coincidence, and that
the brain learned its prodigious computational tricks from far
more ancient pathways, co-opting developmental bioelectricity
and optimizing it for the speed needed for behavior. While
the brain operates on millisecond-scale bioelectric spiking,
developmental bioelectricity involves steady, slow changes in ion
fluxes, resting potentials, and electric fields.

A long history of work implicated bioelectric events in
patterning (Jaffe, 1981; Nuccitelli, 2003; McCaig et al., 2005).
Recent advances in molecular physiology have revealed that
gap junctions, ion channels, and neurotransmitter pathway
molecules – workhorses of cognitive processes in the CNS –
are broadly expressed throughout the body, beginning prior
to fertilization. Analogously to the brain, non-neural tissues
continuously regulate resting potential (Vmem) and local field
potentials (extracellular electric fields), as well as regulate the
movement of neurotransmitters among cells (Pullar, 2011; Bates,
2015).

Signaling mediated by bioelectric events plays a crucial,
instructive role in pattern formation (Funk, 2013; Levin,
2014b). Ion channel-mediated changes in Vmem not only affects
individual cell behaviors such as proliferation, differentiation,
apoptosis, and migration (Sundelacruz et al., 2009), but also
determines large-scale parameters such as organ size, shape,
and axial patterning of the entire body (Beane et al., 2011;
Perathoner et al., 2014). In a range of model systems, Vmem
regulates the formation of the brain, eye, wing, and face, and
controls patterning along the anterior-posterior and left-right
axes during embryonic development (Levin et al., 2002; Dahal
et al., 2012; Pai et al., 2015a). Moreover, experimental control
of bioelectric gradients has enabled induction of regenerative
ability in non-regenerative contexts (Tseng et al., 2010; Leppik
et al., 2015), induced reprogramming of gut tissue into complete
eyes (Pai et al., 2012), and normalized tumors (Chernet B. and
Levin, 2013; Chernet B.T. and Levin, 2013). Electrical synapses
(gap junctions, GJs) and neurotransmitters like serotonin are
a key component of several patterning systems, having been
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implicated in embryonic left–right asymmetry, bone patterning,
tumor suppression, and brain size control (Levin and Mercola,
1998; Iovine et al., 2005; Chernet et al., 2015; Pai et al., 2015a).
As in the brain, these elements often work together, such as the
bioelectrically controlled movement of serotonin through GJs
during left-right patterning and control of nerve growth (Levin
et al., 2006; Blackiston et al., 2015). The molecular pieces are now
being identified, but the idea of neurotransmitters being ancient
“pre-nervous” developmental signaling molecules is an old one
(Buznikov and Shmukler, 1981).

The analogy between the brain and somatic pattern control
(Figure 2) makes several specific predictions. One is that
ion channels, GJs, and neurotransmitters should play a role
in development; this has been amply demonstrated by the
identification of patterning channelopathies (Levin, 2013),
functional experiments in regenerative and developmental
biology (Stewart et al., 2007), and the teratogenic effects
of numerous psychoactive drugs (Hernandez-Diaz and Levin,
2014). Another key prediction concerns the encoding of
instructive information. In the brain, genetics establish the
hardware – genes encode the available components and thus
define the limits of cellular activity. However, the information
content of the brain is not directly encoded by the genome,
but rather arises dynamically through environmental stimuli
(learning) and self-organizing dynamics of the electrochemical
circuitry (plasticity). Is this the case in pattern formation as well?

Can “long term somatic memory” be edited, in the context
of a wild-type genome, leading to a permanent change? A first
example of this was shown in a different species of planaria
(Nogi and Levin, 2005), where targeting GJs for just 48 hours in
a chunk of tissue caused it to regenerate 2 heads – one at the
former anterior end (normal), and one at the posterior-facing
end (which would normally grow a tail). Strikingly, these 2-
headed worms continue to regenerate as 2-headed when cut in
subsequent rounds of regeneration, in plain water, months after
the GJ blocking reagent is long gone from the tissue (Oviedo et al.,
2010). The target morphology – the shape to which this animal
regenerates upon damage – has been permanently re-written
by temporarily editing the physiological network. This finding
has clear similarity to plasticity [well-known to be exhibited by
electrical synapses (Pereda et al., 2013)]: a brief induced change of
GJ connectivity becomes stabilized to a long-term change (Levin,
2014a). This interaction between bioelectric activity and voltage-
gated GJs makes developmental bioelectrical networks especially
suitable as a labile yet stable memory medium (Palacios-Prado
and Bukauskas, 2009). Another brain-like property exhibited in
this effect is its holographic nature: in each round of cutting,
the ectopic head (perhaps “epigenetically reprogrammed”) is
removed, and a middle fragment of the gut still knows it must
make 2 heads if cut. The patterning information is distributed
non-locally throughout the network.

This field is advancing rapidly in its mechanistic details
at the cellular level: the genetics of endogenous ion channels
causing the gradients, the transduction mechanisms that control
transcription after Vmem change, and the gene expression changes
downstream of bioelectrical signaling are all becoming clear
(Yang and Brackenbury, 2013; Pai et al., 2015b). Techniques,

such as optogenetics (Adams et al., 2013, 2014), are allowing
imposition of specific voltage patterns onto tissue in vivo. As in
the brain, where optogenetics is used to insert memories directly
into brains (Ramirez et al., 2013; Liu et al., 2014), these techniques
will be crucial to learn to rewrite pattern memories during
regeneration or embryogenesis. However, as in neuroscience,
there is more than one level at which progress needs to be
made. A mature understanding of the brain requires synthesis
of data from people working on the genetics and biochemistry
of specific neurotransmitter receptors and their downstream
molecular signaling, with the insights of workers at the level of
circuits, behavior, cognitive science, and psychology.

Classic work explored the extensive parallels between chemical
gradients during development and signal processing in the
visual system (Grossberg, 1978), and indeed early quantitative
models of patterning (explaining self-regulatory features like
proportion regulation) were based on visual system function
(Hartline et al., 1956; Gierer and Meinhardt, 1972). More
recent efforts include the notion of memory for position during
regeneration (Chang et al., 2002; Kragl et al., 2009; Wang et al.,
2009) and development (Beloussov, 1997) and for signaling
hysteresis during development (Balaskas et al., 2012), excitable
cortex memory models of pseudopod dynamics (Cooper et al.,
2012), and neural network models of chemical signaling (Ling
et al., 2013) (which showed formal isomorphisms between
gene regulation networks and Hebbian learning in neural nets)
(Watson et al., 2010; Ling et al., 2013). In addition to classical
neuroscience concepts, more exotic group cognition models have
been applied to patterning (Gunji and Ono, 2012), while a
few recent studies investigated the decision-making and formal
computational capabilities of RD systems – a chemical signaling
modality often used to model morphogenesis (Adamatzky et al.,
2003, 2008; Costello et al., 2009; Dale and Husbands, 2010, which
is now known to be Turing-complete (Scarle, 2009) and support
semantic interpretations (Schumann and Adamatzky, 2009).
Despite these fascinating efforts to identify elements of cognitive-
like processing in well-known elements of pattern formation,
developmental biology is still firmly centered in a mechanistic
perspective, seeking explanations in terms of pathways and not
information (systems that know things and make decisions based
on that understanding). However, it is crucial to note that
attributing true knowledge and memory to biological systems
is not mystical thinking – computational neuroscience shows
us a clear proof of concept that information-level, cognitive
approaches to cellular networks are viable, and in fact necessary,
strategy for understanding a system at all of its salient levels.

Thus, neuroscience offers developmental biology more
than just tools and molecular mechanisms: it offers a unique
paradigm, otherwise unavailable to molecular and cell biologists,
of the emergence of higher levels of organization that have both
causal potency and experimental tractability. The field is in
need of new formalisms and conceptual tools for linking the
dynamics of physiological circuits with downstream patterning
outcomes. Developmental biology is currently focused entirely
in a bottom-up mode, with molecules being the preferred level of
explanation. Neuroscience teaches us that we must look upward
as well as downward, for emergent levels with their own rules
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FIGURE 2 | Parallelism between neural and somatic computational systems. Complex, flexible, goal-seeking behavior (A) is implemented by information
processing in the brain (B), which consists of networks of electrically communicating neural cells networks executing physiological circuits (C), which operate
because of electrically gated ion channel and electrical synapse proteins (D). Similarly, large-scale goal-directed pattern remodeling and regeneration (E) occurs via
bioelectric gradients that coordinate cell activity (F), implemented by physiological circuits in non-neural cells (G) which operate because of the same set of ion
channels and electrical synapses (H). The behavior of these systems at the lowest level is achieved by regulating gap junction state and ion channel activity in
specific cells (I). Circuit activity is beginning to be tractable in both contexts using optogenetics (J). In behavioral settings, the most effective path toward desired
outcomes is to interact with the system at the highest level, rewarding for desired behavior (K). This strategy remains to be tried in patterning contexts, where the
current paradigm has been focused on bottom–up approaches and has not yet investigated the top–down strategies that have paid off so well for cognitive science.
(A–H) drawn by Alexis Pietak. (I,K) drawn by Jeremy Guay of Peregrine Creative. (J) used with permission from Liu et al. (2014).
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FIGURE 3 | Cognition at multiple, nested levels of biological organization. Information processing, memory, and flexible decision-making is exhibited by
biological systems such as chemical networks, cytoskeletal dynamics, neural networks, tissue, and organ physiological circuits, entire organisms during behavior or
pattern formation, and groups of organisms in colonies. The cytoskeleton panel is used with permission from Craddock et al. (2012). Graphic created by Jeremy
Guay of Peregrine Creative.

and advantages (Friston et al., 2015). For example, training an
animal to a particular complex behavior is far more efficient than
attempting to elicit the same behavior by manipulating individual
neurons in their brains. We now know that beneficial changes
at the genetic and chemical levels can be induced by cognitive
therapies – top–down control of tissue structure and function
induced by specific thoughts and experiences. If patterning
tissues are “primitive cognitive agents”, in the sense that they
can be profitably understood as memory-bearing, information

processing, goal-directed cybernetic systems (Pezzulo and Levin,
2015), then a whole new set of approaches becomes available for
regenerative medicine. If we understood the bioelectric code,
we could interact with it at these higher levels of organization,
taking advantage of endogenous modularity and perhaps
rationally controlling anatomical outcomes without having
to micromanage molecular networks. In this field, cognitive
science, unconventional computation, and developmental
biology intersect. A fundamental open direction is the search for

Frontiers in Psychology | www.frontiersin.org 11 June 2016 | Volume 7 | Article 902

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00902 June 17, 2016 Time: 13:17 # 12

Baluška and Levin Aneural Memory and Cognition

a computational pipeline to extract goal patterns from bioelectric
state data, parallel to efforts to extract image data from brain
measurements (Nishimoto et al., 2011). The flow of knowledge
will likely not all be unidirectional: cracking the bioelectric code
in patterning tissues is likely to in turn benefit fundamental
neuroscience by showing, in perhaps a simpler context how
to extract semantic content from bioelectrical cell states in the
brain.

CONCLUSION

How does biological matter give rise to decision-making,
memory, representation, and goal-directed activity?
Implementation-independence is a core principle of computer
science: an algorithm does what it does regardless of what kind
of medium is implementing the steps. However, in the biological
sciences, the study of memory and other cognitive functions
has largely been the province of neurobiology, which studies
the information processing and computational functions of
one type of system: collections of neurons. Instead, we have
surveyed a broad range of systems at various scales, from
molecular to organismal, which have their own distinct ability to
process information, make decisions, and achieve specific goal
states (Figure 3). Neural-like computation, decision-making,
and memory have been reported in sperm (Alvarez et al., 2013),
amoebae (Zhu et al., 2013), yeast (Caudron and Barral, 2013), and
plants (Gagliano et al., 2014), using ubiquitous mechanisms like
cytoskeletal elements which appear to be also involved in neural
information processing (Sahu et al., 2013). It is clear that neural
networks have no monopoly on such functions. Remarkably, it
is not only the positive (adaptive) cognitive functions that are
widely conserved: some of the same illusions to which advanced
brains’ perception and rational reasoning fall prey are being
found in systems from slime molds to multi-animal colonies
(Beekman and Latty, 2015; Sakiyama and Gunji, 2016).

McCulloch said “Why the mind is in the head? Because
there, and only there, are hosts of possible connections to be
performed as time and circumstance demand it” (McCulloch,
1951). Given the facts of protein, cytoskeletal, transcriptional,
and bioelectric networks, it appears that many different media
at various scales have the ability to form and rewire experience-
dependent connections. The “dynamical hypothesis” (van Gelder,
1998) asks, what if the brain is better understood as a
dynamical system, than a computational one? We invert this
hypothesis, and ask what if some dynamical systems are better
understood as cognitive agents? The appearance of memory and
computation at many levels of biological organization suggests
a fractal organization of cognitive subsystems within systems –
molecular, cellular, tissue, and body-wide (Figure 2). This has
been suggested in the brain [Smythies’ nested doll hypothesis,
(Smythies, 2015)] but may indeed exist throughout the biological
world. Whether each successive level of organization is in some
sense smarter than the ones below it, or whether structures derive
their cognitive powers from those of lower levels, remains to be
discovered. It should be noted, however, that even in advanced
brains, the relationship between cognitive capacity and biological

structure is not trivial to pin down, as shown by the occasional
example of potent function in the presence of severe structural
deficits (Lorber, 1978, 1981; Nahm et al., 2012).

The hypothesis of nested, widely prevalent cognitive layers
suggests a rich research program, including: (1) the development
of improved methods for reading/writing bioelectrical state
information into somatic tissues and sculpting non-neural
bioelectric circuits (optogenetics beyond excitable cells and
in the synthetic biology of gap junction and neurotransmitter
signaling; Adams et al., 2013), (2) continued work on cracking
the bioelectric code (bioelectric state information maps onto
the topology of various patterning outcomes in tractable
model systems such as planaria; Tseng and Levin, 2013), (3)
formulation and testing of quantitative, molecular models
of LTP, habituation, sensitization, plasticity, and higher-
order learning applied to protein interaction networks,
gene regulatory circuits, cytoskeletal dynamics, and cell
behavior during morphogenesis, (4) use of reagents that
impact cognition (hallucinogens, anesthetics; Kawamoto et al.,
2005), stimulants, nootropics/cognitive enhancers, etc.) in
cellular, developmental, and regenerative patterning assays to
probe conservation of pathways between neuroscience and
morphogenesis, (5) creation of larger-scale computational
models of regeneration and functional experiments in
morphogenesis based on goal-seeking and error minimization
algorithms with molecularly specified metrics (Slack, 1980;
Chao et al., 2008), (6) exploration of molecular models of
cognitive concepts (attention, autism spectrum, sleep, visual
illusions/hallucinations, addiction) in specific patterning and
mispatterning contexts, (7) bioengineering platforms that reward
and punish in vitro patterning systems for specific changes
in growth and morphogenesis (instrumental learning and
top–down control of shape in developmental or regenerative
contexts), and (8) a mechanistic investigation of the mechanism
of persistence of memories through massive brain regeneration,
which is likely to reveal the interface between somatic and neural
memories (Blackiston et al., 2008; Shomrat and Levin, 2013).

We have avoided here the thorny issues of philosophy of
mind that arise from trying to define exactly under what
conditions words like “knowledge” are appropriate, in favor
of an intentional stance-like pragmatic, engineering approach
grounded in cybernetics. The coverage of cognitive terms across
biology can expand to the extent that information-centered
approaches are shown to be effective in predicting and controlling
the behavior of biological systems. The practical implications for
biotechnology, unconventional computation, and regenerative
medicine are enormous. Equally likely, the lessons we learn
from unconventional cognitive systems will deeply impact our
most basic understanding of how mind emerges from the
brain.
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