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Why does the capacity to think certain thoughts imply the capacity to think certain

other, structurally related, thoughts? Despite decades of intensive debate, cognitive

scientists have yet to reach a consensus on an explanation for this property of

cognitive architecture—the basic processes and modes of composition that together

afford cognitive capacity—called systematicity. Systematicity is generally considered

to involve a capacity to represent/process common structural relations among the

equivalently cognizable entities. However, the predominant theoretical approaches to

the systematicity problem, i.e., classical (symbolic) and connectionist (subsymbolic),

require arbitrary (ad hoc) assumptions to derive systematicity. That is, their core principles

and assumptions do not provide the necessary and sufficient conditions from which

systematicity follows, as required of a causal theory. Hence, these approaches fail

to fully explain why systematicity is a (near) universal property of human cognition,

albeit in restricted contexts. We review an alternative, category theory approach to

the systematicity problem. As a mathematical theory of structure, category theory

provides necessary and sufficient conditions for systematicity in the form of universal

construction: each systematically related cognitive capacity is composed of a common

component and a unique component. Moreover, every universal construction can be

viewed as the optimal construction in the given context (category). From this view,

universal constructions are derived from learning, as an optimization. The ultimate

challenge, then, is to explain the determination of context. If context is a category, then a

natural extension toward addressing this question is higher-order category theory, where

categories themselves are the objects of construction.

Keywords: systematicity, compositionality, classicism, connectionism, category theory, universal construction,

(co)recursion, (co)algebra

1. INTRODUCTION: THE SYSTEMATICITY CHALLENGE

Systematicity is a property of cognitive architecture—the organization of basic processes affording
cognition—where the capacity for certain cognitive abilities implies having the capacity for certain
related cognitive abilities (Fodor and Pylyshyn, 1988). An often used example of systematicity is
where having the capacity to understand the statement John loves Mary implies having the capacity
to understand the statement Mary loves John. This property need not be restricted to language,
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nor humans. In general, systematicity has been characterized as
having cognitive capacity c1 if and only if one has structurally
related cognitive capacity c2 (McLaughlin, 2009). That is,
systematically related cognitive capacities form an equivalence
class with respect to certain structural equivalence relations.
Despite decades of intensive debate, cognitive scientists have yet
to reach a consensus on an explanation for systematicity, as
evidenced by the diversity of views in a recent reassessment of
the systematicity challenge (Calvo and Symons, 2014).

The challenge for theories of cognitive architecture is to
explain why the distributions of cognitive capacities tend to
be centered around structural equivalences. That is, to provide
necessary and sufficient conditions from which systematicity
follows without relying on arbitrary (ad hoc) assumptions (Fodor
and Pylyshyn, 1988; Aizawa, 2003). In a nutshell, ad hoc
assumptions are auxiliary assumptions that are motivated solely
by the need to fit the data, unconnected to the core theory, and
not confirmed independently of confirming the theory (Aizawa,
2003).

Classical (symbol systems) theory was thought to explain
systematicity by virtue of a suitable collection of grammatical
structures (symbol transformation rules) that afford the target
collection of capacities: capacity for one instance implies
capacity for all instances, because they are all obtained from
one and the same grammar, assuming basic processes for
recognizing/generating atomic symbols. Ironically, the classical
explanation appears to suffer the same kind of problem that
was raised against connectionism: i.e., the ad hoc way in which
grammatical (cf. neural network) structures can be configured
with and without support for systematicity (Aizawa, 2003). One
can straightforwardly provide a grammar that supports some
but not all the requisite capacities (Phillips and Wilson, 2010).
Classicists claim that the only classical grammatical structures are
the “canonical grammars” (McLaughlin, 2009). However, what
characterizes canonicity, beyond just being the grammars that
support systematicity, and what determines having just such
canonical grammars is unclear.

The challenge facing the classical approach to theories of
cognition echoes the one facing the connectionist and other
approaches: develop a theory of cognitive architecture whose core
principles and assumptions provide the necessary and sufficient
conditions from which systematicity follows, as required of a
causal theory (Fodor and Pylyshyn, 1988; Fodor andMcLaughlin,
1990; Aizawa, 2003). A common recourse with regard to
connectionist approaches is to augment models with a capacity
to learn to be systematic as a form of generalization (see
e.g., Hadley, 1994; Niklasson and van Gelder, 1994; Hadley
and Hayward, 1997; Boden and Niklasson, 2000). For instance,
the capacity to understand sentences with constituents in
novel syntactic/semantic positions is called strong systematicity
(Hadley, 1994): e.g., the capacity to infer that Mary is the person
being loved in the sentence “John loves Mary” having been
trained to make such inferences with Mary only ever appearing
in the lover position. However, there are many possible ways to
train a neural network, and not all of them support the requisite
level of generalization (see e.g., Marcus, 1998; Phillips, 1998).
Thus, a challenge for the learning approach is to explain why a

network is configured in just the right way to afford the desired
generalization property, which echoes the original systematicity
problem (Phillips and Wilson, 2010).

If systematicity depends on some kind of structure, then a
prospective approach is a mathematical “theory of structure,”
in a technical sense to be elaborated upon later, called category
theory (Eilenberg and Mac Lane, 1945; Mac Lane, 1998).
Category theory was originally invented as a formally precise
language to compare mathematical objects. However, subsequent
developments have transformed category theory into a branch
of mathematics in its own right (see Marquis, 2009, for a
historical perspective). The main areas of application outside of
mathematics have been computer science (see e.g., Arbib and
Manes, 1975; Rydeheard and Burstall, 1988; Barr and Wells,
1990; Walters, 1991; Crole, 1993; Bird and de Moor, 1997)
and physics (see e.g., Coecke, 2006; Baez and Stay, 2011).
Though applications to cognitive science have been relatively few,
they include cognitive development (Halford and Wilson, 1980;
Phillips et al., 2009), concepts (Magnan and Reyes, 1995; Healy
and Caudell, 2004), language (Lambek, 2004; Ellerman, 2007;
Clark et al., 2008), memory (Ehresmann and Vanbremeersch,
2007), navigation (Gomez-Ramirez, 2014), and neural models
(Healy et al., 2009). We have been advocating a category theory-
based explanation for various aspects of systematicity (Phillips
and Wilson, 2010, 2011, 2012), see also Halford et al. (2014), ch.
2 and Phillips and Wilson (2014) for an overview. The purpose
of the current paper is to review this explanation in so far as it
accounts for systematicity and assess what further challenges lay
ahead.

Category theory provides an explanation for systematicity in
terms of universal constructions (Section 2). This explanation
leads one to inquire as to why universal constructions naturally
arise. A universal construction can be viewed as an optimal
construction in the given context (category). So, we look at the
relationship between optimization and learning as the basis for
explaining the origins of universal constructions (Section 3).
This approach also leads naturally to an algorithm for learning
universal constructions that is derived from this category theory
perspective (Section 4). Finally, we look at the implications
of this (unique) category theory perspective on systematicity,
and a new challenge that follows for cognitive science
(Section 5).

2. A CATEGORY THEORY EXPLANATION:
UNIVERSAL CONSTRUCTIONS

Conventional wisdom suggests starting with familiar examples
when introducing a new concept. So, one might introduce the
concept of a category to a graph theorist as a generalized graph
whose nodes and edges may involve additional information
beyond labels, to an order theorist as a collection of generalized
(partially) ordered elements, to a set theorist as sets with
structure, to a computer scientist as a collection of generalized
states and transitions, to a cognitive scientist as a natural
category (e.g., dog) consisting of a collection of instances and
their relationships to each other, and so on. Such examples
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immediately suggest that a mathematical category consists of
a collection of elements or objects and their relationships.
Although this approach can provide immediate orientation
toward the concept at hand, those aspects that are essential to
the concept may be obscured by those aspects that are incidental.
Indeed, with hindsight, much about the question of whether
connectionist models implement classical symbol systems in
their explanations or demonstrations of systematicity can be seen
as a dispute between models, rather than theories of structure in
the light of category theory. We will return to this point later in
our assessment of the categorical approach.

An alternative approach is to start with the concept’s
definition from which concrete examples are instantiated.
For mathematical concepts that have precise definitions, this
(axiomatic) approach immediately identifies those properties that
are necessary and sufficient for something to be an instance of
that concept. However, applications may not be immediately
obvious. Given that category theory may not be familiar to many
cognitive scientists and the relative scarcity of applications to
cognition, we steer an intermediate course with just enough
formalism and examples to assess a categorical approach to
the systematicity problem. Deeper and broader introductions
to category theory can be found in many introductory books
aimed at readers of various backgrounds, from those readers
with more mathematical experience (Mac Lane, 1998; Awodey,
2010; Leinster, 2014) to those with less (Lawvere and Schanuel,
1997; Lawvere and Rosebrugh, 2003; Simmons, 2011), to those
more comfortable with computational concepts (Arbib and
Manes, 1975; Rydeheard and Burstall, 1988; Barr and Wells,
1990; Pierce, 1991; Walters, 1991; Crole, 1993), including
functional programming (Bird and deMoor, 1997) and relational
information systems (Spivak, 2014). There does not appear to be
an introductory book for cognitive scientists, but see Ehresmann
and Vanbremeersch (2007) Gomez-Ramirez (2014), and Magnan
and Reyes (1995) for examples of general descriptions of
cognitive systems in categorical terms. Since the central
concept underlying a categorical explanation for systematicity
is universal construction, and universal construction depends
on the concepts of category and functor, we begin with the
concept of a category, followed by functor, then universal
construction.

2.1. Categories
Category theory starts with the concept of category. A category
consists of a collection of entities, called objects, a collection
of directed links between objects, called arrows (morphisms
or maps), and a composition operation, denoted ◦, that
takes two “connected” arrows (where arrows are connected
if the object at the end of one arrow is the object at the
start of another arrow) and forms another arrow, subject
to certain rules (axioms). Graphically, if there are objects

and arrows ·
f

// ·
g

// · then there is a third arrow

·
f

//

g◦f

44·
g

// · , i.e., the composition of f and g. Every object

A is associated with an identity arrow from/to itself, denoted 1A.

Composition (◦) is required to be associative and so the identity
arrows have the expected properties (see e.g., Awodey, 2010, p.
5): associativity simplymeans that the order of compositions does
not affect the result, i.e., f ◦(g◦h) = (f ◦g)◦h; and just like 0 as the
identity for addition over the real numbers, R, has the property
that x+ 0 = x = 0+ x for all x ∈ R, the identity arrows have the
analogous property that f ◦ 1A = f = 1B ◦ f for all f : A → B in
a category.

This austere definition of a category appears to have little to do
with cognition. Yet, cognitive processes are typically modeled as
functions, or relations between sets of cognitive states, which can
be treated in terms of particular kinds of categories. The category
Set has sets for objects, functions for arrows, and function
composition as the composition operation, i.e., (g◦ f )x = g(f (x)).
Cognitivists posit sets of symbolic or vector representations and
functions that map between sets of representations as models of
cognitive states and processes. Thus, a cognitive model can be
constructed in Set. Comparing the size, or more generally the
order of two entities is another common cognitive ability. A set P
with a partial order (≤) defined over its elements p ∈ P, satisfying
p ≤ p (reflexive), p ≤ q ∧ q ≤ p ⇒ p = q (antisymmetric), and
p ≤ q ∧ q ≤ r ⇒ p ≤ r (transitive), is called a poset and written
(P,≤), and is also a category, as follows. The objects of a poset as
a category are its elements p, and there is exactly one arrow p → q
whenever p ≤ q. The identity arrows exist because a partial
order is reflexive, and compositions of arrows can be defined
because a partial order is transitive. The set of real numbers R
with the usual order (≤) constitutes a poset, hence a category,
which is useful in the context of learning as optimization, as we
shall see later. Some of our examples use a generalization of a
poset, called a preorder, i.e., a set with a relation over elements
that is reflexive and transitive (making a preorder a category),
but not necessarily antisymmetric (Awodey, 2010, p. 9). For an
introduction to categories using posets see Simmons (2011).

As we mentioned earlier, a formal definition can clarify the
essential properties a category. For instance, counting considered
as a succession of numbers, e.g., succ : 2 → 3, is clearly a partially
(totally) ordered set, and hence a category, but adding numbers
considered as arrows, e.g., 2 : ∗ → ∗ where addition is the
composition operation, e.g., 2 ◦ 3 = 2 + 3 = 5, without zero,
i.e., 0 : ∗ → ∗ is not a category, because there is no identity
arrow. Often one can readily determine whether some collection
of objects and relations is categorical from this relatively simple
definition. Yet, the road from definition to cognitive application
may not be so straight and narrow.

So, at this point, we remark on the relevance of the identity
and associativity properties as a primer for a categorical approach
to the systematicity problem. The requirement that every object
be associated with an identity arrow seems trivial when these
arrows don’t appear to do anything. And, the requirement
that multiple compositions are not sensitive to the order in
which the operations are carried out does not seem particularly
important when adding three numbers, such as (2 + 3) + 4 vs.
2 + (3 + 4). However, categorical identities afford equational
reasoning among arrows just as 0 affords equational reasoning
among arithmetic expressions, and associativity affords an
alternative path to a solution that may otherwise be difficult to
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resolve. For instance, compare solving for x in the sequence of
arithmetic equations

1+ x = 2, (1)

−1+ (1+ x) = −1+ 2, (2)

(−1+ 1)+ x = 1, (3)

0+ x = 1, (4)

x = 1 (5)

with solving for arrow f :A → B given g :B → Cwhich is assumed
to have the inverse g−1

:C → B, i.e., g−1 ◦ g = 1B, and h :A → C
in the sequence of arrow equations

g ◦ f = h, (6)

g−1 ◦ (g ◦ f ) = g−1 ◦ h, (7)

(g−1 ◦ g) ◦ f = g−1 ◦ h, (8)

1B ◦ f = g−1 ◦ h, (9)

f = g−1 ◦ h. (10)

Equations (3) and (5) are obtained from the associativity
and identity properties for addition, respectively. Likewise,
Equations (8) and (10) are obtained from the associativity and
identity properties for composition. Thus, while associativity can
seem obvious, it is critical to reasoning like that above, and it
does not hold for every binary operation: e.g., a − (b − c) 6=

(a − b) − c. We will see next that these general properties
are important to “grounding” and “preserving” relationships
between elements across different hierarchical levels. This feature
of category theory is what makes the categorical approach to
systematicity quintessentially unique.

2.2. Functors
We introduced the concept of a category for computationalists
as a collection of maps (functions) between sets of states.
The concept of a state can be generalized to include cognitive
processes. For example, a learning process can be considered
as a map from one (generalized) cognitive state consisting
of the currently available cognitive processes to another state
including newly available cognitive processes. For instance, one
can consider associative learning as a process that transforms
one collection of associative capacities to another collection of
associative capacities. In category theory, if a generalized state or
object can be regarded as a category, then there are maps between
such states or objects (categories), residing in a possibly larger
category, whose arrows are called functors.

Functors are to categories as functions are to sets. A functor
is a map F : C → D that sends the objects and arrows
in C to (respectively) the objects and arrows in D so as to
preserve identities and compositions: F(1A) = 1F(A), identities;
F(f ◦ g) = F(f ) ◦ F(g), compositions. In this sense, functors
are called “structure-preserving”maps that are “grounded” by the
preservation of identities. A structure preserving map f between
posets is a monotonic function, which preserves order, i.e., p ≤

q ⇒ f (p) ≤ f (q). Posets are categories, hence monotonic
functions are functors. Note that any set S can be regarded as a

discrete category whose objects are the elements e of S, and whose
arrows are just the identity arrows 1e : e → e for each e ∈ S.
Then functions between sets become functors, whose action on
objects is given by the function, and whose action on arrows is
given by f (1e) = 1f (e). The composition property follows trivially,
since the only possible compositions are of the form 1e ◦ 1e =

1e. However, not every (generalized) function from objects and
arrows in one category to objects and arrows in another category
is a functor, since not all such functions will preserve composition
and identities.

That a function (between sets) can be considered as a functor
may seem perplexing given that we introduced functors as a
kind of higher-order map, i.e., a map between maps, which
perhaps confusingly suggests that a map and a map between
maps are the same thing when they are not. In category theory,
a particular concept of one kind may appear as a different kind
of concept in another category, e.g., a functor considered as
an object in another category; and as we shall see, a universal
construction considered as a special kind of object, in turn,
considered as another kind of universal construction. What
prevents category theory from descending into a death spiral
of arbitrary abstraction is that every instance of a concept
resides in a particular category. Apparent conceptual ambiguities
are readily resolved by recalling the categorical context of the
attending concept. Compare the categorical concept of an arrow
as an object with the linguistic concept of a verb as a noun. We
shall return to this point on context as it also plays an important
role with regard to systematicity. The relationship between levels
is also critical to the explanation, which we presage with the next
two remarks.

First, the definition of a functor introduces another important
consequence of identities, which is the “grounding” of one entity
with respect to another. For instance, the natural numbers (N)
together with addition can be considered as a category that
consists of a single object called ∗ and one arrow n : ∗ → ∗ for
each number n ∈ N, including the identity arrow 0 : ∗ → ∗,
and addition is the composition operation. Strings (“words”) of
characters from an alphabet (A) together with concatenation (·)
as composition can also be considered as a category that consists
of one arrow a : ∗ → ∗ for each character a ∈ A, considered
as a one-character word, a special symbol ǫ representing the
empty string as the identity arrow ǫ : ∗ → ∗, i.e., ǫ · a = a =

a · ǫ, and all compositions, e.g., b ◦ a is the two-character word,
ab. In this situation, there is a count functor (here, denoted #)
from the strings category to the numbers category that counts
the number of characters in each string, e.g., #(cat) = 3. By
preserving identity the number of characters in the empty word is
meaningfully grounded at 0, i.e., #(ǫ) = 0, and compositionality
is preserved as illustrated by the following example, #(ǫ · cat) =
#(cat) = 3 = 0 + 3 = #(ǫ) + #(cat). Compare with the functor
definition, F(f ◦ g) = F(f ) ◦ F(g), where the first composition
corresponds to concatenation and the second corresponds to
addition.

Second, a functor preserves compositionality and so subsumes
and further generalizes the forms of compositionality available in
other theoretical approaches to cognition. Compositionality is a
central feature of the classical approach to cognitive modeling,
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and compositionality can also be incorporated into connectionist
models. The classical form typically employs some kind
of juxtaposition, e.g., concatenation, of symbols representing
constituent entities to form strings of symbols representing
complex entities, so that the syntactic relations between symbols
reflect the semantic relations between constituent entities.
Analogously, the connectionist form employs an operation
over vector spaces, e.g., tensor product (Smolensky, 1987), for
combining vectors representing constituents to form vectors,
matrices, or tensors representing complex entities. One can
interpret a functor as a general means of constructing objects
and arrows in one category from objects and arrows in another
category that subsumes the kinds of grammatical constructions
familiar to classical approaches, or vector-based constructions
familiar to connectionist approaches. For instance, there is
a functor that sends directed graphs as objects representing
grammars in a category of such graphs to categories as objects,
in a larger category, representing all possible strings generated
by that grammar (Walters, 1991). A tensor is a (bi)functor
(Mac Lane, 1998), cf. binary function, which generalizes the
notion of tensor product used in connectionist models (see e.g.,
Smolensky, 1990; Halford et al., 1994). A functor can also be
employed to combine both symbolic and subsymbolic forms of
compositionality (Clark et al., 2008).

Although category theory affords more general notions of
compositionality, the increased generality in and of itself is
not what addresses the systematicity problem: a fortiori, if
classical compositionality is too general to pin down just the
systematically related capacities, then this categorical notion
of (functorial) compositionality is also too general given that
the latter subsumes the former. The power of the categorical
approach stems not from increased generality, but from a unique
combination of generality and specificity. To quote from one
of its founders, “good general theory does not search for the
maximum generality, but for the right generality” (Mac Lane,
1998, p. 108, emphasis ours). To paraphrase, we seek not
sufficient conditions, but necessary and sufficient conditions for
systematicity. This requirement leads naturally to the concept of
universal construction (Mac Lane, 1998) as an explanation for
systematicity (Phillips and Wilson, 2010), and we turn to this
next.

2.3. Universal Constructions
We said that systematicity is generally regarded as being
derived from some ability to represent/process the common
component of a collection of structurally related cognitive
capacities. Category theory can model cognitive capacity as
compositions of arrows in a category of some kind. Universal
construction is the formal, category theory concept that captures
the commonality among a collection of arrows and their
compositions that are constructed from, or composed by a
functor. Accordingly, universal construction is the basis of an
explanation for systematicity.

Before presenting the general concept of a universal
construction, we provide a basic intuition using a simple example
of systematicity with respect to ordered pairs of shapes. In
this example, if one has the capacity to represent the ordered

pair of shapes (square, triangle), then one has the capacity to
represent the ordered pair of shapes (triangle, square), assuming
one has the capacity to represent the basic constituents square
and triangle. Intuitively, each capacity is obtained from: (1) a
common component that is associated with the pair schema
(∗, ∗), see next paragraph, (2) a component that is specific
(unique) to each capacity, i.e., square as the first shape and
triangle as the second shape in the (square, triangle) instance,
and triangle as the first shape and square as the second shape
in the (triangle, square) instance, and (3) the composition of
components (1) and (2). As a universal construction, each
capacity is obtained from: (i) an arrow that corresponds to the
common pair schema, (ii) an instance-specific arrow obtained by
a functorial construction from the arrows that correspond to the
basic constituents square and triangle, and (iii) the composition
of arrows (i) and (ii). The functorial constructions are obtained
by a functor that constructs an arrow corresponding to square as
the first shape and triangle as the second shape for the (square,
triangle) instance, and an arrow corresponding to triangle as
the first shape and square as the second shape for the (triangle,
square) instance from the square and triangle arrows. Thus,
systematicity derives from the fact that each capacity is indivisibly
connected to the same arrow.

The relationships between the various arrows are presented
in the diagrams given in Figure 1, which also serves as in
introduction to their use in category theory and subsequently in
this paper. Figures 1A,B show the arrows corresponding to the
instances (square, triangle) and (triangle, square), respectively.
In a set-like category, i.e., a category whose objects are sets with
possibly additional inter-element relations, an arrow (function)
from a one-element set {∗}, where ∗ indicates that the identity of
the element is unimportant, to a set A that is written a : ∗ 7→ a
indicates a function that picks out, or points to, or generates
the element a ∈ A. (The “mapsto” symbol 7→ indicates the
action of a function of an element, i.e., f : x 7→ y indicates
that f (x) = y, as exemplified in Figure 1.) Because there can
be no ambiguity such arrows are simply denoted by the name
of the element picked out. Hence, Figures 1A,B show that the
capacities to represent the pairs of shapes (square, triangle) and
(triangle, square), which correspond to arrows 〈s, t〉 and 〈t, s〉,
are composed of a common arrow 〈1, 1〉 and the unique arrows
s × t and t × s, respectively. Psychologically, one can interpret
the 〈1, 1〉 arrow as the universal capacity to point to two objects
in parallel, which one might associate with a notion of working
memory capacity (see e.g., Cowan, 2001). The two unique arrows
are constructed from a product functor (Mac Lane, 1998, p.38),
denoted 5 here, applied to the source arrows indicated as the
right vertical arrows in the two diagrams. Conceptually, one can
think of the product functor as providing an intrinsic role for
the constituent arrows, s and t. The 〈1, 1〉 arrow identifies the
universal role that each arrow plays in each pair of arrows in
the current context. Note that it is not essential that the product
functor be the conventional one that constructs the products
A × B and f × g from the pairs (A,B) and (f , g), whence the
universal arrow is amap to the objectA×B; an alternative functor
constructs products B × A and g × f from (A,B) and (f , g),
whence the universal arrow is a map to B×A, because the general
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FIGURE 1 | Systematicity with regard to (A) the pair (square, triangle) and (B) the pair (triangle, square). The arrow 〈s, t〉 corresponds to the capacity to

generate the representation for (square, triangle), indicated as the symbol pair (�,△). This arrow is composed of the arrow 〈1, 1〉, which is common to all shape pairs,

and the arrow s× t. Arrow s× t is constructed by applying a functor (not shown) to the pair of arrows (s, t), which correspond to the basic capacity to generate a

representation for square and triangle, respectively. The objects in these categories are sets and the arrows are functions, where 7→ indicates the action of the function

on set elements, and dashed arrows indicate uniqueness, i.e., the only arrow that satisfies the equation 〈s, t〉 = s× t ◦ 〈1, 1〉. The symbol ∗ indicates an element

whose name is unimportant. Note that {(∗, ∗)} is a one-element set containing the (ordered) pair with the (unnamed) element ∗ at both positions, and ({∗}, {∗}) is a pair

with the one-element set {∗} at both positions. Systematicity with regard to (C) the capacity to infer that the first shape of the pair (square, triangle) is square and (D)

the capacity to infer that the first shape of the pair (triangle, square) is triangle, where the common arrow π1 is the projection that returns the first component of each

pair. The arrows that are the sources of 〈s, t〉 and 〈t, s〉 in (C,D) are not shown.

conditions for being a universal construction (discussed shortly)
determine the universal arrow from the functor, as we shall see
in the next section. Put another way, the functor contributes
to the context in which the arrow is universal. Figures 1C,D
show the universal arrow associated with a related instance of
systematicity, the capacity to infer the first component of each
pair. The universal arrow in this instance is a projection which
returns the first component of each pair.

The diagrams also highlight another point which pertains
to the implementation issue that has surrounded much of the
systematicity debate: whether or not proposed alternatives to
classical compositionality are implementations of the classical
theory, or genuine alternative theories (see Smolensky, 1987,
1990; Fodor and Pylyshyn, 1988; Fodor and McLaughlin, 1990,
for opposing sides of the debate). Note that in both instances
of systematicity with regard to shape pairs, the category theory
explanation is not committed to a particular symbolic or
subsymbolic form of representation. One could replace the
category Set with some other category that has products, like the
familiar Cartesian product of sets A × B, such as the category of
vector spaces, or topological spaces, or graphs (to name a few). A
classicist may observe that the various compositional arrows, in
fact, “token” their constituent arrows, which follows the classical
form of compositionality: the tokening of constituents whenever
their complex hosts are tokened. However, there is a crucial
difference between categorical (universal) compositionality and
classical compositionality, and that is the relationship between
the arrows at different levels, viz. the universal arrow. Indeed, a
universal arrow is formally defined as an arrow from an object
to a functor (e.g., Figures 1A,B), or alternatively as an arrow
from a functor to an object (e.g., Figures 1C,D) satisfying certain
requirements. A universal arrow is also an object in another
category (Mac Lane, 1998), which we explain and make use of

in Section 4. The diagrams explicitly indicate the arrows within
categories, i.e., the triangle of arrows which reside in one category
and the stand-alone vertical arrow which resides in another
category, and implicitly indicate the arrow (functor) between
those categories. (NB. such diagrams usually show the objects and
arrows in the form A → B to indicate the directed relationships
between those objects, because objects need not be sets, nor have
any internal components, as we saw in the case of posets, e.g.,
where the relationship 2 ≤ 3 constitutes the arrow 2 → 3.
Implicit functorial relations are indicated by the application of
the functor to the source objects, e.g.,5(s, t).) It is this inter-level
relationship between arrows that is unique to the category theory
approach, and warrants regarding this approach as an alternative
theory, rather than an alternative implementation.

In the general situation, simply put, a universal arrow is an
arrow φ from an object X to a functor F such that for every
arrow f in a collection of arrows from X to F there is an
arrow F(u) constructed from a unique arrow u by applying the
functor F that composes with φ to give f , i.e., f = F(u) ◦ φ
(Mac Lane, 1998, p. 55). A diagram showing the general form
and another example of a universal construction are given in
Figure 2. An outline of a category theory explanation using this
construction follows. The collection of f -arrows corresponds to
a collection of systematically related cognitive capacities. The
functor F constructs the constituent capacities F(u) that are
composed with the universal arrow φ to realize each and every
systematically related capacity f as the composition F(u) ◦ φ. In
other words, φ corresponds to the component that is common
to all capacities f , and F(u) to the component that is specific
to a particular f . The universal arrow is necessary in that by
composing with this arrow we obtain at least all the arrows f
in the collection of systematically related capacities; the universal
arrow is sufficient in that we obtain no more than this collection.
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FIGURE 2 | Universal construction and comma category. The diagram in

(A) shows the general form of a universal arrow, which is the pair (A, φ), from

an object X in a category C to a functor F :D → C from a category D to C. To

be a universal arrow, as such, for every object Y in D and every arrow

f : X → F (Y ) in C there must exist a unique arrow u : A → Y , in D, such that

f = F (u) ◦ φ. The diagram in (B) shows the corresponding comma category,

denoted (X ↓ F ), whose objects are the pairs (Y , f ) and arrows are the arrows u

that uniquely satsify the “triangle” equation, f = F (u) ◦ φ. The collection of

objects in the comma category includes the universal arrow, (A, φ), because

for Y set to A and f set to φ the triangle equation is uniquely satisfied by setting

u to the identity arrow 1A. The universal arrow is the initial object in the comma

category, which is straightforward to prove. Dashed lines indicate that the

arrows are unique. An example universal construction (C) and corresponding

comma category (D) is the universal arrow from the object (real number) 2.9 to

the inclusion functor (function) from the integers to the real numbers (regarded

as posets with the usual order ≤, hence categories) is the pair (3,≤). The

number 3 corresponds to the smallest integer greater than or equal to 2.9. In

general, for a real number x ∈ R, the object component of the universal arrow

(a,≤) from x to the inclusion function/functor is obtained by rounding up to the

nearest integer a ∈ Z greater than or equal to x, i.e., obtained by the ceiling

function, a = ⌈x⌉, and the corresponding comma category consists of all the

integers y greater than or equal to a, i.e., the set {y ∈ Z|⌈x⌉ ≤ y}.

Moreover, this construction avoids the ad hoc aspects of classical
and connectionist approaches, because there is no other choice
of arrow that satisfies this condition, since F(u) is unique. In
contrast, with classical and connectionist approaches there are
(possibly many) other arrangements that more or less realize the
targeted collection of systematically related capacities, whereby
some (arbitrary) choice is needed to specify just that collection.
Hence, universal arrows provide a category theoretical account
of systematicity. Arrows in Set are functions; in posets/preorders
they are orderings, but there are other categories with other
kinds of arrows, e.g., arrows may be symbol transition rules,
linear functions over vector spaces, graph transformations, or
some other kind of process (or relationship). One can think of a
universal construction, in the context of cognition, as an efficient

(re)use of cognitive resources, since structurally related cognitive
capacities all use the same component process φ, whether in
symbolic, subsymbolic, or some other form.

From a classical perspective, categorical compositionality
may appear as a (generalized) version of the classical tokening
principle, hence a variation of classical compositionality, in that
the instantiation of every compositional arrow (e.g., g ◦ f ) entails
the instantiation of each of its constituent arrows (i.e., f and g);
just as the instantiation of every complex symbol (e.g., “John
loves Mary”) entails the instantiation of each its constituent
symbols (“John,” “loves,” “Mary”). However, from a category
theory perspective, not every composition involves a universal
construction. That is, the composition of two arrows need
not include a universal arrow. Universal construction provides
the needed specificity that makes the categorical explanation a
significant advance over classical and connectionist explanations
vis-a-vis the unique existence property (Phillips and Wilson,
2010).

3. UNIVERSAL CONSTRUCTION,
OPTIMIZATION, AND LEARNING

If systematicity derives from universal construction, then one
may ask about the origins of universal constructions and hence
origins of systematicity properties. Every universal construction
can also be viewed as an optimization: conceptually, the “greatest
common divisor” of a collection of arrows. And, indeed,
conceptualizing universal construction as optimization provided
the formal link between systematicity as a property of cognitive
architecture (Fodor and Pylyshyn, 1988) and systematicity as
a property of analogical reasoning, i.e., the preference for
higher order relations as the basis for analogies (Gentner,
1983): both kinds of systematicity are derived from universal
constructions (Phillips, 2014). In this section, we proceed by
looking at universal constructions from the perspective of
optimization, then optimization from the perspective of learning.
This approach serves two purposes: (1) as a way of introducing
the needed category theory concepts in the more familiar terms
of learning as function approximation, and (2) to reveal what
this explanation for systematicity means for theories of cognitive
architecture.

3.1. Optimization as Universal Construction
A straightforward way to understand the concept of a universal
construction as an optimization is to consider the case of
finding a global minimum (or, maximum) of a function. For
concreteness, suppose we have the quadratic function y =

fQ(x) = (x − 2)2 + 1, which has a global minimum at the
point (x, y) = (2, 1). We will consider this function as a map
from the set of real numbers, R, to the set of non-negative real
numbers, R+, i.e., fQ : R → R

+. The graph of this function is
the set of pairs Ŵ(fQ) = {(x, fQ(x))|x ∈ R} ⊆ R × R

+, which
contains, e.g., the points (0, 5) and (1, 2), and the minimum
(2, 1). We can also define a partial order over this set of points
as (x, y) ≤ (x′, y′) if and only if y ≤ y′, which makes Ŵ(fQ) a
preorder, and therefore a category. The sets R and R

+ are posets
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(so, categories), and so the map that returns the y-coordinate of
each point in the graph is the monotonic function (so, functor)
π2 : Ŵ(fQ) → R

+; (x, y) 7→ y (i.e., a projection onto the second
coordinate), which preserves order. The minimum of fQ is the
object component of the universal arrow ((2, 1),≤) from the
object (point) 0 ∈ R

+ to the functor π2, see Figures 3A,B.
This categorical arrangement is quite general. It applies to any

numerically valued function, which is straightforward to prove,
and it need not be confined to continuous functions. In this case,
we use the extended number line, R±∞ = [−∞,∞], i.e., the

poset/category (R,≤) with the elements −∞ and ∞ adjoined.
The minimum of a real-valued function f :R±∞ → R

±∞, that is
the point (xmin, f (xmin)), corresponds to the universal arrow from
−∞ to π2, that is ((xmin, f (xmin)),≤), see Figures 3C,D. We take
the universal arrow to be from the point −∞ to ensure that we
obtain the minimum of f . Uniqueness is given by the fact that as a
preorder there cannot be more than one arrow from one object to
another object in Ŵ(f ); existence is given by the fact that R±∞ is
a total order, hence there must exist an arrow from the minimum
to every point in Ŵ(f ).

FIGURE 3 | Function minimization as a universal construction. Within each row, the left panel shows the function and the right panel shows the corresponding

universal construction. (A,B) a quadratic function, (C,D) an arbitrary function, (E,F) a fitness/error function over network connection weights, and (G,H) a generalized

fitness/error function over a collection of algebras.
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3.2. Learning as Optimization
Having presented function minimization as a universal
construction, the step to learning as function approximation,
hence as a universal construction, is straightforward. Again, for
concreteness, suppose we have a pair of input-target vectors x
and t in real-valued vector spaces X and T, respectively, and
W is the set of linear transformations (matrices) from X to T.
In matrix notation, learning is finding a weight matrix w ∈ W
that minimizes the squared length of the difference between
the target and system’s output (regarded as column vectors, i.e.,
one-column matrices) computed as the matrix product (·) of the
weight and the input, i.e., the fitness function fit : W → R

+,
where fit(w) = |t−w ·x|2 for a particular input-target pair. More
generally, the system’s output for different weight matrices in
W can be specified as a function fx : W → T, parameterized by
input x, in which case the fitness function is fit(w) = |t− fx(w)|

2.
An example and corresponding universal arrow is shown in
Figures 3E,F. Hence, learning is finding the corresponding
universal arrow, which we detail in the next section.

A further generalization involves fitness functions whose
domains are not numeric. This generalization also affords
optimization (learning) over representations that have their own
internal (algebraic) structure, e.g., group-like structures that have
been employed in psychological tasks such as schema induction
(Halford et al., 1998). A schema induction paradigm consists
of a sequence of cue-target prediction tasks that conform to a
common (algebraic) structure. An example is shown in Figure 4.
Each task consists of six cue-target predictions, where each cue
is a shape-trigram pair, and each target is a trigram, drawn from
a set of two shapes and three trigrams, which are unique across
tasks (Figure 4A). A geometric interpretation of the common
structure across tasks is to regard each trigram as the vertex of a
triangle, and each shape as a clockwise or anticlockwise rotation.
For instance, the cue (�,TOZ) predicts the target KEB, which
corresponds to a clockwise rotation that moves the bottom-
left vertex to the top vertex. If we restrict to these shapes and
trigrams, then there are two such algebraic structures, the one
given in Figure 4 and the other one obtained by reversing the
shape roles, which we denote as a1, a2 ∈ A. The fitness function,
fit : A → N simply maps each algebraic structure to the number
of mismatches between target, as specified by the task instance,
and output, as specified by the given algebraic structure. Suppose

FIGURE 4 | An example cue-target prediction task for a schema

induction paradigm showing (A) six cue-target pairs and (B) their

geometric interpretation, where trigrams correspond to vertices of a

triangle and shapes correspond to clockwise and anticlockwise

rotation.

the task instance is specified by a1, then fit(a1) = 0 and fit(a2) =
6, since there are six mismatches. The corresponding universal
arrow is shown in Figures 3G,H.

4. A COMPUTATIONAL CATEGORY
THEORY APPROACH TO LEARNING

We started with the question about the origins of universal
constructions. Now that we have recast learning as a universal
construction, we are in a position to present a novel treatment of
learning, and hence the development of systematicity properties,
as the process of finding the associated universal arrow. The
computational principle that is presented is categorical in nature
and motivated by the observation that every universal arrow can
be viewed as a special object in a particular category. First, we
explain this observation, which motivates the two algorithms
that follow. The first algorithm is iterative, and pedagogical,
serving as an easier to understand, concrete illustration of the
computational principle. However, our interest is in the second
algorithm, which is recursive, because this algorithm also derives
from a universal construction via a category theory treatment of
learning as (co)recursion.

We observe that every universal arrow corresponds to an
initial object in the corresponding comma category (Mac Lane,
1998), see Figure 2. An initial object in a category (if it exists) is
an object that has a unique arrow from it to every object in the
category. For example, in a poset category such as the natural
numbers with the usual order, (N,≤), the initial object is 0,
because 0 ≤ n for every n ∈ N. One can think of an initial
object as a generalized “least element” in the sense that objects
in a category are “ordered” by arrow direction: arrow A → B
indicates that object A comes before object B, hence A is “less
than” B, so an initial object is the least object in that category.
Categories are closely related to graphs (in the sense of nodes and
directed edges) via another kind of universal construction that
is known as a pair of adjoint functors (Mac Lane, 1998): briefly,
every directed graph can be extended to a category by adding
an arrow for each connected path. Conversely, every category
can be regarded as a directed graph by omitting (forgetting)
the composition operation. The task of finding the universal
arrow can be converted into the task of finding the object in the
category (or, node in the corresponding graph) that has an arrow
to every object in the category. Thus, finding a universal arrow
is equivalent to finding a node in the corresponding comma
category, viewed as a graph that has an edge to every node in
the graph. For the universal arrows given in Figures 3A,D that is
the top node in the corresponding graphs given in Figures 5A,B,
respectively. In what follows, we’ll assume that a graph has at least
one node.

4.1. Iterative Algorithm
The process of finding a node that is connected to every node
in the given graph is straightforward for categories with finite
numbers of objects and arrows: each graph node (vertex, v)
is associated with the set of its afferent nodes, i.e., the set of
nodes such that there is an edge from each node to v; and the
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FIGURE 5 | (A) The comma category corresponding to the universal construction shown in Figure 3B as a directed graph. (B) The comma category corresponding

to the universal construction shown in Figure 3D as a directed graph. Edges corresponding to identity arrows are not shown. (C,D) The iterative process for finding

the initial nodes in corresponding directed graphs.

intersection of all afferent node sets is the set of nodes such
that each node has an edge to every graph node, i.e., a universal
arrow. If the intersection is empty, then there is no universal
arrow. The set of initial nodes is

⋂n
i=1 afferent(vi), where n is

the number of graph nodes, and afferent(vi) returns the set of
afferent nodes of vi. Finding the initial nodes of a graph can
proceed iteratively by initializing the variable that maintains the
running intersection (intersect) to the set of graph nodes, and
the index (i) to one. At each step, intersect is updated to be
the intersection of itself and the set of afferent nodes for the
current node, i.e., intersect ∩ afferent(vi). Examples are given in
Figures 5C,D.

4.2. Recursive Algorithm
Informally, the algorithm for finding initial nodes operates
recursively on the graph’s list of nodes. If this list is down to
just one (head) node h, then the output is the set of afferent
nodes for h, i.e., afferent(h); otherwise, if the list has a node
h followed by a non-empty (tail) list t, then the output is the
intersection of the afferent nodes of h with the output for the list
of nodes t. For the example of finding the global minimum of
the function fQ(x) = (x − 2)2 + 1, given in Figure 3A, whose
associated comma category is shown in Figure 5C, the list of
graph nodes is l = [(0, 5), (1, 2), (2, 1), (3, 2), (4, 5)]. The items
in the list also constitute the elements of the set of afferent nodes
for the head node (0, 5) of l. Hence, the set of initial nodes is the
intersection of the afferent set for h and the set of initial nodes for
the tail t of l, which is the list t = [(1, 2), (2, 1), (3, 2), (4, 5)].
Recursively applying this procedure yields the singleton set
containing the initial node (1, 2), which is the minimum of the
function fQ.

Since recursion has been given a systematic treatment in
computational category theory (Manes and Arbib, 1986; Bird

and de Moor, 1997), category theory can also be used to model
recursion in cognition (Phillips and Wilson, 2012), so associative
learning as recursion (Phillips andWilson, 2015), as another kind
of universal construction. The advantage of this category theory
perspective on recursion is that we also begin to address another
form of (second-order) systematicity: systematic capacity to learn
cognitive capacities (Aizawa, 2003), which we have addressed
elsewhere in the case of associative learning (Phillips andWilson,
2015). A detailed review of a category theory approach to
recursion is beyond the scope of this paper. Here, we just outline
the main aspects used for our learning algorithm.

A category theory approach to recursion (Bird and de Moor,
1997) begins with an endofunctor on a suitable category, i.e.,
a functor from/to the same category. Functors can be viewed
as constructors of objects/arrows in one category from the
objects/arrows in another category; hence, endofunctors can be
viewed as recursive constructors. For example, an endofunctor
on the category Set can be used to build lists of elements taken
from particular sets (e.g., lists of integers) and list-processing
functions. Importantly, the collection of lists and list-based
processes built from such endofunctors also forms a category,
and this category has a universal construction. Very briefly, the
objects in this category are algebras and the arrows are algebra
homomorphisms. The universal construction in this situation is
called an initial algebra, i.e., an initial object in this category
of algebras and algebra homomorphisms. Because an initial
algebra is an initial object, all list-based (recursive) processes are
composed of this initial algebra, which affords systematicity of
list-related cognitive abilities (Phillips and Wilson, 2012). That
is, there is a unique algebra homomorphisms from the initial
algebra to every algebra in the category. This unique algebra
homomorphism is called a (list) catamorphism, or colloquially a
fold.

Frontiers in Psychology | www.frontiersin.org 10 July 2016 | Volume 7 | Article 1139

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Phillips and Wilson Systematicity and Category Theory

A (non-empty) list fold is a higher-order function that takes
two arguments and returns a function that “folds up” a given
list into a value. The first argument is a unary function φ that
is returned when the list contains a single item, and the second
argument is a binary function ψ that is otherwise applied to the
head and the fold of the rest of the list to return a value. That is,

fold(φ,ψ) :

{

[v] 7→ φ(v);

h · t 7→ ψ(h, fold(φ,ψ)(t)).
(11)

where [v] indicates a list containing the one item v, and ·

constructs a list from an item and a list (e.g., 1 · [2, 3] =

[1, 2, 3]). Here, φ is instantiated to the function afferent, and
ψ to the function that computes the intersection of the set of
afferent nodes of h and the set of initial nodes returned by the
recursive call to fold. In Figure 5C, that is the intersection of
{(0, 5), (1, 2), (2, 1), (3, 2), (4, 5)} and {(2, 1)}, which is the set
{(2, 1)} containing the minimum of the function fQ. (Order is
significant in a list, but not in a set.)

As was pointed out elsewhere (Phillips and Wilson, 2015),
a catamorphic approach to learning as recursion makes an
unrealistic assumption: the entire list of training data must be
processed before any learning can take place, because fold is tail-
recursive (i.e., the list is folded tail-first), so there is no sense of
on-line learning. An alternative approach is to employ a closely
related universal construction, called a final coalgebra (Rutten,
2000). All list-based corecursive processes are composed using
this final coalgebra. That is, in the associated category, there is
a unique coalgebra homomorphism from every coalgebra to the
final coalgebra. This unique coalgebra homomorphism is called a
(list) anamorphism, or unfold. The definitions of catamorphism
and anamorphism are dual: one definition is obtained from
the other by reversing the directions of the arrows. Again, the
details are beyond the scope of this paper, however, this approach
affords a systematic treatment of associative learning (Phillips
and Wilson, 2015). It is straightforward to recast our algorithm
for learning universal constructions into this anamorphic form,
and thereby afford systematic on-line learning.

For reasons of space, we just state this corecursive version
here. Further details on a category theory approach to
corecursion (and recursion) for the purpose of modeling
cognition can be found in Phillips and Wilson (2012), Text S1.
A (non-empty) list unfold is a higher-order function that takes
an argument and returns a function that “unfolds” a value into
a list. The argument is a function p? → (φ,ψ) that applies
predicate (boolean-valued function) p? to an input value x that: if
successful, then terminates the unfolding process with the single-
item list [φ(x)]; otherwise, if not successful, then continues the
unfolding process by returning the list constructed from φ(x) and
the output of unfold applied to the application of the function ψ
to x. In symbols,

unfold(p? → (φ,ψ)):

x 7→

{

[φ(x)] p?(x);

φ(x) · unfold(p? → (φ,ψ))(ψ(x)) otherwise.

(12)

Here, the input x is a pair (l, s) consisting of the current list of
graph nodes l and the current set of candidate initial objects,
which is initially the set of afferent nodes of the first (head)
node of l. The predicate p?(x) tests for a one-item list l. If p?
returns true (i.e., l = [h]), then the function φ returns the
pair consisting of the empty list and the intersection of s with
the set of afferent nodes of h, i.e., ([ ], s ∩ afferent(h)), in which
case unfold(p? → (φ,ψ)) returns the one-item list [([ ], s ∩
afferent(h))]. If p? returns false (i.e., l = h · t, where t is a non-
empty list), then the function ψ returns the pair consisting of
the list t and the intersection of the candidate initial object set
s and the afferent nodes of h, i.e., (t, s ∩ afferent(h)), in which
case unfold (p? → (φ,ψ)) returns the list ([ ], s ∩ afferent(h)) ·
unfold(p? → (φ,ψ))(t, s ∩ afferent(h)). In effect, the first
component of the pair (l, s) maintains the current graph node,
and the second component maintains the current candidates for
initial objects. Following the interpretation of anamorphisms as
generalized state machines (Rutten, 2000), we interpret unfold as
a learning process that unfolds over time, hence on-line learning.

5. CATEGORY THEORY IMPLICATIONS
AND A NEW CHALLENGE

An advantage of a category theory approach is that it provides
a unified explanation for systematicity across numeric and non-
numeric (symbolic) cognitive domains. Thus, we can address
questions of systematicity in other species without having to
presuppose a capacity for language, thereby enabling other kinds
of tests that would not be possible on humans. The implications
of this universal constructions explanation depend on the nature
of objects and arrows in the category modeling the domain of
interest. In this section, we look at the implications of a category
theory perspective for learning and systematicity, and a new
challenge that it poses for cognitive science.

5.1. Systematicity and Failure: (Empirical)
Cost/Benefit Implications
One potential benefit that is afforded to cognitive architectures
with the systematicity property is greater cognitive capacity
for the available cognitive resources. This advantage is accrued
when structurally equivalent cognitive abilities are obtained
without duplicating existing component cognitive processes.
However, such increase in efficient use of cognitive resources
depends on the relative costs of universal vs. non-universal
constructions (Phillips, 2013). For instance, in a simple scenario
where cognitive resources were calculated as a function of the
arrows in a category, an advantage was afforded when the
number of equivalent cognitive capacities exceeded two. That
is a cost/benefit tradeoff. The cost is associated with the arrows
that must be deployed to realize the target cognitive capacities;
the benefit is stimulus-response predictability (Phillips, 2013).
When the number of capacities (stimulus-response mappings) is
small, a non-universal construction provides the same capacities
at lower cost; when the number of capacities is large, a universal
construction provides a better cost/benefit tradeoff.
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This implication was tested with an experiment designed
to modulate the cost/benefit tradeoff for a particular universal
construction, which was a categorical product (Phillips et al.,
2016). Participants were required to learn two series of cue-
target prediction maps, where the cues were letter pairs, e.g.,
(P,K), and the targets were colored shapes, e.g., red-square. One
series of cue-target maps conformed to a product map of the
form f × g : Char × Char → Color × Shape, which is the
product of maps f : Char → Color and g : Char → Shape
(experiment condition). The other series conformed to a non-
product map between the same sets of cues and targets, i.e., each
map was not a product of a char-color map and a char-shape
map (control condition). Cues and targets were unique across
maps. Within each series, the number of cue-target pairs (i.e.,
map size) varied as the square of the number of elements in the
stimulus sets: map size was n2 for n ∈ {3, 4, 5, 6}. The critical
manipulation was map size order, which was either ascending or
descending. For each map, about half of the mappings were used
for training (i.e., feedback was given on the correct response)
and about half for testing (no feedback). Performance on the
novel (test) trials was used to evaluate whether participants
induced the product construction. For the product condition,
having learned the cue-target mappings in the training set,
correct prediction was possible for all novel cue-target pairs
in the testing set. Prediction was not logically possible in the
non-product condition. The pertinent result was that in the
product condition participants in the descending group showed
significantly above chance-level prediction on the test trials for
all map sizes, whereas participants in the ascending group only
showed above chance-level prediction for the large map sizes,
i.e., a failure of systematicity with regard to the smaller sized
maps. This result is consistent with the categorical notion of a
cost-benefit tradeoff: as the number of mappings to be learned
increased, it became more advantageous to learn to construct
the underlying product, which afforded having to learn fewer
mappings to achieve greater predictability.

5.2. New Challenge: Determining Context
The existence of a universal arrow is a necessary and sufficient
condition for having a collection of structurally related cognitive
capacities modeled as arrows in some category; all such arrows
factor through a universal arrow in an optimal way. However,
this category theoretical explanation also depends on assuming
suitable categories and a functor, i.e., the categorical context, with
respect to which a construction is universal. A new challenge,
then, is to explain the origin of this context. Here, we survey the
nature of this challenge from a category theory perspective.

As a framework, category theory affords a straightforward
way to vary context: since functors compose, context can be
expanded or restricted via composition of suitable functors. To
expand context, for example, one can use a categorical analog
of optimization with respect to two variables (binary function),
which is a universal construction from an object to a bifunctor—
bifunctor is to binary function as ordinary functor is to unary
function. A bifunctor is a functor from a product of categories
to a category. One can think of a product of categories A and
B as an analog of a (Cartesian) product of sets in that the

objects (and arrows) are all pairwise combinations of objects (and
arrows) from A with those from B. The universal construction in
this situation, and examples, are shown in Figure 6. To restrict
context, for example, one can use an inclusion functor that picks
out a suitable subcategory: inclusion functor is to subcategory
as inclusion function is to subset. Note that a subcategory is
a category, so not any subset of objects and arrows forms a
subcategory, as the collection of arrows must be closed under
composition, and therefore the choice is not arbitrary. An
example of a universal arrow to the composition of two functors
and corresponding comma category are given in Figures 6C,D.
Restriction is important for learning and generalization (i.e.,
correct behavior on novel examples that were not available during
learning). In the schema induction example, the category was
restricted to just the two possible objects that conformed to the
cyclic 3-group structure. In this case, only one training pair is
needed to uniquely identity the target object (algebraic structure),
and thus generalization is afforded in the form of correct target
prediction for the other five cues. In the context of a more general
category, e.g., the category of all groups, all training examples are
needed uniquely identify the target, and thus no generalization is
afforded.

For the theory, however, the new challenge then is to
explain why context is restricted in the way that affords
learning the needed universal construction. This challenge differs
from the strong systematicity criterion (Hadley, 1994), which
requires specifying a cognitive system, such as a neural network,
that demonstrates correct behavior on novel examples with
constituents that did not appear in the same (syntactic) position
as in the training set. In the “John loves Mary” paradigm,
for example, strong systematicity occurs if, after training on
examples with John only in the lover position, success occurs on
testing examples with John in the is-loved position. In contrast,

FIGURE 6 | Universal construction and comma category. (A) Universal

arrow from object X to bifunctor F (−,−) and (B) corresponding comma

category (bifunctor). (C) The universal arrow from the object (point) 2.9 to the

composition of the addition function/functor with the inclusion function/functor

and (D) corresponding comma category.
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the new challenge requires specifying the necessary and sufficient
conditions that determine the context within which a categorical
(recursive) learning architecture will necessarily acquire the
needed universal construction.

In regard to this new challenge, one possible way forward
is to develop the notion of costs and benefits more generally
in a (categorical) framework. Cost is defined in terms of
resources, which could include internal resources such as energy
expenditure, and external resources such as number of training
examples, or time. Benefit is defined in terms of the goals of
the cognitive system. Such goals include, naturally, basic survival
including predictability, but more esoterically, intellectual
performance, which has long term survival value. Hence, in this
framework, systematicity is determined by resource-constrained,
goal-directed optimization. We further suggest that failures in
systematicity are also the result of a perceived tradeoff. The
phrasebook model of language learning as a counterexample to
systematicity (Fodor and Pylyshyn, 1988) is a pertinent example.
A tourist may opt to memorize a few key phrases to facilitate
their travels, in lieu of expending the resources needed to learn
a foreign language, because they perceive that the costs outweigh
the benefits; a participant in a psychological experiment can
willfully ignore task instructions, and so systematicity obtained
via learning also depends on goals. We note, in closing, that
every category theoretic construction belongs to a category of
some kind. Thus, the category theory perspective presented

here already suggests the form of an explanation for this new
systematicity challenge. That is, a universal construction in a
category of contexts. A natural approach toward addressing
this challenge, then, is higher-order category theory (see e.g.,
Lambek and Scott, 1986) where categories and functors are
(co)domains of other higher-order constructions and categories.
One extension that may be particularly relevant to a notion of
cost-benefit is enriched category theory (Kelly, 2005), where the
relations between objects need not be a set of arrows, but a
more general structure that nonetheless satisfies the rules for
composition. For instance, as is well-known among category
theorists, ametric space is an enriched category where the relation
between each ordered pair of objects is a real number that
indicates their “distance” (Lawvere, 2002). Thus, distance can
be interpreted as the cost of proceeding from one object to the
next.
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