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This paper proposes how various disciplinary theories of cognition may be combined

into a unifying, sub-symbolic, computational theory of cognition. The following theories

are considered for integration: psychological theories, including the theory of event

coding, event segmentation theory, the theory of anticipatory behavioral control, and

concept development; artificial intelligence and machine learning theories, including

reinforcement learning and generative artificial neural networks; and theories from

theoretical and computational neuroscience, including predictive coding and free

energy-based inference. In the light of such a potential unification, it is discussed

how abstract cognitive, conceptualized knowledge and understanding may be learned

from actively gathered sensorimotor experiences. The unification rests on the free

energy-based inference principle, which essentially implies that the brain builds a

predictive, generative model of its environment. Neural activity-oriented inference

causes the continuous adaptation of the currently active predictive encodings. Neural

structure-oriented inference causes the longer term adaptation of the developing

generative model as a whole. Finally, active inference strives for maintaining internal

homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical

encodings, however, it is proposed that free energy-based inference needs to be

enhanced with structural priors, which bias cognitive development toward the formation

of particular, behaviorally suitable encoding structures. As a result, it is hypothesized

how abstract concepts can develop from, and thus how they are structured by and

grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like

thought can be generated by a temporarily active set of predictive encodings, which

constitute a distributed neural attractor in the form of an interactive free-energy minimum.

The activated, interactive network attractor essentially characterizes the semantics of

a concept or a concept composition, such as an actual or imagined situation in our

environment. Temporal successions of attractors then encode unfolding semantics,

which may be generated by a behavioral or mental interaction with an actual or imagined

situation in our environment. Implications, further predictions, possible verification, and

falsifications, as well as potential enhancements into a fully spelled-out unified theory of

cognition are discussed at the end of the paper.

Keywords: embodiment, predictive coding, free energy-based inference, anticipatory behavior, planning, learning,

homeostasis, conceptualization
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1. INTRODUCTION

Theories on embodied cognition (EC) have come a long way
(Lakoff and Johnson, 1980, 1999; Barsalou, 1999; Bergen, 2012;
Clark, 2013). In their simplest form, they are perceived as the
fact that cognition is influenced by the body. In more elaborate
treatises, EC is typically differentiated into (a) embodiment itself,
which focuses on how the body with its particular sensory
and motor capabilities and its physical properties shapes the
way we think, (b) grounded cognition, which emphasizes that
our experiences are grounded in our physical world with its
particular properties, and (c) situatedness, which points out that
our experiences are also strongly influenced by our culture,
society, and language (Pezzulo et al., 2013). Barsalou’s simulation
hypothesis (Barsalou, 1999, 2008) characterizes embodied
cognitive states as situated simulations, which temporarily
activate—or re-enact—particular situations, entities, or events
by means of a corresponding set of embodied, modal neural
activities. When we think about or actually perceive a certain
situation, we simulate the crucial properties of this situation
in our brain by constructing an approximate mental image.
In very concrete situations—such as, for example, “thumbs
up”—the imagining not only involves the associated, culturally
conventionalized positivity and confirming implications, but
also our own motor system, which simulates the thumbs
pointing upwards, as well as a somewhat abstracted visual
image of the gesture—to individually differing extents and
vividness. However, in much more abstract situations, such as “a
democracy,” there is still significant doubt if and to what extent
EC contributes to the understanding of such concepts (Arbib
et al., 2014).

As also pointed out by Arbib et al. (2014), Pezzulo et al. (2013),
and others (cf. e.g., Bergen, 2012; Clark, 2013), a big problem
with current theories of EC is that the focus mainly lies on
where and to what extent indications for EC can be uncovered,
typically attempting to explain the findings in a qualitative
fashion. Actual quantitative cognitive theories and confirmations
of such theories by means of cognitive system implementations
are still largely missing. Thus, quantitative theories—or even
better, neuro-cognitive models—of embodiment are needed to
shedmore concrete light on EC and its implications for cognition
as a whole.

To develop such a computational theory, I propose to
integrate the insights gained from EC into the theoretical
frameworks of predictive coding (Rao and Ballard, 1998; Friston,
2002; König and Krüger, 2006; Kilner et al., 2007), free
energy-based inference (Friston, 2005, 2008, 2010; Bastos et al.,
2012; Adams et al., 2013; Friston et al., 2015), anticipatory
behavior (Hoffmann, 1993, 2003; Butz et al., 2003; Butz, 2008;
Pezzulo et al., 2009; Engel et al., 2013), events and event
segmentation (Hommel et al., 2001; Zacks et al., 2007), and
cognitive development (Konczak et al., 1997; Mandler, 2004; von
Hofsten, 2004; Rochat, 2010; Mandler, 2012). In particular, I
submit that the principle of free energy-based inference, which
generally subsumes predictive coding and anticipatory behavior,
should be enhanced with suitable structural information
processing biases and event segmentation biases. I propose

that these biases will enable the systematic development of a
conceptual understanding of our environment, which allows the
generation of compositional, conceptual thoughts. By biasing the
development toward the maintenance of internal homeostasis,
active inference will furthermore bias behavioral exploration
and thus learning toward developing behavior- and motivation-
oriented conceptual structures. As a result of the structurally-
biased free energy-based inference processes, the development
of particular types of predictive encodings can be expected to be
involved and to be selectively activated while interacting with or
thinking about the environment.

1.1. Theory Background
Theories on predictive coding have at their premise the
assumption that top-down predictions constitute perceptions
while bottom-up signals are akin to error signals that modulate
top-down predictions. Free energy-based inference mechanisms
were shown to not only lead to neural activity adaptation
and neural learning, but also to active inference, which causes
the generation of epistemic and goal-directed motor behavior
(Friston et al., 2010, 2014, 2015).

Anticipatory behavior control theories are closely related
to predictive encoding and active inference, but they more
explicitly emphasize that behavior needs to be inherently
goal-directed, striving to satisfy bodily and cognitive needs.
Behavior is invoked highly flexibly dependent on both the
system’s current needs and associated goals and the considered
environmental circumstances. Anticipatory behavior control
theories furthermore emphasize that behavior is controlled
by the currently desired sensory consequences. During
behavioral control, the focus lies on causing the desired
sensory consequences, not on the control of the motor activity
itself (Prinz, 1990; Hoffmann, 1993). This focus on action
consequences is believed to lead to common codes, which
specify motor actions and their—possibly multimodal—sensory
consequences (Hommel et al., 2001). For example, high motor
strength is associated with high volume in the auditory modality,
fast acceleration and motion in the visual modality, and high
pressure in the tactile modality (Prinz, 1997; Elsner andHommel,
2001; Kunde, 2001). These insights have also fostered the theory
of event segmentation, which highlights that dynamically
unfolding episodes are systematically segmented into events and
event boundaries (Zacks and Tversky, 2001; Zacks et al., 2007).

Developmental psychologists have shown that infants right
after birth show indications of a rudimentary, postural body
image and of anticipations about the sensory consequences
generated by self-motion (Rochat, 2010). Moreover, the behavior
of an infant has been shown to be goal-directed from the
first months onwards (Konczak, 2004; von Hofsten, 2004).
Finally, fundamental conceptualizations are provably present
in infants and young toddlers, and have thus sometimes been
termed “innate” conceptual primitives (Mandler, 2004, 2012).
The unification of several theories of cognition in this paper
implies how it may be possible to learn such “innate” conceptual
primitives very early in life, starting with a progressively accurate
predictive knowledge about the functionality of one’s own body.
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1.2. Contributions
The main aim of this paper is to sketch out a potential unification
of several disciplinary theories of cognition into one, unifying
computational, sub-symbolic theory of cognition. As the starting
point, Andy Clark’s (Clark, 2013) and others’ proposition is
generally agreed upon, that is, predictive encodings and free
energy-based minimization can lead to the development of
embodied cognitive systems. In addition, though, the proposed
unification emphasizes that further learning biases are needed,
which can be generated by including structural priors in
the unfolding neural activities and wiring adaptations. Initial
predictive encodings are inevitably bodily grounded in different
sensory and motor modalities and in different frames of
reference. To build more elaborate predictive encodings within
and across modalities, however, the unification suggests that
distinct predictive structures need to be developed. Motivated by
the different disciplinary theories, the unified theory proposes
how and which different forms of encodings should develop
as well as how neuro-cognitive processing can continuously
unfold within these encodings, further shaping them. As a
result, the unification proposes how humans may be capable
of developing and generating conceptual thoughts and abstract
forms of imaginations, as well as self-motivated, goal-directed
behavior by means of a distributed, highly-interactive network of
distinct, and selectively partially activated predictive encodings.

In contrast to previous, unifying theories of cognition, such
as SOAR (Newell, 1990) or ACT-R (Anderson, 1993), the
proposed unification grounds symbols and production rules in
neural structures and unfolding neural dynamics. Essentially, the
unification emphasizes that rule-like and symbol-like structures
need to be and can be encoded by distributed neural attractors,
which approximate free energy minima. Thus, the proposal
does not contradict these previous theories, but it additionally
suggests how and which symbolic and rule-oriented structures
can be generated by sub-symbolic, neural encodings, which are
learned from and thus grounded in the gathered sensorimotor
experiences during cognitive development.

1.3. Roadmap
The remainder of this paper is structured as follows. First,
it is sketched-out qualitatively how progressively abstract
types of predictive encodings may develop from the gathered
sensorimotor experiences. Second, it is explained how such
predictive encodings may be learned by means of mathematical
formalizations of free energy-based inference. Third, the focus
lies on how goals and goal-directed behavior as well as
attention and thoughts themselves can unfold by continuously
and dynamically adapting the current set of active predictive
encodings by means of an active, inference-based cognitive
processing loop (cf. Figure 1). Fourth, examples of particular
concepts and concept compositions illustrate the theory’s
prediction about how our brains think about a particular object
or an object composition, such as “a ball lies in a bowl” (cf.
Figure 2). Finally, the main propositions and predictions are
summarized, including possibilities to further verify or falsify
particular components. Moreover, it is discussed how social
and language aspects may be incorporated and how actual

FIGURE 1 | An overall predictive processing loop continuously

generates temporal predictions, compares the resulting distributed

prior probabilistic state estimate with the incoming sensory

information, and fuses the independent information sources yielding a

distributed, probabilistic local posterior state estimation. Finally, the

internal active predictive encodings are adapted further toward establishing

mutual consistencies, yielding an approximate global posterior distributed

probabilistic state estimation. All the types of probabilistic state estimations are

encoded sub-symbolically by means of neural activities, which essentially

constitute the currently active predictive encodings.

implementations of the unifying theory of cognition may be
accomplished.

2. PROGRESSIVELY DEVELOPING
PARTICULAR PREDICTIVE ENCODINGS

As is the custom on the psychological side, theories tend
to be descriptive, and qualitative rather than quantitative or
computational. In accordance to such approaches, this section
proposes the unification of psychological, cognitive science,
and neuroscience theories on a descriptive, qualitative level.
Subsequent sections then sketch-out how the proposed and
distinct predictive encodings may be learned, may develop, and
may continuously unfold on a quantitative, computational level.

While formalizations of predictive encodings and free energy-
based inference provide a general learning framework, they
hardly distinguish particular types of predictive encodings. To
foster suitable cognitive development, psychological theories
have distinguished or selectively focused on (implicitly or
explicitly) temporal predictive encodings, spatial predictive
encodings, and top-down predictive encodings (Hoffmann, 1986,
1993; Prinz, 1990; Hommel et al., 2001; Zacks and Tversky,
2001; Knauff, 2013; Koffka, 2013). These may be considered
the three fundamental types of predictive encodings, from
which any more complex encoding can be constructed. By
fostering the development of particular abstractions over these
encodings, event and event boundary encodings, event schemata,
and episode encodings may develop, which enable the formation
of particular types of concepts. Besides the prediction that
our brain develops these encodings, the theory unification also
suggests that particular (genetically encoded) structural learning
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FIGURE 2 | A distributed illustration (highly simplified) of a possible predictive encoding of the compositional concept “a ball lies in a bowl,” including

some of the most important active predictive encodings. Note how the (A) ball and (B) bowl concepts are activated, sketching out the respective top-down

predictions of their visual appearance as well as the respective temporal predictive encodings, which characterize potential motion interaction consequences of other

items with the activated items. (C) The relative spatial predictive encodings together with the temporal predictive interaction encodings realize the “lies in” concept in

the composition. While bidirectional arrows show ball- and bowl-respective active predictive encoding interactions, the darkness of arrows within individual illustrations

indicates the current strength of activation. Note how, for example, the temporal interaction consequence encodings of ball and bowl approximately cancel each other

out, thus generating a somewhat stable free energy minimum.

biases need be involved to ensure proper cognitive development.
To be as precise as possible, the glossary in Table 1 may be
consulted to clarify the conceptual meaning of the terminology
used in this paper. The following sections provide details on
how these types of encodings may develop from sensorimotor
experiences.

2.1. From Sensorimotor to General
Temporal Predictive Encodings
Starting from an embryonic stage, an important challenge for
cognitive development inside the womb lies in learning as
much about one’s own body and its boundaries as possible. As

Rochat (2010) points out, at birth, infants know, for example,
when their thumb reaches their mouth—opening their mouth
in anticipation of thumb insertion before the thumb actually
touches the lips. Similarly, the rooting’ reflex lets infants orient
their mouth toward a touch on the cheek, but not when their own
fingers touch it. Both observations indicate that a postural body
image is at play, which perceives the touch as a self-touch—thus
inhibiting the reflex or rather the further processing of the touch
stimulus—and that the thumb’s location relative to the mouth is
(i) processed in an anticipatory manner and (ii) controlled in a
goal-oriented manner.

Various researchers have investigated properties of a postural
body schema and its plasticity (Holmes and Spence, 2004;

Frontiers in Psychology | www.frontiersin.org 4 June 2016 | Volume 7 | Article 925

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Butz Toward a Computational Theory of Cognition

TABLE 1 | Glossary of terminology used in the paper.

Abstraction An encoding that generalizes away from particular features in space and/or in time and/or over feature-specific aspects; typically, an

abstracted encoding corresponds to a higher level, top-down predictive encoding

Active predictive encoding An encoding that is currently active and that thus predicts the activity of other predictive encodings—just like a set of firing neurons

that activate other neurons via their axons, the reached synapses, and the connected dendrites.

Cause A physical property of an item, which may cause sensory signals and determine physical interactions (in analogy to Friston, 2010)

Concept A subset of predictive encodings that specify (possibly relative) item properties, orientations, positions, and/or forces that are

essential for a particular event to take place

Concept composition A non-contradictory combination of concepts

Event schemata An encoding of an event together with event boundary encodings that specify when the event can occur and how it typically ends (in

analogy to Hard et al., 2006)

Dynamic event An active set of temporal predictive encodings, which predict changes of causes, positions, and/or orientations of items in the

environment, typically together with the forces that cause the changes, over an extended period of time

Episode encodings A set of events and their typical ordering in time

Event An active set of predictive encodings, which apply over an extended period of time (in analogy to Zacks and Tversky, 2001)

Event boundary A particular state in the environment upon which one or several predictive encodings become applicable and/or one or several other

predictive encodings are no longer applicable (in analogy to Zacks and Tversky, 2001)

Force A physical force in the environment—including but not limited to motor activity—which causes items to change

Item A body, body-part, object, material, thing, sensor, muscle, etc., that is, anything that exists in the environment and that can interact

with other items

Modality Sensory or motor signals provided by the respective sensors or activators

Module A set of predictive encodings that integrates particular sensory and/or motor encodings or abstractions of such encodings in a

particular manner

Orientation Angular information about an item in the environment relative to other items in the environment

Position Localization of an item in the environment relative to other items in the environment

Predictive encoding Any form of predictive, neural encoding, which—when active—predicts the activity of other encodings—akin to a neuron or a set of

neurons including the connectivity to other neurons via axon, synapses, and connected dendrites

Spatial predictive encodings Predictions that map other predictive encodings onto each other

Static event An active set of spatial and top-down predictive encodings of causes, positions, and/or orientations of items in the environment over

an extended period of time

Temporal predictive encodings Predictions forward in time, that is, predictions about changes in causes, positions, and/or orientations of items in the environment

due to forces

Top-down predictive encodings Predictions about more sensory- or motor-grounded signals in more abstract, generalizing forms, typically involving sensory/feature

abstractions

Cardinali et al., 2009; Hoffmann et al., 2010; Butz et al.,
2010b, 2014)1. What these treatises all have in common is that
temporal predictive sensorimotor structures are learned, which
predict sensory changes given motor activities or other sensory
dynamics. Moreover, posture-dependent spatial mappings are
learned, which enable the versatile projection of sensory stimuli
into other frames of references and other sensory and motor
modalities.

The proposition of learning predictive sensorimotor
structures to be able to invoke goal-directed behavior dates
back at least to the 19th century and has become known as the
ideomotor principle (Herbart, 1825; James, 1890; Stock and
Stock, 2004). The main proposition is that initially, purely reflex-
like actions are paired with their sensory effects. Later, when the
effects become desirable, the structure is assumed to enable the
invocation of the motor activity that has previously produced
the now desired effect. From the related perspective of forward-
inverse sensorimotor models (Jordan and Rumelhart, 1992;
Wolpert and Kawato, 1998; Haruno et al., 2001), forward-inverse

1Note that I intentionally do not delve deeper into distinctions between body
image, body schema, kinematic body models, postural schema, peripersonal space,
etc. here.

model pairs are learned in order to be able to flexibly invoke
inverse motor control to generate particular forward dynamics,
and possibly to additionally apply appropriate sensor fusion
(Schilling and Cruse, 2012; Ehrenfeld and Butz, 2013). Due
to the problem of inverting forward kinematics and resolving
redundancies on the fly, various forms of representation
and redundancy resolution mechanisms have been proposed
(Cisek, 2006; Butz et al., 2007; Stalph and Butz, 2012). Thus,
sensorimotor-based temporal predictive models play at least
a dual role: first, they are useful to filter behavior-induced
sensory consequences according to the reafference principle
in psychology (von Holst and Mittelstaedt, 1950); second, by
inverting the temporal predictions, goal-oriented behavior can be
induced by striving for those sensory changes that are expected
to lead toward a desired goal state.

As motor activities essentially create forces in the
environment, sensorimotor predictions can be generalized
to sensoriforce predictions, which predict which perceivable
changes in the environment can be generated by which particular
forces. On the other hand, when abstracting away from concrete
sensory changes, longer term, conceptualized changes are
predicted. For example, the act of “pouring something into a
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container” abstracts away from the concrete substance (e.g.,
water, milk, or sand), from the concrete type of container (e.g.,
glass, mug, or bucket), and from the concrete motor actions that
accomplishes the pouring (e.g., hand, both arms and hands, or
machine).

Starting with sensor and motor encodings, temporal predictive
encodings may develop, which predict how particular types of
forces can lead to particular types of changes in the environment.
Sensorimotor predictive encodings are thus the simplest form
of temporal predictive encodings and support the development
of more abstract temporal predictive encodings. Temporal
predictive encodings may develop essentially anywhere where
inferable forces change causes, positions, or orientations of items
in the environment. After some learning, the mere observation
of a particular control process or of a particular force can then
lead to the invocation of accurate predictions of item changes.
Temporal predictive encodings are closely related to the common
codes proposed by the theory of event coding (Hommel et al.,
2001). In the following, I contrast temporal predictive encodings
with two other types of fundamental predictive encodings.

2.2. Three Fundamental Types of Predictive
Encodings
When noting how the body senses the environment in different
sensorymodalities and over time, the following very fundamental
and rather easily perceivable world properties foster the
development of particular predictive encodings. These include
predictions about relative sensory-grounded perceptions and
their multimodal correlations, i.e., spatial predictive encodings,
predictions about particular features and relative feature
constellations, i.e., top-down predictive encodings, and changes
in the activity of one or both of them over time, i.e., temporal
predictive encodings.

Spatial predictive encodings can be bootstrapped by enforcing
the learning of structural mappings between different sensory
modalities. Since the various modalities are grounded in various,
sensor-specific frames of reference (e.g., skin surface, retina, etc.),
sensory causes, which are due to the presence of particular items
in the environment, and which are often perceived in multiple
modalities concurrently, may be correlated with each other to
enable sensor fusion. Additionally, as these mappings depend on
the current posture of the body as well as on its position relative
to the outside environment, the currently active spatial predictive
encodings must depend on current body posture estimates. Thus,
generally speaking, spatial predictive encodings specify spatial
relations that allow the mapping of different frames of reference
onto each other body posture dependently.

For example, a keyboard may be co-perceived in the form
of a retinotopic image by the eyes as well as in the form of
tactile signals perceived by the typing fingers, both providing
information about the current key positions relative to the
body mid-axis. While the information from the eyes needs to
be translated respective to the current eye fixation as well as
the posture of the head relative to the trunk, the information
from the fingers needs to be translated respective to the
current finger, hand, arm, and shoulder postures. Both sources

of information—from the eyes and fingers—are continuously
mapped onto each other, leading to surprise signals given
visual or tactile sensory feedback that significantly violates the
expectations.

Various multimodal inference studies have shown (Maravita
et al., 2003; Butz et al., 2010b; Brozzoli et al., 2014) that visual and
tactile information interacts in various, body-centered frames
of reference. The involved spatial predictive encodings appear
to be found mainly in posterior parietal brain regions, which
may be in this sense characterized as (but not restricted to)
being the hub where different frames of reference are matched
with each other and where different items are put into relative
frames of reference (Maravita et al., 2003; Holmes and Spence,
2004; Chafee et al., 2007; Schindler and Bartels, 2013). Note
that such spatial predictive encodings may be recruited by other
cognitive processes, such as spatial reasoning processes (Knauff,
2013), number cognition processes (Wood et al., 2008), or general
representations of magnitude (Walsh, 2003).

Top-down predictive encodings, on the other hand, generalize
over space and focus on feature constellations and thus on
characteristic, higher-level perceptions. The encodings essentially
form perceptual templates (like a Gestalt) (Koffka, 2013),
which predict item-specific sensory signals. Common sensory
perceptions, such as faces or particular objects, indeed appear
to be bundled in the brain in the inferior temporal cortex
and the fusiform face area. In these areas neurons have been
identified that respond to particular items and identities, largely
independent of both their current position and orientation in
space, and of the concrete form of presentation (e.g., sketch,
photograph, or name of person) (Quiroga et al., 2005). Thus,
it appears plausible that these regions encode compressed item
templates, which predict corresponding sensory signals or—
particularly on higher levels—feature constellations, when the
item is perceived with particular sensory modalities.

Thus, top-down predictive encodings anticipate sensory
information or abstractions thereof. In a particular situation, the
currently active top-down predictive encodings expect particular
feature and sensory perceptions. In conjunction with currently
active spatial predictive encodings, these expectations can be
mapped onto relevant sensory modalities. Indeed, research
results again indicate that parietal regions encode suchmappings,
where current neural activity estimate the current position and
orientation of items relative to the own body (Glover, 2004;
Schindler and Bartels, 2013).

Temporal predictive encodings then encode changes in items as
well as in their position and orientation over time, starting from
very immediate sensorimotor encodings as discussed above. For
example, item-specific causes, such as an item’s size, its weight,
color, contents, shape, etc., can change due to particular forces,
which act upon the item. Similarly, position and orientation of
an item can change. Thus, in these cases temporal predictive
sensoriforce encodings are expected to be formed, which identify
the particular types of forces that typically lead to particular types
of perceivable item changes. Note once more that sensoriforce
encodings are more general than sensorimotor encodings:
motor activities result in specific forces; but other items in
the environment can also generate forces; temporal predictive
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encodings predict how items change given forces, regardless if
these forces are self-generated by one’s own motor system or
are generated by other entities in the environment. Temporal
predictive encodings thus enable the development of abstractions
over sensory changes due to motor activities toward feature
changes due to active forces, respectively. Below, even further
abstractions are detailed.

Note that the two types of fundamental possible changes
of items in the world are reflected by the dorsal and ventral
perceptual processing pathways. The dorsal stream toward the
posterior parietal cortex processes mainly spatial properties,
presumably mainly for preparing appropriate interactions
(Goodale and Milner, 1992). The ventral stream toward the
posterior, inferior temporal cortex processes primarily object
properties and identities (Mishkin et al., 1983; Goodale and
Milner, 1992; Dijkerman and de Haan, 2007; Milner and
Goodale, 2008).

2.3. Event Segmentation
While a particular interaction with the environment unfolds,
typically interaction-characteristic sensorimotor dynamics are
experienced. Accordingly, the theory of event coding (Hommel
et al., 2001) defines events as common codes of actions and the
typically resulting sensory or abstracted, perceptual changes. The
event codes are thus closely related to the temporal predictive
encodings specified above. The theory of event codes, however,
does not specify when an event starts and when it ends. This
aspects was emphasized in the event segmentation theory (Zacks
et al., 2007), which characterizes an event as “a segment of time
at a given location that is conceived by an observer to have
a beginning and an end” (Zacks and Tversky, 2001, p. 17). A
unification of the two theories may be possible by generalizing
the concept of an even code further by defining it as a set of active
predictive encodings. The beginning and end of an event code are
then marked by the activation or deactivation of (a significant
part of) this particular set. Due to this set-based definition,
particular types of events can be characterized by the particular
types of predictive encodings that are included in the set. Static
events are those where a consistent, non-empty set of spatial
and top-down predictive encodings is active. Dynamic events are
those where, in addition, a non-empty set of temporal predictive
encodings is active, which predict changes in other predictive
encodings of the event-specific set of encodings.

Event boundaries then, marking the beginning or the end
of an event, may be characterized by event transitions, that
is, fundamental, significant, lasting changes in the set of active
predictive encodings. Movement onsets and offsets as well
as sudden directional changes are well-characterizable in this
manner. Moreover, temporary states without motion, such as
when changing direction from forward to backwards, play a
significant role during segmentation. For example, an object
may disappear and then reappear (onset of top-down, object-
specific spatial predictions), or it may move away but then turn
around and thus move toward the observer (offset followed by
onset of temporal predictive motion encodings). Similarly, a
bottle may become light when emptied and become heavier when
filled (changes in top-down predictive property encodings), or a

walking person may suddenly start to run (changes in temporal
predictive encodings).

With these definitions in hand, observations over time can
be segmented into events, during which particular predictive
encodings apply, and event boundaries or event transitions, which
are marked by particular, significant changes in the set of active
predictive encodings. Note how segmentations thus are able
to detect a huge range of event boundaries, including motor
activity of force onsets and offsets, behaviorally relevant changes
in orientation or position (e.g., particular orientations may allow
particular manipulations, thus leading to the onset of particular
other predictive encodings), the appearance or disappearance of
particular items, and even relevant changes in item properties
(e.g., a bottle becomes empty, a bottle is opened etc.).

Interestingly, similar approaches to segmentation have been
used in the robotics community to develop behavior-grounded
language grammars (Pastra and Aloimonos, 2012; Dominey,
2013; Schilling and Narayanan, 2013) as well as to cluster types of
object interactions into equivalence classes of the relative object
changes that are encountered (Aksoy et al., 2011; Wörgötter
et al., 2013). Similar action-grounded grammars have also been
successfully used to create seemingly alive, knowledgeable,
learning and behaving virtual agents (Ehrenfeld et al., 2015).
The segmentation of predictive encodings into events and
event boundaries thus seems to enable the development
of embodied, grammatical, conceptual encodings of the
environment.

2.4. Event Schemata
Segmenting predictive encodings over time into events and event
boundaries will develop encodings that specify the conditions
necessary to start an event, the final results at the end of an
event, and the predictive encodings that are active while the
event unfolds. When combining condition, event, and final
result encodings, event schema encodings can develop. Related
ideas have been put forward in relation to the theory of event
segmentation, developing event schemata (Hard et al., 2006;
Zacks and Tversky, 2001; Zacks, 2004; Zacks et al., 2007), in
relation to the theory of anticipatory behavioral control, which
specifies how condition-action-effect schemata can be learned
(Hoffmann, 1993; Hoffmann et al., 2007), and in relation to
general representations of knowledge and reasoning (Rumelhart
and Ortony, 1977; Barsalou, 1999). In terms of predictive
encodings, event schemata can be specified as the following triple
of predictive encoding clusters:

1. conditional predictive encodings, which identify those spatial,
top-down, and temporal predictive encodings that are
necessary to allow the activation of an event;

2. event encodings, which characterize the particular unfolding
event including the involved forces and item changes;

3. final event encodings, which specify the predictive encodings
that signal the end of the unfolding event.

As a result, an event schema systematically encodes under which
circumstances an event can take place, the characteristics of the
event itself, and under which circumstances the event will stop to
unfold.
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The following example of two successive event schemata may
help to clarify the structure of these encodings: Consider reaching
for an object to establish contact. The conditional encoding must
signal that an object is present and in a reachable distance, that
is, the predictive spatial encoding temporarily associated with
the object must signal that the relative distance to the body is
shorter than one’s own arm length. Also, one of the arms must
be available to execute the reaching motion. The dynamic event
then characterizes the motion of the arm needed to approach
the object as well as the force needed to exert this motion, that
is, the forces that minimize the relative spatial distance between
hand and object. Note that the force encodings may be converted
into actual motor commands when the action begins to unfold,
considering the current state of the body, the concrete object
position, etc. The final event encodes the establishment of touch
as well as the signal that the distance between hand and object
reaches zero.

Next, let us now consider the consequent touch event. The
conditional encoding here corresponds to the just characterized
event-boundary, encoding that a body part comes into contact
with something else (possibly another body part) in the
environment, that is, the relative distance reaches zero. The event
itself in this case is characterized by the intensity and other
properties of the touch as well as the involved forces, in the
form of pressure encodings between a body part and another
item. The final event encodings characterize the result of the
touch, including possible immediate release and thus a relative
distance to the object that increases, or the maintenance of tactile
feedback, triggering another event schema such as “holding onto
something,” or “stroking something.”

When particular events or event transitions are desired—
say due to the internal motivational, homeostatic state of the
agent (see later)—the proposed structure enables the activation
of those predictive models that are known to initiate the desired
event or that lead to the desired event transition. Due to
the proposed structure of event schemata, it then becomes
possible to chain such encodings inversely, striving to establish
relevant conditional encodings in order to ultimately achieve
the final event. For example, when no food is in reach but
food consumption is the final goal, first food needs to be found
and moved into reach. Note how this proposition is akin to
hierarchical, model-based reinforcement learning architectures
(Sutton et al., 1999; Konidaris et al., 2011; Botvinick and
Weinstein, 2014). Similar encoding structures were also proposed
by Zacks et al. (2007), who characterized them as highly suitable
goal-directed planning and inference structures for deducing the
current goals and intentions of observed others.

2.5. Abstraction and Hierarchical
Structuring
Given event schemata, even higher-level, top-down predictive
encodings may be developed. Frequently encountered types of
interactions may be clustered into episode encodings, where
the simplest kinds of such episodes may be characterized by
particular bodily interactions with the world, including, for
example, eating, drinking, scratching, walking, or grasping to

hold. In all these cases, several event schemata can be clustered
into one predictive code, which characterizes a particular
interaction including how it typically unfolds over time in the
form of a set of event schemata. It thus predicts the dynamic
activity of a set of temporal, top-down, and spatial predictive
components.

Eating, as perceived by an infant, for example, may start with
suction in the appropriate situation, may unfold by continued
suction, the perceived effect of milk flow into the mouth—
or, more sensor-orientedly speaking, the sensation of a warm
fluid substance inside the infant’s mouth—and the motor act
of swallowing, with the resulting changes of decreased fluid
presence in the mouth, warm feeling inside the stomach,
and the perception of rewarding signals sent to the brain
by the stomach (cf. e.g., Butz, 2013). Finally, this unfolding
may cease resulting in a mouth without milk, no more milk
inflow, no more swallowing of milk, etc. Thus, a feeding
episode was described in terms of event schemata, including
the involved predictive encodings and their interactions over
time. Due to the re-occurrence of such episodes—and most
likely also due to the motivational and emotional significance of
particular episodes—progressive further conceptualizations may
be enabled, converging to compact encodings of those predictive
encodings that need to be active to encounter particular
interaction episodes. In this manner, for example, encodings
of the hardness of an object may develop, co-determining, for
example, its suitability to be used as a hammer for driving a nail
into a wall.

Note how—once suitably compressed into episode encodings
in this way—such episodes can be imagined when decoupled
sufficiently from the current sensory perceptions. Moreover,
one can strive to accomplish whole episode encodings in
a goal-directed manner. Besides the possibility of pursuing
interaction episodes, sufficient observations of other people
executing seemingly similar interaction episodes can be
comprehended by means of simulating the apparently
corresponding interaction episode, continuously comparing
it with the observations and filling in missing observations.
Finally, interaction episodes may also be paired in parallel
or in sequence with other episodes, or even recursively with
themselves, enabling the formation of ever more abstracted
encodings of interaction episodes, such as “attending a lecture”
while “studying at the university” while “working on ones own
career.”

Note also how distinct predictive encodings often co-occur
systematically, and how such co-occurrences are thus suggestive
about which type of more general, abstract event or episode
currently unfolds. Thus, even when only observing some aspects
of an event or a chain of events, inference processes are able to
deduce—or at least are able to make an educated guess—about
which actual episode is currently observed and thus about which
goal is currently being pursued by the observed agent (Zacks and
Tversky, 2001; Zacks et al., 2007). Examples are the observation
of a pantomimed interaction, of a partially occluded interaction,
or also of a short snapshot of an action, for example shown in a
movie, that implies a complex episode spanning hours, days, or
even years.
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3. LEARNING BY FORMULATIONS OF
FREE ENERGY-BASED INFERENCE

Free energy-based inference offers itself as the fundamental
neural processing and adaptation principle (Friston, 2005,
2010; König and Krüger, 2006), subsuming principles such
as the Bayesian brain (Knill and Pouget, 2004; Doya et al.,
2007) and predictive encoding (Rao and Ballard, 1998), and
allowing the derivation of state-of-the-art machine learning
techniques (Friston, 2010), including neural activity adaptations
and learning in neural networks. When desired future states are
integrated into the free energy formulations, active inference
mechanisms can be generated, which cause the execution of
epistemic, information-gain oriented, curious behavior and goal-
oriented behavior (Friston et al., 2010, 2015).

Loosely speaking, formulations of free energy-based inference
suggest that the brain focuses on predicting incoming sensory
information, thus canceling-out or “explaining away” the
sensory information that was predicted. Only the error
is propagated “upwards” through a supposed hierarchy of
processing stages. Thus, while top-down predictions encode
the actual sensory information, bottom-up information encodes
the error, that is, the residual that is left after subtracting
or dividing the top-down prediction from the bottom-
up information. As a consequence, free-energy formulations
yield generative models, which are capable of filling in
absent sensory, motor, or abstracted information and which
are thus generally capable of generating “imaginations” of
particular items, interactions, and even whole situations and
episodes.

Various other researchers have suggested that predictive
encodings combined with free energy-based inference naturally
offer themselves to give embodied theories of cognition a
computational backbone, and this proposition has been widely
discussed for several years now (Clark, 2013). While the
proposition in this paper is thus not new, it focuses on the types
of structures, their interactions, and abstractions that typically
develop. In the following, I put predictive encodings and free
energy-based inferencemechanisms in the light of the developing
predictive encodings discussed above, showing how they can be
learned, and how neural dynamics and behavioral control can
continuously unfold within them.

3.1. Learning Different Types of Predictive
Encodings
To give the reader a feel of what predictive encodings are
about mathematically, and how they are a consequences of free
energy-based formulations, the following is a short mathematical
introduction to predictive encodings. The goal is to show that
the general formulation is relatively simple and can generate top-
down, temporal, and spatial predictive encodings. Depending
on precision estimates, predictions may even overrule bottom-
up sensory evidence. Moreover, the formalization shows how
resulting error signals can yield both, neural activity adaptation
and structural, weight adaptation (fast and slow error-based
adaptations, respectively).

Let us start with the most basic type of predictive encoding,
that is, top-down predictive encodings, which develop from
and generalize over bottom-up activation signals. This type
of predictive encoding was first introduced as a neuro-vision
architecture (Rao and Ballard, 1998). It can also be derived from
more general free-energy based formalizations (Friston, 2002,
2010). Top-down predictive encodings can be formulated by
starting from the most common one found in the original work
of Rao and Ballard (1998), which was more recently unified with
biased competition (Spratling, 2008, 2014). In this case, a strict
hierarchy of layers Si is assumed. Layer S0 =def X is the “lowest,”
modal grounded, sensory input layer, which is fed with sensory
signals x. The current neural activity in layer Si is denoted by
ySi and connections from layer i − 1 to layer i are specified
in the connection matrix WSi . Note how the current neural
activity ySi corresponds to a particular, currently active top-
down predictive encoding, because the neural activity generates
top-down predictions via the matrix WSi in the next lower
layer Si−1. Moreover, the weight matrices themselves determine
which top-down predictive encodings can be actually generated
(by a weighted combination of neural input activities), thus
constituting all top-down predictive encodings that are possible.
In sum, while the weight matrices determine the available
predictive encodings and thus the overall predictive model of
the system, the current neural activities determine the currently
active predictive encodings.

Using this notation, the following update of the neural
activities in a layer can be formulated:

ySi ← (1− α − β)ySi + γWSieSi−1 + β(WSi+1 )TySi+1 , (1)

where

eSi−1 =def y
Si−1 − (WSi )TySi , (2)

specifies the error signal in a particular layer, defined as the
difference between the top-down prediction and the currently
active predictive encoding in a layer. In their original work, Rao
and Ballard (1998) have shown that edge encodings similar to
those found in V1 can develop when this update mechanism is
paired with weight updates that strive to minimize the remaining
errors eSi in each layer (enforcing sparsity can further foster this
development). Essentially, the resulting algorithm first applies
several activity adaptations, which determine the currently
active top-down predictive encodings while minimizing the
error activities. Next, the algorithm adapts the weight values
to minimize the residual error even further. In various later
publications on learning in the area of vision as well as in
other related learning tasks, Bayesian mechanisms were shown
to approximate the predictive encoding approach and they were
related to attentional modulation, multi-sensory integration,
optimal decision making, and planning as probabilistic inference
(Denève and Pouget, 2004; Rao, 2005; Körding and Wolpert,
2006; Doya et al., 2007; Botvinick and Toussaint, 2012).

Parameters α, β , and γ determine how the currently active
encoding is combined with the top-down expectations and
the bottom-up error signal. As Spratling (2008) has shown, a
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particular choice of parameters can generate system behavior
that is akin to biased competition—disambiguating bottom-
up information by means of top-down predictions (leading,
for example, to the generation of imaginary contours in the
Kanizsa Triangle illusion). Note, however, that the parameter
values may also be changed adaptively, dependent on current
precision estimates (i.e., inverse variances) and the agreement
between the three signals (i.e., inverse estimation divergence).
These observations essentially confirm that this formulation
enables (i) the activity maintenance of predictive encodings
during the lack of evidence by setting α = β = γ = 0,
which should be the case when error information as well as
top-down predictions are highly imprecise; (ii) the inclusion of
top-down predictive influences including predictive coding-like
updates by setting β > 0 as well as biased competition updates
by setting β < 0, which should be the case when the top-down
information is estimated to be less precise ormore precise relative
to the estimated precision in the currently active predictive
encoding, respectively; (iii) bottom-up driven error corrections
by increasing γ > 0, where larger bottom-up precision estimates
should increase the bottom-up influence; (iv) the forgetting of
current encodings by increasing α > 0, where an increase in α

can be interpreted as an increase in encoding uncertainty.
These observations essentially show that predictive encodings,

particularly when endowed with precision estimates, can
generate top-down imaginations when the certainty, that is,
the top-down precision estimates, are very high. Moreover,
it shows how bottom-up error information generally interacts
with top-down predictions dependent on the relative precision
estimates. Free energy-based formalizations of these equations
are not further spelled-out in this article, but formalizations
are available, which also detail how precision estimates may be
encoded by means of variational Bayesian approximations, exact
Bayesian formalizations, or by neural population encodings (cf.
e.g., Friston, 2002, 2010; Friston et al., 2010; Ehrenfeld et al.,
2013; Kneissler et al., 2015). The following paragraphs detail how
temporal and spatial predictive encodings can be realized by the
same principle.

Besides the formulated strict hierarchy of top-down predictive
encodings, temporal predictive encodings can be formulated
in a similar manner (cf. e.g., Goodwin and Sin, 1984; Friston,
2008; Kneissler et al., 2015). Such formulations allow the
derivation of extended versions of the Kalman filter and enable
the simultaneous learning of temporal predictive encodings
while optimally filtering state estimations (Kneissler et al.,
2015). Memisevic (2013) has shown how to relate images
using probabilistic temporal predictive encodings. In this case,
multiplicative gates were used to flexibly wire input to output
images, effectively generating a temporal predictive encoding
for matching images. Abstractions over item interactions have
been shown to lead to temporal predictive encodings that can
characterize abstract object interactions, such as a push, a pull,
or a grasp (Giese and Poggio, 2003; Fleischer et al., 2012).

Spatial predictive encodings across correlated sensory
modalities have been developed with related approaches, where
the different sensory modalities are grounded in particular,
different frames of reference, thus posing the challenge to map

frames-of-reference onto each other in a posture-dependent
manner (Friston et al., 2010; Kneissler and Butz, 2014; Kneissler
et al., 2014; Schrodt and Butz, 2015). Closely related purely
visual artificial neural network models were show to be able to
develop interactive spatial and top-down predictive encodings
(Chikkerur et al., 2010; Bergmann and von der Malsburg, 2011;
Memisevic, 2013; Fernandes and von der Malsburg, 2015).

In sum, formulations of predictive, generative encodings
are available that enable the learning of top-down, spatial,
and temporal predictive encodings. Combinations of such
learning biases in a modularized fashion can foster the
generation of hierarchical predictive encodings, spatial mappings
of such encodings on abstract levels, as well the prediction
of the changes in such encodings over various time scales.
Closely related formulations of Restricted Boltzmann Machines
(Smolensky, 1986), the development of fast learning algorithms
for training them (Hinton et al., 2006), and enhancements
enabling multiplicative interactions (Memisevic, 2013; Schrodt
et al., 2015) suggest that state-of-the-art artificial neural network
learning techniques can be employed to learn the described three
fundamental types of predictive encodings.

3.2. Learning Event-Detectors via
Multiplicative, Nonlinear Gates
With the possibility of learning the three fundamental types of
predictive encodings, the second challenge comes when events
and event boundaries are to be detected. Various research
directions have proposed solutions from an anticipatory behavior
perspective (Fleischer et al., 2003; Butz et al., 2004; Herbort
et al., 2005) as well as from a hierarchical reinforcement learning
perspective (Simsek and Barto, 2004; Botvinick et al., 2009;
Botvinick and Weinstein, 2014). In artificial neural networks,
gatingmechanisms have been developed that enable the extended
sustenance of neurally encoded short-term memory items—the
so-called long short-termmemory (LSTM) networks (Hochreiter
and Schmidhuber, 1997; Otte et al., 2015; Schmidhuber, 2015).
LSTMs have been successfully applied to learn context-sensitive
grammars (Hochreiter and Schmidhuber, 1997; Pérez-Ortiz et al.,
2003) and even to solve speech recognition and automatic
language translation tasks (Graves et al., 2013; Sutskever et al.,
2014). Although at the moment LSTMs are always trained
by means of backpropagation, in speech recognition and
translation tasks they have been applied in a temporal and top-
down generative manner—generating sequences of words that
probabilistically appear to correspond to the auditory input or the
word-wise input from another language. Thus, LSTM networks
can be employed as predictive, generative models.

In LSTMs, nonlinear gates multiplicatively combine the
activity of a linearly activated neuron with a strongly, non-
linear activated one (e.g., sigmoidal). As a result, the input
via the linear function tends to gather evidence while the
non-linear input determines when the gathered information is
passed on. Additionally, gathered information can be maintained
via an identity-recurrence in LSTM memory cells, such that
particular information can be actively maintained until further
notice. LSTMs are thus highly suitable for developing event
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boundary detectors via nonlinear gates, while approximately
linear encodings predict possible event progressions.

To foster the development of such event encodings further,
an alternative or complementary approach is to incorporate
explicit event boundary detectors. Event boundaries can be
explicitly detected by monitoring the continuous activation of
predictive encodings. When registering significant changes in
the active encodings—for example, when activity ceases after
an extended period of time of activation, or, vice versa, when
activity commences and remains active after an extended period
of near inactivity—then this signal can be interpreted as an event
boundary signal. A similar approach has been used to detect
doorways in the four-rooms hierarchical reinforcement learning
problem, showing high detection robustness even with very large
amounts of sensory noise (Butz et al., 2004).

Although the full derivation of such mechanisms by
means of free energy-based inference principles remains
as a future challenge, the available theory suggests that
it is possible. Moreover, recent advancements in particular
wiring manipulations differentiating “drivers” and “modulators,”
combining them in a multiplicative fashion, have shown that
interactions of the kinds described above can be realized
by means of multiplicatively interacting predictive encodings
(Spratling, 2014). The further targeted wiring of such neural
architectures— especially when paired with the available
computational power and large amounts of data, which may
be gathered by simulated agents in virtual reality environments
(Ehrenfeld et al., 2015; Mnih et al., 2015)—is bound to yield even
more competent machines, which will be able to develop the
event schemata and episode encodings detailed above.

4. GOAL-DIRECTED BEHAVIOR AND
COGNITION

While the previous section has sketched-out a path how distinct
predictive encodings may be learned, the overall cognitive
process that may cause these neural adaptations while interacting
with the environment still needs to be specified. In this section, I
show how, given the developing predictive encodings, inference-
based planning, decision making, and control may be realized,
including both, motor control and mental control (i.e., thinking).
To do so, it is necessary to generate free energy internally, which
can be accomplished by principles of homeostasis. Paired with
active inference, thoughts and behavior can be generated, which
are inherently directed toward maintaining body and mind in an
approximately balanced, homeostatic state.

4.1. Active Inference and Homeostasis
It has recently been shown that free energy-based inference
paired with encodings of future, desired states can generate
active inference processes, which cause both, epistemic behavior
as well as goal-directed behavior (Friston et al., 2014, 2015).
Epistemic behavior essentially strives to minimize uncertainty
about internal state estimations and the real state in the world,
thus ensuring that desired states are reached with high certainty.
Goal-directed behavior strives to minimize the difference—or

divergence in terms of probability density encodings—between
a desired, homeostatic state and the current state. As a result,
active inference causes a system to act curiously in order to ensure
behavioral success, while striving to maintain homeostasis.

In the behavioral psychology and neuroscience literature, it
has been shown that humans exhibit approximately optimal
decision making and behavior, in which uncertainties about
the consequences of own behavior are taken into consideration
(Trommershäuser et al., 2003; Cisek, 2006; Körding andWolpert,
2006; Herbort et al., 2007). Theories of optimal control, which are
closely related to active inference (Friston et al., 2010; Friston,
2011), can approximately model such behavior (Todorov, 2004).
However, various cognitive science studies suggest that the
brain only achieves approximate optimality at best. Our own
recent research has shown that action decision making and
control depends at least on prior knowledge about tools and
objects, the position of the object relative to hand and body,
the orientation of the object, further object properties, such as
suitable grasp points, the initial, intermediate, and final goals
of the interaction, as well as the position of obstacles and
other items in the vicinity (Herbort and Butz, 2011; Herbort
et al., 2014; Belardinelli et al., 2015, 2016a,b). Thus, behavioral
decision making can be influenced by many factors. The research
results also suggest that behavior is not fully optimized, or fully
planned to the last detail, in each actual interaction; rather,
heuristic habitual behavior is applied dependent on the task
and the circumstances, and these habitual behaviors are adjusted
when free, redundant degrees of freedom are available (Herbort
and Butz, 2012, 2015). Along these lines, Cisek (2007) has put
forward an affordance competition hypothesis, where objects are
characterized as affording particular habitual interactions, which
compete for activity resources dependent on current motivations
and other priorities.

Note that such habitual interactions can be interpreted
as motor primitives, somewhat similar to dynamic motion
primitives that are used in the robotics community (Kober and
Peters, 2011; Ijspeert et al., 2013). These motor primitives can be
related to dynamic event encodings and can be integrated into
event schema encodings, where a motor primitive is applicable
given conditional encodings are satisfied. Comparisons of
the achieved and desired final event can be used as the
reinforcement learning signal. The proposed hierarchies of event
schema and episode encodings offer themselves naturally for the
activation of model-based, hierarchical reinforcement learning-
based planning and decision making processes (Botvinick et al.,
2009; Botvinick andWeinstein, 2014), which can be implemented
by means of free energy-based active inference (Friston et al.,
2010, 2014, 2015).

To generate self-motivated inference processes, internal
homeostatic or Hullian motivational states (Hull, 1943) may
drive the actual behavior (Hsiao and Roy, 2005; Konidaris and
Barto, 2006; Butz et al., 2010a). Differences between the desired
homeostatic state and the current state can be interpreted as
free energy that asks for minimization, causing active inference.
The more pressing the internal motivation is, that is, the larger
the difference (or divergence in terms of probability densities)
between the desired and the current homeostatic state, the higher
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is the free energy and thus the stronger the active inference
processes, effectively “pulling” the system toward satisfying the
internal motivation. Active inference consequently leads to the
activation of those episode encodings, event schema encodings,
the involved event encodings, and ultimately temporal predictive
encodings of the system, whichwill lead to the generation of those
forces and associated motor activities that are expected to satisfy
the system’s homeostatic states with high certainty.

4.2. Overall Cognitive Processing Loop
While I have now clarified that active inference can lead to
both, epistemic, information-seeking, curious behavior and goal-
driven behavior, it remains to be shown how behavior may
be selectively triggered given the current, predictively encoded
situation of body and outside world.With the versatile behavioral
capabilities we humans have, motivation-biased decisions need
to be made with respect to the overall context. And indeed, as
has been shown in Friston et al. (2015), the brain needs to make
continuous decisions between epistemic actions for improving
the accuracy or precision (inverse variance) of the current
predictive encodings about the world, and goal-driven actions
for satisfying motivational needs. To come to these decisions, the
following overall neuro-cognitive processing loop fosters the self-
maintenance of neural activities over time, continuously striving
to maintain overall bodily homeostasis (including most likely
neural-homeostasis).

The proposed neuro-cognitive processing loop is an extension
of a particular Bayesian, predictive information processing
architecture (Ehrenfeld and Butz, 2013; Ehrenfeld et al., 2013),
called modular modality frame (MMF) architecture. MMF
models the self-maintenance of an internal, concurrent and
consistent, probabilistic postural and visual body image of an
arm. It represents the arm state probabilistically by means of
a set of Gaussians (Ehrenfeld and Butz, 2013) or by neural
population codes (Ehrenfeld et al., 2013). To enable scalability,
MMF represents the arm not in one frame of reference but in
several, which are centered on individual arm limbs relative to
other limbs. Consequently, each probabilistic, modularized state
encoding covers only a two- or three-dimensional space, which
ensures the scalability of MMF.

The overall MMF architecture then continuously integrates
temporal forward predictions in the form of probabilistic
approximations of local Jacobians to predict next body
state estimation priors, typically yielding a slight decrease
in estimation precision. Next, modal and modular (typically
highly noisy) sensory information is provided, leading to
information gain when fusing the prior state estimations with
the incoming sensory information. During the process, the
sensory information is compared across the spatial predictive
models to be able to estimate current relative sensor information
plausibility on the fly—a mechanism that may be applied in
any layer including those without access to actual sensory
information. The overall information fusion process then
yields the local posterior estimate of the system, that is, a
set of local posterior state estimations. Finally, these local
posterior state estimations are compared pairwise across spatial
predictive encodings, bringing the internal state estimates in

further accordance with each other, depending on their relative
precisions (inverse variances). Figure 1 shows this information
processing loop.

Let us reconsider the described processing loop of MMF in
light of the presented different types of predictive encodings.
In this general case, the currently active temporal predictive
encodings will be responsible for generating prior (next) active
encodings on all available levels of abstractions. As in the
MMF architecture, temporal predictions will typically result in
a slight loss of precision, that is, in an increase in uncertainty
(variance) in the consequently active predictive encodings. Next,
bottom-up information will be fed into the system, leading
to local information gain and a general upwards pass of
prediction errors. During this process, information gain will
be typically experienced and the system will adapt its active
predictive encodings to better match the bottom-up, sensor-
based information, thus yielding local posterior active predictive
encodings.

Finally, the process needs to foster agreement between the
currently active encodings to form an overall state estimate,
which may be termed the global posterior active predictive
encoding. That is, the predictive encoding activities are adjusted
such that the global error that is generated by these encodings
(the sum of all errors akin to Equation 2) is approximately
minimized. As the predictive encoding system is essentially a
specific kind of highly modular, distributed, restricted Boltzmann
machine with additional processing and wiring biases, the global
attractor is generally very hard to determine. Thus, the global
attractor needs to be approximated by means of distributed but
interactive local adjustments, which can be realized by mutually
adapting predictive encoding activities given other, concurrently
active, connected predictive encodings. The result is a system that
strives to continuously activate those predictive encodings that
are in maximal consistent agreement with the available sensory
information as well as with the overall predictive encodingmodel.

4.3. An Anticipatory, Self-Maintaining
Cognitive System
Coming back to behavior then, the global posterior encodings
detailed in the cognitive processing loop above are the ones
that can cause the execution of goal-directed behavior by
means of active inference. Given an unbalanced homeostatic
state, temporal predictive encodings will be activated (by
active inference mechanisms), which predict a change in the
homeostatic variables toward higher homeostasis. Thus, internal
differences between current and desired homeostatic states “pull”
the brain’s neural activities toward generating more desired
states and thus toward producing those motor activities that are
believed to enable the causation of—or, when possible, to directly
cause—the desired changes.

Behavior is thus embedded into a system that strives for
the maintenance of homeostasis, akin to autopoietic systems
proposed by Maturana and Varela (1980), but that has developed
particular, predictive structures to be able to actively maintain
homeostasis. The system is also a fully anticipatory system, in
which the main anticipatory drive (Butz, 2008) comes from
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internal, mostly bodily grounded motivations (see e.g., Butz,
2013, for an overview). Behavior is thus viewed as actively
unfolding temporal predictions that translate desired state
changes into motor behavior.

Note that when abstracting from behavior to forces, behavioral
execution is not necessary anymore such that processes of
behavioral control may turn into processes of attentional
control (Balkenius and Johansson, 2007; Balkenius et al., 2008).
Allowing attentional control to predictively manipulate internal,
abstract, predictive encodings paired with the maintenance of
sufficiently large, local, distributed, predictive agreement (akin
to a distributed, local minimum in free energy), these processes
may lead to actually imagining particular unfolding forces even
though these are currently not perceivable (cf. e.g., Schrodt and
Butz, 2016). The self maintenance-oriented processes, paired
with locally distributed, inference-based attention, can thus
generate not only motor behavior but also purely internal
activities, which constitute abstract thought processes.

4.4. Imaginations, Concepts, and Concept
Compositions
The unifying theory thus proposes a system that not only directs
its motor activities but also its internal attention—and thus
self-generated thoughts themselves—toward the maintenance of
internal homeostasis. When sufficiently detached from current
sensory perceptions and motor activities—which can be realized
by decreasing the bottom-up error influence (parameter γ → 0
in Equation 1) and/or by inducing strong biased competition
(by a large negative parameter β , cf. Equation 1)—the system
may thus be able to imagine both, static events, scenes, and
situations as well as dynamically unfolding events, collections
of events, and episodes. These imaginations come in the form
of distributed attractors, which are striven for by minimizing
free energy between the involved, currently active predictive
encodings.

Coordinated predictive information exchanges that minimize
the free energy between the involved interactive predictive
encodings may be realized in the brain by synchronizing the
interacting firing patterns in various, distinct frequency bands,
which are able to distinctively influence top-down and bottom-
up information flow (Bastos et al., 2015; Fries, 2015). By means
of the cognitive processing loop combined with attention on the
currently active predictive encodings and on the homeostatically-
activated goals, the system will explore the predictions of
its activated predictive encodings in a self-motivated manner,
altering them while striving for the maintenance of approximate
free energy minima. If this is correct, activity changes in
spatial predictive encodings would lead to considerations of
alternative arrangements and relative perspectives. Similarly,
activity changes in top-down predictive encodings would
lead to considerations of involvements of other items and
other causes. When processing temporal predictive encodings,
the consequences of particular environmental force-driven
interactions would be considered in the imagined situation. As
a result, not only behavior but also abstract thoughts—including
planning, perspective taking, memory replay and reflection, and

thoughts about the future—could be generated by such a self-
maintaining, predictive encoding system.

Due to the developed event, event boundary, event schema,
and episode encodings, these imaginations typically would not
come in the form of very concrete sensory or motor images,
but they could also be established on more abstract, conceptual
levels. A mental image of a particular concept—such as a “ball,”
a “surface,” a “container,” or even a “democracy”—would be
encoded by a distributed but consistent set of active predictive
encodings, which predict the believed characteristics of the
particular concept. The consistency of the set would be essentially
akin to a distributed neural attractor, which approximates a
temporary free-energy minimum. In other words, the active
predictive encodings, which predict activities of each other,
are in agreement, such that none of the active encodings
significantly contradict others. Note how the agreement is closely
related to the error residual after activity adaptation, as it was
quantified in a simplified manner in Equation (2). The remaining
residual after activity adaptation essentially characterizes the
(believed) uncertainty about the concept. A concept composition
corresponds to an attractor that integrates several active concepts.

For example, the mental image of a ball may be constituted by
top-down predictive encodings of roundness features and a full
circular shape as well as imprecise weight estimates, for example,
in the form of predicted tactile and proprioceptive feedback upon
bodily interactions. Additionally, spatial predictive encodings
may yield size and volume estimates, as well as possibly an
imprecise default location—as in “in front of the eyes.” Temporal
predictive encodings may encode typical ball behavior, such
as rolling and bouncing, as well as the forces that typically
interact with a ball, such as forces caused by hands, feet, head,
other body parts, tools, and other items. Imaginable interactions
essentially relate these other concepts to the ball, thus enabling
the imagining of particular scenarios, such as, for example, a
soccer stadium, a penalty kick, or a goal—or in tennis a serve,
an ace, or a return. Figure 2A illustratively shows a distributed
predictive encoding network, which characterizes some of the
semantics of a ball.

In a similar manner, the concept of a “bowl” can be illustrated.
Figure 2B shows some of the involved predictive encodings.
Shown are a top-down encoding that predicts how the bowl may
look and a relative spatial encoding, which predicts where the
bowl may be situated. Moreover, two temporal encodings specify
how another entity may be affected when coming in contact
with the bowl and how the bowl may behave, when a force
affects it Note how the bowl is much more stable than the ball,
which is encoded in the temporal predictive encodings of possible
motion dynamics. Note also how the bowl specifies an attracting
subspace, characterizing its hollow area, which can be interpreted
as a characterization of a “container” concept.

Concept compositions then may combine several concepts
into an integrative attractor. Figure 2C illustratively shows how
the concept composition of “a ball lies in a bowl” may be encoded
in a distributed attractor that consists of a set of active predictive
encodings. The ball and bowl concepts are both active and
temporarily related to each other in a relative spatial frame of
reference. The illustrated relative spatial encodings predict that
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the ball is most likely somewhat smaller than the bowl and that
the ball is situated somewhere within the hollow area of the bowl.
Temporal predictive encoding activities may adapt due to the
activated spatial relationship, seeking an agreeable free energy
minimum. For example, the temporal predictive encodings about
interaction consequences may cancel each other out, such that
the ball may be imagined to lie stably within the hollow area of the
bowl. Moreover, the predictions about possible motion dynamics
may be adapted such that sudden motion onsets—particularly of
the ball—become less likely, unless the bowl is moved.

As a result, the concept composition may predict that the ball
is unlikely to roll out of the bowl, that it probably lies stably inside,
and that it probably remains inside even when the bowl is moved.
Moreover, the composite encoding is even able to generate a
visual image, where a prototypical ball (such as the soccer ball
shown) lies within the bowl. Note also how the words of the
sentence may be mapped onto the concepts and how they are
constraining the concept composition. The verb “lies” implies
stability, such that the estimates of the ball rolling should be low
as should estimates about the bowl currently moving. Moreover,
the preposition “in” implies that the subject (the “ball”) can be
found in the object (the “bowl”), which is only possible if an
inside area can be defined and is accessible. As a consequence,
the reversed sentence: “a bowl lies in a ball” is much harder to
imagine because a ball does not have an accessible interior, as also
pictured in the “ball” concept illustration (Figure 2A).

5. SUMMARY AND OUTLOOK

This paper has proposed a path toward a unifying sub-symbolic
computational theory of cognition. The proposal suggests
that thought—including thoughts about possibly hypothetical,
highly abstracted, imagined scenarios, and behavior in such
scenarios—is generated by sets of currently active encodings. The
encodings structure themselves based on the gathered sensory-
motor experiences, are predictive in nature, and comprise top-
down, spatial, and temporal predictive components. Event-
oriented abstractions enable the learning of event schemata and
integrative episodic encodings. A particular concept about our
world is encoded in the form of an approximately consistent set
of active predictive encodings.

Active inference drives behavior in an epistemic and goal-
directed manner, with the aim to maintain internal system
homeostasis. Similarly, attention is driven by active inference,
causing the activation of consistent sets of predictive encodings
and the consideration of possible temporal progressions through
these encodings. As a result, sets of predictive encodings
essentially encode the perception or imagining of a scenario
and the potential changes in this scenario over time. The main
propositions of the proposed unifying theory are summarized in
Table 2. Note that these propositions are certainly not all new,
but their integrative composition is.

Clearly, many challenges remain for developing an actual
implementation of the theory, filling in details, and verifying (or
falsifying) its propositions and predictions. Various laboratories
are working toward developing aspects of the herein proposed

theory unification, but clearly a fully integrative implementation
is missing. Verifications of the resulting system abilities are
pending as well at this point. Nonetheless, the propositions
put forward in Table 2 can be verified, falsified, or further
differentiated. The predictions of the sketched-out unified theory
about how concepts and compositional concepts are encoded
and how they develop, for example, can be questioned and
falsified. Also, the involved learning mechanisms can be further
investigated.

It should also be emphasized that a couple of important
aspects have not been addressed by the proposed unification.
These aspects particularly include social and language
dimensions. While self-motivated, goal-directed behavior
has been considered, the concept of intentionality has not been
addressed. This is because social aspects were neglected, that
is, I have not addressed how the system may encode other
agents in the environment. While other agents may generally
be perceived as items, clearly our brain encodes other animals
and particularly humans differently from inanimate items in the
environment (Amodio and Frith, 2006; Chouchourelou et al.,
2013). Predictive encoding capabilities establish themselves in
prefrontal cortical areas, which seem to allow (i) the separation
and integration of predictive self-representations (Butz, 2008)
from representations of others in the social context and (ii) the
attribution of intentions and individualized knowledge to others
(Frith and Frith, 2005; Amodio and Frith, 2006). Albeit I believe
that similar predictive encoding concepts can establish such
forms of encodings, I leave further elaborations on this point for
future research.

The language dimension stands in close relation to the
social dimension, as language without the drive for social
communication hardly makes any sense. The fact that language
shapes the way we think is at this point rather clearly established
(e.g., Griffin and Bock, 2000; Thibodeau and Boroditsky, 2013).
However, also many researchers nowadays suggest that thought
comes before language and enables language learning in the first
place (e.g., Mandler, 2004; Evans, 2015). The proposed unified
theory essentially puts forward how thought may be structured
before language, grounding thought encodings in sensorimotor
experiences and abstractions thereof. Propositions that such
structures make a system language ready have been put forward
(e.g., Pulvermüller and Fadiga, 2010; Pastra and Aloimonos,
2012), but require further elaboration.

Before adding language, though, implementations of the
sketched-out pathway toward conceptualized thought are
necessary, enabling proofs of the outlined principles, including
the progression toward abstract predictive encodings in
their various forms. How may such an implementation be
accomplished? One important challenge in this respect is
the generation of data, that is, a large amount of actual, self-
motivatedly generated bodily experiences, which are necessary to
simulate cognitive development. The capabilities of the currently
available robots are clearly too limited in this respect, allowing
the active gathering of data only over a couple of days at best. A
way out of this dilemma seems to be the use of reasonable realistic
simulators of virtual realities. Interestingly, the developments
pushed forward by the computer games industry may be helpful
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TABLE 2 | Main propositions toward a unifying, sub-symbolic, computational theory of cognition.

1. The brain is a modular, probabilistic, predictive encoding system that continuously strives to minimize free energy in a distributed manner;

2. Predictive encodings are separated into temporal, spatial, and top-down predictive encodings;

3. Modularity develops in the brain to be able to flexibly relate particular predictive encodings across space and time and to be able to form effective abstractions and

generalizations;

4. Behavior, attention, and thought are anticipatory because they are generated by active inference mechanisms, which activate temporal predictive encodings inversely

due to differences in current and desired internal homeostatic states, which in turn activate associated forces, motor behavior, attention, and thought itself;

5. Concepts are approximately consistent free energy minima in a distributed set of active, interconnected predictive encodings;

6. Concept compositions are combinations of such concepts that are temporarily consistently related to each other (approximating a larger, more distributed free energy

minimum);

7. Particular scenarios, such as the current or an imagined world state, are perceived, imagined, or remembered in the form of compositional concepts;

8. Episodes are perceived, imagined, or remembered in the form of compositional concepts and a concatenation of event schema-encodings (typically on multiple levels

of abstraction), which specify how the scenario changes (or may change or changed) over time;

9. The cognitive pursuance of a particular “idea” or a particular “thought” corresponds to the active exploration of concepts, concept compositions, scenarios, and/or

episodes by means of event schema-based activity changes over time.

in this respect. Game engines, such as Unity3D (https://unity3d.
com/), the CryEngine (http://cryengine.com/), or the Unreal
Engine (https://www.unrealengine.com/), offer themselves as
sufficiently realistic environments in which an artificial agent
can gather large amounts of data even faster than real time.
Also research driven VR engines may be suitable, such as the
MuJoCo advanced physics simulation (http://www.mujoco.
org/). The recent impact of a deep learning artificial neural
architecture in playing some of the traditional Atari arcade
games human-competitively points out that such simulations
are possible (Mnih et al., 2015). Note that in this particular
case, however, no generative system was employed and no real
“understanding” of the games by the system was shown.

As long as the artificial self-developing system
implementation, which is based on the proposed unifying
theory, is equipped with (i) suitable sensory and motor
capabilities and (ii) a suitably structured internal system of
motivations, it may be released into any available, sufficiently
rich virtual reality simulation. Analyses of the actual cognitive
development that can be accomplished by such self-developing,
artificial, cognitive creatures will be highly revealing. The
resulting, potential insights may shed further light on (i)
the fundamental functional and computational principles
implemented by our brains, (ii) how cognitive development
actually proceeds mechanistically, and (iii) how cognition

itself unfolds in sensorimotor experience-grounded, predictive
encodings.
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