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We have previously identified neurons tuned to spectral contrast of wideband sounds

in auditory cortex of awake marmoset monkeys. Because additive noise alters the

spectral contrast of speech, contrast-tuned neurons, if present in human auditory

cortex, may aid in extracting speech from noise. Given that this cortical function

may be underdeveloped in individuals with sensorineural hearing loss, incorporating

biologically-inspired algorithms into external signal processing devices could provide

speech enhancement benefits to cochlear implantees. In this study we first constructed

a computational signal processing algorithm to mimic auditory cortex contrast tuning.

We then manipulated the shape of contrast channels and evaluated the intelligibility of

reconstructed noisy speech using a metric to predict cochlear implant user perception.

Candidate speech enhancement strategies were then tested in cochlear implantees

with a hearing-in-noise test. Accentuation of intermediate contrast values or all contrast

values improved computed intelligibility. Cochlear implant subjects showed significant

improvement in noisy speech intelligibility with a contrast shaping procedure.

Keywords: auditory cortex, noise reduction, human, cochlear implant, primate

INTRODUCTION

Hearing-impaired individuals in general, and cochlear implantees in particular, can often
comprehend speech comparably to normal-hearing listeners in the absence of noise, but then
exhibit poorer-than-normal performance in noisy environments (Friesen et al., 2001; Nie et al.,
2005). In patients with sensorineural hearing loss, this outcome is due at least partly to the decreased
perceived spectral contrast of speech sounds associated with diminished frequency selectivity in
the auditory periphery (Leek et al., 1987; ter Keurs et al., 1993; Summers and Leek, 1994; Leek
and Summers, 1996; Dreisbach et al., 2005). Spectral contrast represents the variation in sound
energy distribution across frequency. Neuronal processing that utilizes spectral contrast to reduce
noise is likely to be impaired in these individuals. Research into artificially compensating for
spectral contrast deficits has resulted in a class of algorithms that perform a global spectral contrast
enhancement. These algorithms represent signal processing strategies where peaks in the short-
term signal spectrum are stretched relative to the troughs (i.e., the spectral variance is uniformly
increased as a function of frequency). Previous studies evaluating the ability of spectral contrast
enhancement to improve the intelligibility of noisy speech have demonstrated some potential
benefit of this noise-reduction strategy for cochlear implant users and variable results for other
subjects (Bunnell, 1990; Simpson et al., 1990; Stone and Moore, 1992; Baer et al., 1993; Ribic
et al., 1996; Munoz et al., 1999; Loizou and Poroy, 2001; Lyzenga et al., 2002; Yang et al., 2003).
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Contrast enhancement likely achieves its effect by accentuating
the information-carrying spectral peaks of vocalizations relative
to the nearly uniform spectrum of stationary noise. Based
upon our electrophysiological findings in the primary auditory
cortex of a vocal primate species, we have developed a unique,
biologically-inspired approach to compensate for deficits in
spectral contrast processing.

We defined spectral contrast as the standard deviation of
signal intensity in dB over short periods of time and relatively
local ranges of frequency. Speech corrupted with additive
white, Gaussian noise shows a considerable variety of spectral
contrast values (Figure 1). Spectrotemporal signal regions of
low contrast are likely to contain relatively more noise power
than speech power; conversely, regions of high contrast are
likely to have a greater contribution from the speech to the
overall signal. Intermediate contrast values are characteristic
of regions with a mixture of speech and noise at similar
powers. Contrast enhancement algorithms do not explicitly
compute spectral contrast and are thus applied uniformly to
low-, intermediate-, and high-contrast regions. Emphasizing the
low-contrast regions, however, would tend to accentuate the
noise, while emphasizing the high-contrast regions would tend
to distort the speech—either of which would likely decrease
intelligibility. Furthermore, compressing low-contrast regions
or preferentially emphasizing regions of intermediate contrast
could aid a listener in discerning the differences between
the noise and the speech, potentially leading to improved
speech intelligibility. In this study, we expand upon previous
contrast enhancement studies by systematically exploring the
effects of enhancing or compressing specific contrast bands.
We find that emphasizing high contrasts or low contrasts
alone or in combination degrades the intelligibility of noisy
speech in a variety of noise conditions. We also examine the
effects of preferential emphasis of intermediate contrasts and
enhancement of all contrast components.

Our motivation for decomposing stimulus contrast into
separate bands comes from electrophysiological findings. We
have identified neurons in the auditory cortex of a vocal primate
species that encode spectral contrast non-linearly, such that their
peak firing rate as a function of spectral contrast occurs at
intermediate contrast values (Barbour and Wang, 2003). Among
these relatively common contrast-tuned neurons, the peak of the
distribution of preferred contrasts is in the range of 4–8 decibels
of standard deviation (dB SD). Because regions of intermediate
contrast represent a likely target for differentiating between
speech and noise (Figure 1, middle), these neurons may be useful
to the auditory system for extracting signal information (such
as vocalization features) in the presence of noise. Based upon
these neurophysiological findings, we created a computational
signal processing array containing contrast-sensitive elements
in order to mimic the observed neuronal contrast tuning. By
analogy with the type of transformations in which contrast-
tuned neurons appear to be involved, we then utilized this signal
processing array to shape the spectral contrast of noisy speech.
We evaluated the effects of this contrast shaping procedure on
the perception of simulated cochlear implantees by calculating
intelligibility of the processed speech relative to unprocessed
speech. The quantitative measure we used to evaluate the result

was shown previously to be appropriate for predicting noisy
speech intelligibility following non-linear operations with both
normal-hearing listeners and cochlear implant users as test
subjects (Goldsworthy, 2005). The results indicated that contrast-
shaping strategies may provide benefits to cochlear implant users
listening to speech in noise. Noise-reduction strategies often
show little benefit for non-implantees, even for individuals with
considerable hearing loss (Kuk et al., 1990; Moore, 2003). Thus,
we sought to test noise reduction in the population most likely
to derive benefits: cochlear implantees. We tested one promising
strategy by administering a hearing-in-noise test (HINT) to 5
cochlear implantees. Improved speech recognition in noise was
seen, supporting the computational results.

MATERIALS AND METHODS

Our methods can be broken down into distinct steps: (i)
signal generation followed by preprocessing and application
of contrast filters; (ii) weighting of the contrast filter outputs;
(iii) reconstruction of the signal; and (iv) evaluation of
the intelligibility of the reconstructed signal with either
computational metrics or cochlear implantees. All computations
in this study were performed using custom code written for
MATLAB software.

Signal Generation
We obtained pre-recorded sentences spoken by native English
speakers from the TIMIT speech corpus (used in computational
analyses) and the HINT sets (used in both computational
analyses and in cochlear implant testing) (Garofolo et al., 1993;
Nilsson et al., 1994). The signals were degraded using additive
noise that was pseudorandomly generated and scaled in the
time-domain to be at the desired signal-to-noise ratio (SNR)—
computed using the root mean square values of the separate
speech and noise signals. The noise was separately computed
to have desired characteristics and then added to the speech to
create the sounds in the same form as they would be presented
to a listener. Samples of noisy and processed noisy speech are
included in the online Supplementary Materials. Sound levels in
the supplementary audio files were normalized to the maximum
level across all conditions at each SNR. Noise was generated by
specifying the shape of the power spectrum up to the Nyquist
frequency, combining this with phase values pseudorandomly
sampled from a uniform distribution on 0 to 2π radians, making
the frequency domain signal symmetric around the Nyquist
frequency, and finally taking the inverse Fourier transform to
obtain the noise in the time domain. White noise had a uniform
power spectrum, pink noise had a 1/f spectrum, and spectrally-
shaped noise had a spectrum that matched the speech. For the
filter-bank processing, signals may be either normalized or un-
normalized as it does not affect the computations performed on
decibel values. In the cochlear implantee tests, no normalization
was performed so that speech would be at the same level in the
noisy and quiet conditions. However, to eliminate any bias due to
changes in signal power after the noise-reduction strategies were
applied, noisy speech that had processing applied was scaled to
have the same overall signal power as the noisy speech without
processing.
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FIGURE 1 | Local contrast components of speech. Shown are a spectrogram of a speech sample with white, Gaussian noise added (bottom) and magnitude

spectra from three different time points (top). One frequency of interest (750Hz, arbitrarily selected from frequencies containing speech) and the local frequency

neighborhood (±400Hz) are indicated with a dashed blue line and a blue rectangle, respectively. Spectral contrast is computed at a particular frequency by calculating

the standard deviation (σ) of the spectrum for the local frequency neighborhood. Actual contrast calculations are made on filter outputs rather than spectrogram

calculations. Low-contrast regions (left) tend to exhibit more noise than speech, while high-contrast regions (right) tend to exhibit more speech than noise.

Intermediate-contrast regions (middle) are likely to contain speech and noise at similar powers.

Contrast-Shaping Algorithm and
Experimental Design
Contrast shaping was performed after filtering the noisy speech
signals into different frequency (spectral) components and then
into components associated with contrast across subsets of
frequencies (spectral contrast). In other words, the contrast-
shaping algorithm (Figure 2) contained two basic components
of sound decomposition—frequency and contrast. Both of these
components were designed to be reversible for reconstruction
of the original time-domain signal. Both frequency and contrast
decompositions were performed by filtering with an array of
squared exponential, i.e., Gaussian, filters. For computational
efficiency and so that the original signal could be reconstructed by
summing the overlapping time segments, signals were windowed
in time with 513-sample Hanning windows, overlapping by 257
samples. Sounds were sampled at 16 k samples/s, so that each
time window duration was approximately 32ms. Frequency and
contrast decompositions were computed for each time window.

The frequency decomposition layer of the contrast-shaping
algorithm partitioned the signal into linearly spaced frequency
bands by transforming the time-domain signal into the frequency
domain with a Fourier transform (using a Fast Fourier Transform

algorithm) and multiplying the frequency-domain signal by the
frequency response of eachGaussian frequency filter. These filters
are given by Equation (1), where m is the number of frequency
filters, the Xi are the frequency responses of the filters, and the µi

are the means of the filters.

Xi(ω) = e
−(ω − µi)

2

2σ2 σ = µi+1 − µi i = 1...m (1)

Forty-one Gaussian frequency filters (σ = 200Hz) linearly
spaced from 0 to 8 kHz were used. The filters were equally
spaced and the standard deviations set to the constant
difference between the means so that the original signal
could be reconstructed simply by summing the filter outputs
(Theunissen and Doupe, 1998). We selected 41 linearly spaced
Gaussian frequency filters empirically, as speech intelligibility
scores for this arrangement were generally similar to or
superior than intelligibility calculated when using other filter
bank arrangements, such as logarithmically spaced triangular
filters. The formulas presented in Equation (2) summarize the
information retained from the frequency filters. The frequency
response of each Gaussian filter was not symmetric, as the
negative frequencies were set to zero. An inverse Fourier
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FIGURE 2 | A simplified schematic of the analysis portion of the local contrast shaping procedure. The contrast shaping procedure is shown as a schematic

and demonstrated on a sample utterance, “we can however.” For signals with additive noise, the frequency analysis sequence involves normalization followed by

spectral filtering. The contrast analysis sequence involves obtaining the instantaneous signal power in dB, selecting the local frequencies of comparison (at the filter

bank edges where i ∈ [1, 2, 40, 41], contrast is computed using 2 instead of 3 filters), calculating the standard deviation of the filter outputs at the local frequencies,

and expanding/compressing the contrast based upon the contrast weighting function. On the top right is a time-frequency plot of the signal power (dB), showing only

filters 1–16. The plot on the bottom right shows the local contrast of one region (SD in dB of 3 filters: 0.6, 1, 1.4 kHz) across time. The reconstruction portion reverses

the analysis steps above (see Materials and Methods).

transform magnitude of each filter output is analogous to the
amplitude envelope of that particular frequency band, and the
power (squared amplitude envelope) of each of the 41 such
signals, fi, was used as an eventual input into the contrast
decomposition layer. The phase, θ i, of each analytic signal was
retained for subsequent signal reconstruction. The input to the
contrast layer was converted to dB power by applying Equation
(3), yielding the f_dBi, which will be referred to collectively as the
frequency bands.

fi(t) =
∣

∣2FFT−1(FFT(x(t))Xi(t))
∣

∣

2

θi(t) = 6 2FFT−1(FFT(x(t))Xi(t)) (2)

f _dBi(t) = 10 log10(fi(t)), (3)

The contrast decomposition layer of the contrast-shaping
algorithm acted upon each frequency band and its neighboring
frequencies. In other words, the local spectral contrast centered
on each frequency band was calculated separately. Contrast
was calculated as the standard deviation of a local subset of

the frequency bands, which included the frequency band being
decomposed and the second neighbor at both higher and lower
frequencies, for a total of three frequency bands over which the
standard deviation was computed. The equations in (4) describe
this calculation, where the ci are the contrasts centered at each
frequency band, m is the number of frequency bands, p is the
number of frequency bands used to compute local contrast, and
the f_dBi are the frequency bands themselves.

ci(t) =

√

√

√

√

1

p− 1

(

∑

k

(

f _dBk(t)− f _dBi(t)
)2
)

f _dBi(t) =
1

p

∑

k

f _dBk(t) (4)

k = i − 2, i, i + 2 p = 3 i = 1...m

Although the subset of frequencies used to compute local contrast
could be the focus of further investigations, preliminary results
making use of different subsets (i.e., the local frequency mask
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in Figure 2, indexed by k in above equations) did not yield
systematically improved intelligibility scores. These standard
deviations were transformed by a set of Gaussian–shaped
contrast channels linearly spaced in dB of standard deviation
(dB SD), the units of our contrast measure. This Gaussian
transformation described in Equation (5) shared the same form
as the frequency filters described in Equation (1). Here m is
the number of frequency bands, n is the number of contrast
channels, the Si, j are the contrast responses of each contrast
channel (indexed by j) in each frequency band (indexed by i), and
the µj are the means of the contrast channels.

Si, j(ci(t)) = e
−(ci(t) − µj)

2

2σ2 σ = µj + 1 − µj (5)

j = 1...n i = 1...m

Eleven contrast channels (σ = 2 dB SD) with means linearly
spaced from 0 to 20 dB SD were used. As with the frequency
filters, the contrast channels were equally spaced and the standard
deviations set to the constant difference between the means
so that the original signal could be reconstructed by summing
the channel outputs (Theunissen and Doupe, 1998). Practical
compromises with computational resources led to a maximum
of 11 contrast channels. The outputs of each contrast channel
j were then multiplied by the respective frequency band i (the
dB power output from the respective frequency filter) to obtain
a set of contrast channel outputs for each frequency band, si, j
(Equation 6).

si, j(t) = f _dBi(t)Si, j(t), (6)

The original time-domain signal was reconstructed by inverting
the above steps for the contrast and frequency decompositions.
Before reconstructing the original signal, we multiplied the
contrast outputs by scalar weights, using a predetermined weight
wj for each contrast channel j. This step, given by Equation (7),
where the s′i, j are the weighted outputs of the contrast channels, is

referred to as the contrast-shaping step, andwas added in order to
emphasize or de-emphasize particular contrast ranges of interest.

s′i, j(t) = wjsi, j(t), (7)

The weights were applied directly to the log-transformed
values, resulting in a non-linear effect. Because our contrast-
shaping algorithm was invertible, if all contrast outputs received
a unity weight, the reconstructed time-domain signal was
virtually identical to the input signal. Non-unity weights,
even when uniformly applied, have non-linear effects. These
contrast-shaping manipulations would typically lead to an
increase in local spectral contrast when a contrast channel was
weighted > 1 and a decrease when a contrast channel was
weighted < 1.

Reconstructed Signal Metrics
We related the intelligibility of the speech-in-noise (either before
or after processing was applied) to clean speech using an
approach that provides a measure of the correlation between
the two signals. The normalized correlation metric (NCM)

provided quantitative estimates of intelligibility of the processed
signal (Goldsworthy, 2005). The NCM calculates a transmission
index by a normalized correlation ρ

2 between the envelopes
of two signals (either clean and degraded signals or clean and
processed) for a fixed number of frequency bands, N. Each of
these N sub-band transmission indices is multiplied by a weight
wi, determined by psychophysically evaluating the frequencies
determined to be most important for speech intelligibility.
Summing these values yields an NCM score between 0 and
1 (Figure 3). The NCM accounts for average envelope power
in addition to temporal envelope fluctuations. It represents a
metric empirically determined to be suitable for non-linear
speech processing, such as in cochlear implants (Goldsworthy
and Greenberg, 2004).

Mutual information (MI) (Cover and Thomas, 1991),
specifically normalized MI (NMI) (Strehl and Ghosh, 2003),
provided quantitative estimates of relative information content
between noisy and clean speech independent of auditory system
properties. Although contrast shaping cannot increase MI (as
that would violate the data processing inequality, Cover and
Thomas, 1991), MI is still informative because (i) finding changes
analogous to NCM changes may support the generality of
contrast shaping, and (ii) the results of contrast manipulations
can be compared using the degree of signal degradation (the
magnitude of the decrease in NMI after contrast shaping is
applied). NMI was computed from Equation (8), where X and
Y are the signals of interest (e.g., clean speech sample and
contrast-shaped noisy speech), p(x) and p(y) are the amplitude
histograms of the signals and p(x,y) is the joint amplitude
histogram of the two signals. MI represents the sum of the
marginal entropies of the signals, minus their joint entropy.
While the MI is non-negative, it does not necessarily have an
upper bound, making direct comparisons of information content
among multiple experimental conditions challenging. The NMI,
however, takes on values between 0 and 1, with a value of 0 for
two statistically independent signals and a value of 1 for two
identical signals. We selected this method of normalizing MI so
that the metric is guaranteed to be upper bounded by 1, since the
mutual information between a signal and itself is the entropy of
the signal. Because theNMI uses each sample and the full range of
each signal to estimate the probability distributions, sharp peaks
of extreme high or low values may bias the result. To remove this
bias, we used the signal envelopes at a resolution of N levels (i.e.,
the probability distributions were estimated with N bins).

MI (X, Y) =
∑

y∈Y

∑

x∈X
p (x, y) log2

p (x, y)

p(x)p(y)

H(X) = −
∑

x∈X
p (x) log2 p (x) (8)

NMI(X,Y) =
MI(X,Y)

√
H(X)H(Y)

,

Both the NCM and NMI were computed with N = 24, unless
otherwise indicated. The signal envelopes were low-pass filtered
with a cutoff frequency of 50Hz as an initial preprocessing step.
Thus, for both metrics we used slow fluctuations in the signals
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weighted sum of the normalized correlations for each frequency band produces the NCM (see Materials and Methods).

as input, but the metrics differed in how they used these values;
the NCM used the correlation of envelopes in N frequency
bands, weighted based on their importance in human speech
recognition, and the NMI used the input signals (here we used
the broadband envelopes) at N level bins with no assumptions
about which signal components are important for speech
recognition.

Systematic Searches of the Contrast
Weight Space
We investigated the effects on speech intelligibility of performing
manipulations such as enhancing or compressing distinct
spectral contrast components. The possible weights on binned
contrast (the contrast weight space) were explored in an
unbiased, systematic manner. The contrast weight space was
first explored in detail on a single TIMIT speech utterance
(“We can, however, maximize the expected value”). Because the
detailed search uses a great deal of computational resources, we
performed this only on a single sentence. However, as drawing
conclusions based upon this analysis alone might be confounded
by overfitting, we then identified principal contrast regions of
interest and evaluated them on a set of sentences from the HINT
database.

The detailed systematic search of the contrast weight space
was performed by iterating the contrast-shaping algorithm over
all possible permutations of the weights 0.5 (compression), 1
(no change), and 2 (enhancement) for the 11 contrast channels
(311 weighting schemes). All weights were plotted as log base 2
values, falling within the range [−1 1]. Images of the systematic
search results for the contrast weight space were created by
sorting the contrast channel weight vectors by the computed
NCM score. For visualization, these sorted weight vectors were
then interpolated linearly in two dimensions at 1025 points
uniformly spaced across each dimension width, between 0 and
20 dB contrast for the contrast weight dimension (abscissa)

and between the minimum and maximum metric value for
the metric dimension (ordinate). This 2D space was then
smoothed with a Gaussian kernel whose standard deviations
for both dimensions were set to 1/100 of the dimension
range.

By visual examination of these images, specific contrast
regions yielded clustered effects on intelligibility when weighting
in a certain manner such as compression or enhancement. Based
upon this analysis we used three contrast regions for subsequent
analyses: low contrasts, the 0 and 2 dB bins; intermediate
contrasts, the 4, 6, and 8 dB bins; and high contrasts, bins
covering 10–20 dB. We again explored permutations of the
logarithmically spaced weights on these three contrast regions
(33 = 27 weighting schemes). As this is computationally tractable,
we performed this analysis on a set of 10 sentences from the
HINT database (these sets were later used for testing with
cochlear implantees).

Psychophysical Testing of Algorithms in
Cochlear Implantees
All human testing procedures were approved by the IRB at
Washington University with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. After providing
written informed consent, five subjects with unilateral cochlear
implants participated in this study. Etiology of hearing loss
was most often reported as progressive (n = 3) with
one subject experiencing a sudden hearing loss likely due to
autoimmune disease and one subject reporting genetic hearing
loss. All subjects used spoken English as their primary mode of
communication. The mean length of implant use was 5.6 years
and ranged from 2 to 11 years. Themean age at test was 69.4 years
and ranged from 55 to 79 years. All subjects had full insertion of
the electrode array and used a Cochlear Nucleus implant system
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(i.e., N22, N24). Speech recognition scores on the Consonant-
Nucleus-Consonant (CNC) (Peterson and Lehiste, 1962) in quiet
ranged from 43 to 84% correct. Demographic information for the
subjects is provided in Table 1.

All testing was performed in a single-walled test booth
typically used for clinical audiology research. Loudspeakers
were positioned at 0◦ azimuth and placed one meter from the
subjects. Calibration for the audiometer and binaural sound-
field warble tones was conducted using a Type 1 sound level
meter and ANSI Standards for Audiometers (ANSI S3.6-1996).
All speech and noise stimuli were stored on a Dell Desktop
computer. The computer was used to deliver the speech stimuli
via an audiometer and loudspeaker. The HINT sentences were
presented at a level of 65 dB SPL (slow RMS, C-weighting).
The presentation level of the sentences was calibrated using a
Type 2 sound level meter (Quest) and a 1000Hz calibration
tone.

Aided sound-field detection thresholds were obtained to
assure audibility using frequency modulated (FM) stimuli at
the following frequencies 250, 500, 1000, 2000, 3000, 4000,
and 6000Hz. A standard modified Hughson-Westlake procedure
(Jerger et al., 1959) in increments of 2 dB was used to obtain
thresholds. All subjects had aided thresholds at 30 dBHL or better
from 250 to 6000Hz.

Hearing in Noise Test (Nilsson et al., 1994) sentences
were pre-recorded in the presence of stationary white noise
at two signal-to-noise ratios (SNR, +5 and +10 dB). All
sentences at each SNR were processed offline both with
and without the noise-reduction strategy. Altogether, 16
sentence lists were used for the study with sentences within
each list randomized across 5 test conditions (quiet, +5,
+10 dB SNR unprocessed, and +5, +10 dB SNR with flat
weights).

The HINT sentences were presented at an overall level of
65 dB SPL. Sentences in quiet and at each SNR for each condition
(noise reduction/non-noise reduction) were presented randomly
to each subject. All subjects used maps and processor settings
(volume and sensitivity) that were worn in everyday listening
conditions. After hearing each sentence, the subjects were asked
to repeat the sentence back to the examiner. The number of
words correctly repeated was recorded and the overall percent
accuracy was each subject’s speech recognition performance.

Twenty sentences were presented at each of the five conditions
for a total of 100 sentences. After a rest period, the subjects
were presented with an independent set of 100 sentences. The
NCM was used to predict performance using 260 sentences in
the HINT database, comparing NCM∗100 with percent correct
speech recognition performance. This excludes prediction of
quiet speech without additive noise or other processing where
NCM= 1 (100% correct).

RESULTS

Contrast Shaping Algorithm Applied to
Noisy Speech
The overall spectral contrast distribution of the TIMIT speech
utterance (“We can, however, maximize the expected value”),
as determined by the output of the contrast elements in
the signal processing array, peaked at around 5 dB SD of
contrast (Figure 4). When white, Gaussian noise (0 dB SNR)
was added, this curve adjusted toward lower contrast values,
such that more portions of the noisy signal had lower contrast
values and fewer had higher contrast values. The analytical
portion of the signal processing array therefore outputs signal
characteristics consistent with intuition and demonstrates that
much of the dynamic range of local spectral contrast tends
to be at intermediate contrast values. Subsets of trials run
on other speech utterances and in other conditions verified
the generality of the observations made with this speech
sample.

We hypothesized based upon our previous neurophysiological
findings that emphasizing mainly the intermediate contrast
values could result in a substantial increase in speech
intelligibility. To test this hypothesis, we modified noisy speech
with the signal processing array. Signals were reconstructed
from the outputs of 11 contrast-sensitive elements centered from
0 dB SD to 20 dB SD (see Materials and Methods). For a single
noisy speech utterance, we systematically searched the space of
all possible combinations of accentuation (log2(weight) > 0), no
change (log2(weight) ≈ 0) and attenuation (log2(weight) < 0)
of each contrast element output by measuring the NCM of
the reconstructed signal as a computational estimate of speech
intelligibility (see Materials and Methods).

TABLE 1 | Subject demographic information.

Sex Etiology Age at study

(years)

Length of CI use

(years)

CI system Processor Implanted ear CI coding strategy CNC at test

M Progressive 57 2 Nucleus

24

Freedom L ACE 43

F Progressive 79 5 Nucleus

24

Sprint R ACE 60

F Sudden, unknown 77 6 Nucleus

24

Freedom R ACE 62

F Progressive 79 4 Nucleus

24

Freedom L ACE 62

M Genetic 55 11 Nucleus

22

3G R SPEAK 84
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FIGURE 4 | Overlay of contrast distributions as calculated by the signal

processing array for 10 sentences. The overall spectral contrast

distribution of a speech utterance indicates that most of the contrast values fall

into the range of 4–8 dB. When the same speech utterance was corrupted

with white, Gaussian noise at 5 dB SNR, the contrast distribution shifted to

lower contrast values. Curves represent the mean across 10 sentences in the

HINT database and the shading represents the mean ± standard deviation at

each contrast value. The curves demonstrate that intermediate contrast values

are common in both clean and noisy speech. Furthermore, there is little

variability in contrast across sentences in the HINT database.

The patterns of contrast element weight vectors (i.e., contrast
shapes) for the speech sample corrupted by pink noise (i.e., 1/f
noise), white noise, and spectrally-shaped noise at three different
signal-to-noise ratios (SNR) are shown in Figure 5. Contrast
shapes in each panel are sorted by the change in NCM score of
the processed noisy speech sample relative to the unprocessed
noisy speech, yielding the most intelligible samples at the top
of each panel and the least intelligible samples at the bottom.
For the best improvements in computed intelligibility (top of
each panel), modifying the highest and the lowest contrast
values appears to influence the NCM scores little (i.e., mean
weights near 0), while enhancement of the intermediate contrasts
centered around 5 dB SD (i.e., weights near 1) appears to yield a
substantial improvement in computed intelligibility. Enhancing
the highest contrasts at the expense of the intermediate
contrasts substantially worsens computed intelligibility scores
(bottom of each panel). The same general patterns of contrast
shaping functions for improving or degrading NCM scores
are apparent across all types of noise and SNRs tested, as
well as sample tests with other speech utterances (data not
shown).

The results shown in Figure 5 demonstrate some clustering
in effects at roughly 0–2 dB, 4–8 dB, and 10–20 dB contrast
ranges. To simplify the results shown in Figure 5, each of
these three contrast bands was weighted independently of
the others with either compression (weight of −0.5) or

enhancement (weight of +0.5) and the resulting changes in
the NCM and NMI scores were calculated. These data are
displayed in Figure 6. As expected, compressing low contrasts
or enhancing intermediate contrasts enhanced the predicted
intelligibility. Expanding low or high contrasts strongly degraded
performance.

When ranking the intelligibility scores for all permutations
of the weights −0.5, 0, and 0.5 applied to these three bands,
it becomes clear that enhancement of intermediate contrasts is
generally beneficial regardless of the weighting applied to low
and high contrasts (Figure 7). Furthermore, enhancing low or
high contrasts is only beneficial when intermediate contrasts
are also enhanced. Interestingly, if taking a linear summation
approach, the results presented in Figure 6 suggest that low
compression, intermediate enhancement, and no change to high
contrasts would be beneficial. While beneficial relative to no
enhancement, this strategy gives on average the 8th best NCM
and NMI scores (out of 27 weighting schemes). It is actually
the case of enhancing all contrasts that is the optimal weighting
scheme. Thus, some uniform skewing of the contrast distribution
to the right produces a signal that most closely approaches the
original speech signal.

To further examine the effects of flat/uniform weightings,
weights from −0.25 to 1.25 were applied to noisy speech
(Figure 8). For the sentences tested, the optimal weight (greatest
relative increase in NCM score, Figure 8A, top) was 0.5,
which coincided with optimum intermediate contrast area
(Figure 8B). The NMI was also computed (Figure 8A, bottom)
and showed analogous effects: enhancement degraded the signal
less than compression up to an optimal weight, and larger
weights degraded the signal more. Figure 8B shows that as
the uniform weight value was increased, the amount of low
contrast decreased, the amount of high contrast increased, and
the amount of intermediate contrast showed a maximum at the
optimal uniform weight value. The results shown in Figure 8

suggest that the fractional amount of different contrast regions
might correlate with the intelligibility. Indeed, the fractional
amount of contrast at 6 dB had a strong positive correlation
with the NCM score (Figure 9). Other intermediate contrast
values had weak positive correlations, while low and high
contrast values had negative correlations (with the slight positive
correlation at 10 dB being the only exception). Interestingly, this
significant correlation between fractional intermediate contrast
composition and intelligibility was concurrent with relatively
little change in the distribution near 6 dB for any of the flat
weightings (Figures 9, 10B). Increasing (decreasing) uniform
weights resulted in right (left) shifting of the contrast distribution
for all sentences tested (Figure 10A). At the best weighting
(+0.5), the greatest proportional changes in the distribution
(relative to no weighting) are at low and high contrasts, with little
change near intermediate contrasts (Figure 10B).

To evaluate how these computational results compared with
neurophysiological data, we compared the average contrast
shapes that elicited the greatest increase in NCM scores to
the neuronal contrast data. Figure 11 shows the top 10% of
NCM score improvements for the speech sample corrupted
with white noise at three different SNRs. The shapes of these
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FIGURE 5 | The effects of various contrast weight vector shapes on noisy speech computed intelligibility. Each panel represents a complete systematic

search of the contrast weight space with different additive noise conditions and at different SNRs. The difference in NCM scores, calculated with N = 8 frequency

bands, between the processed and original noisy speech for each contrast weight vector shape was used to sort the contrast shapes themselves. Each systematic

search consisted of all permutations for weights of 2−1, 20, and 21 on each of the 11 contrast channels. The sorted contrast weights were then interpolated and

smoothed to produce the display images. Lighter values correspond to higher weights, showing a convergence on intermediate contrast values at the best NCM

scores. For pink noise, improvements achieved +0.04 (+5% relative to 0.87) at 5 dB SNR, +0.11 (+15% relative to 0.75) at 0 dB SNR and +0.18 (+30% relative to

0.6) at −5dB SNR. For white, Gaussian noise, improvements in the NCM score achieved +0.09 (+12% relative to 0.77) at 5 dB SNR, +0.13 (+20% relative to 0.64)

at 0 dB and +0.11 (+21% relative to 0.52) at −5dB. For spectrally shaped noise, improvements achieved +0.06 (+7% relative to 0.84) at 5 dB SNR, +0.14 (+20%

relative to 0.69) at 0 dB SNR and +0.17 (+33% relative to 0.51) at −5dB SNR.

curves generally match the similar curves from other noise
conditions. Overlaid on these plots is the distribution of preferred
contrasts across the population of contrast-tuned neurons in
primate auditory cortex (Barbour and Wang, 2003). The largest
percentage of contrast-tuned neurons prefers contrasts that
are also the most relevant, as determined by our contrast-
shaping algorithm, for improving the intelligibility of noisy
speech. Note that even though a total range of 10 dB SNR
is represented in the speech signals tested, the best contrast

shapes in all cases tended to peak at around 5 dB SD. The
major difference between the best contrast shapes for different
noise conditions appears to be predominantly the total range
of contrast values emphasized rather than a shift in their peaks
(i.e., lower noise levels lead to a broadened range around the
peak at 5 dB). This similarity in shape underscores our empirical
observation that contrast shaping can successfully improve
computed intelligibility without any estimate of signal or noise
properties.
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FIGURE 6 | Results of weightings applied to low, intermediate, and

high contrast regions. Either compression (−0.5) or enhancement (+0.5)

weightings were applied to one of low, intermediate, or high contrast ranges of

speech in Gaussian additive white noise at 10 dB SNR (left) and 5dB SNR

(right) (n = 10 sentences), with no weighting applied to the other ranges. The

mean percent change in NCM and NMI scores is shown with error bars

representing the SEM. The NCM scores show that enhancing low contrasts

(mostly noise) or high contrasts (mostly speech) degraded intelligibility as

predicted. Enhancing intermediate contrasts improved intelligibility on the

average, as did compressing low contrasts. Compressing intermediate or high

contrasts lowered intelligibility by about the same amount. The NMI scores

showed similar trends, however the changes were more variable across the

group of sentences. Note that because of the data processing inequality, the

weightings cannot increase the mutual information.

Evaluation of Contrast Shaping
Effectiveness in Cochlear Implantees
To evaluate the effectiveness of our contrast filter bank and
weighting methods, we tested the best weighting scheme from
simulations (+0.5 uniform weight) on 5 cochlear implant
users. The subjects exhibited systematically degraded speech
recognition performance as noise was added in a hearing-
in-noise test (Figure 12). Contrast shaping that uniformly
accentuated all contrasts between 0 dB and 20 dB (i.e., with a flat
contrast shaping function) resulted in considerable predicted and
actual intelligibility improvement (10 dB SNR: +7% predicted,
+6% actual; 5 dB SNR: +9% predicted, +15% actual). Predicted
performance was within 1% of actual performance on average for
processed speech in noise and within 10% on average for noisy
speech. The average improvement relative to the performance
on speech in noise was greater for the 5 dB SNR condition
(24%) than for the 10 dB condition (7%). The variable effects of
degradation by the two SNR levels and performance of individual
subjects on both test sessions are depicted in Figure 12B.

Hearing performance was analyzed with logistic regression
using the following predictors: noise (5 or 10 dB SNR), contrast
shaping, and test order. By performing a chi-squared test on the
reduction in deviance with the inclusion of each predictor, we
found that lower SNRwas correlated with decreased performance
[χ2(1)= 16, p = 5.9× 10−5], as expected. There was no effect of
the first or second set of sentences on performance [χ2(1)= 0.19,
p = 0.67], suggesting that subjects did not have any learned
changes in their ability to decode speech in noise over the
course of the experiment. Finally, as predicted, contrast shaping
was correlated with improved speech recognition performance
[χ2(1) = 11, p = 8.4 × 10−4]. To examine the interaction
between processing and noise level, the product of values
representing noise level and contrast shaping was included as
a predictor. The inclusion of this additional predictor did not
result in statistically significant improvements in the model fit
[χ2(1) = 1.4, p = 0.23], but noise level and contrast shaping
remained significant predictors (p < 0.05). Given the small
sample size of five cochlear implant users, further verification
of these results with a larger sample of cochlear implantees is
necessary.

DISCUSSION

Contrast Shaping Algorithm Applied to
Noisy Speech
The contrast distribution of clean speech, as determined by
the outputs of the contrast elements in our contrast-shaping
algorithm, peaks at intermediate contrast values (Figure 4). This
peak shifts toward lower contrast values when noise is added
to the speech. If contrast-tuned neurons do aid in coding
vocalizations or other sounds in the presence of noise, one
might therefore expect that intermediate contrast values around
5 dB (the peak in the contrast-tuned neuronal population) could
be particularly important for speech intelligibility. Stemming
from recognition that lower spectral contrast results in lowered
speech intelligibility, contrast enhancement algorithms attempt
to shift the contrast distribution of noisy speech toward higher
contrasts. This procedure can yield a higher proportion of higher
contrast regions in the enhanced noisy signal—a result that tends
to improve speech intelligibility. Using our contrast-shaping
algorithm we found that a substantial increase in computed noisy
speech intelligibility can potentially be obtained by accentuating
primarily the intermediate contrasts (4–8 dB SD) (Figures 5–7).
Accentuating the lowest contrasts (<4 dB SD) or the highest
contrasts (>8 dB SD) alone consistently degraded computed
intelligibility. Compression of low contrasts enhanced computed
intelligibility whereas compression of intermediate or high
contrasts degraded intelligibility. On average, applying a uniform
enhancement yields the best computed intelligibility (Figure 7).
Interestingly, over a range of uniform weighting schemes, the
fractional amount of intermediate contrast in the signal is
simultaneously linearly correlated with computed intelligibility
(Figure 9) and changes relatively little across that range
(Figures 9, 10). Thus, the optimal contrast-shaping strategy
decreases the relative amounts of low contrast components, and
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FIGURE 7 | Results of weights applied to low, intermediate, and high contrast bands. Weights were applied to low, intermediate, and high contrast bands for

10 sentences with 5 dB additive white noise. The sorted averages of 10 sentences for the 27 weighting conditions are shown. The rows are centered on the actual

value on the vertical axis and the row heights have been scaled to split the distance between successive weighting conditions. The worst NCM and NMI scores were

obtained when performing simultaneous compression of intermediate and high contrasts. Importantly, any enhancement of low contrasts or high contrasts when

intermediate contrasts were not also enhanced, lowered the NCM score. Furthermore, any compression of intermediate contrasts lowered the NCM score. The

optimal weighting scheme for both the NCM and NMI scores (ignoring the case of no weighting for the NMI) is uniform enhancement.

FIGURE 8 | Changes in signal metrics and contrast proportions after contrast shaping. The changes in the signal metrics after a range of uniform contrast

weightings were applied are shown for 10 sentences with additive white noise at 5 or 10 dB SNR. In terms of the percent change in the NCM, uniform compression

(weight < 0) always degraded intelligibility, while uniform enhancement (weight > 0) enhanced intelligibility up to about a weight of 0.75, beyond which further

enhancement (larger weights) degraded intelligibility (A, top). The percent change in NMI is relatively more variable, but demonstrates analogous properties in terms of

degradation (i.e., enhancement degrades the signal less than compression, up to at least a weight of 0.5; A, bottom). The optimal weight (as indicated by the NCM

scores, since any processing degrades the NMI) was on average 0.5 for the 10 sentences tested (A, top). The optimal weight coincided with the maximum

percentage of intermediate contrast values in the signal (B). For all plots, data points are presented as the sample mean ± SEM (n = 10).

increases the relevant amounts of intermediate and high contrast
components. These trends were consistent for the different noise
types and SNRs tested. The greatest magnitude of computed
intelligibility improvements occurred at the lowest SNRs tested,

implying that contrast manipulations may be more effective for
improving speech intelligibility under conditions of greater noisy
interference. While we did not identify a significant interaction
between SNR and contrast shaping, the results from testing
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FIGURE 9 | Intelligibility is significantly correlated with the fractional amount of intermediate contrast in the signal. Each plot shows the percent change

in NCM score vs. the percent of signal content (percent of histogram area) for one of the 11 contrast bins. Each point represents one of 10 sentences (additive

Gaussian white noise, 5 dB SNR) and one flat contrast weighting. The color of each data point represents the weight level (blue->red corresponds to −0.25 to 1.25,

green is the optimal weight of 0.5). The 6 dB contrast bin has a strong positive correlation of intelligibility to fractional signal content. Larger weights lead to less

fractional signal content at contrasts below 6dB and more content for contrasts above 6 dB, reflecting that positive contrast weighting skews the spectral contrast

distribution toward higher contrasts.
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FIGURE 10 | Uniform weights and changes in the contrast distribution. Increasing/decreasing the flat weight value skews the contrast distribution toward the

right/left (A), with very little change near 5–6 dB (B). As seen in (B), with the best weighting (0.5), there is a pivot or “isosbestic” point around 5–6 dB. In a roughly linear

manner, the relative amount of lower contrasts decreases and the relative amount of higher contrasts increases. In comparison to Figures 8, 9, while the fraction of

intermediate contrast energy is linearly correlated with intelligibility, the percent change possible is relatively small. The data shown are for one sentence, but the trends

were nearly identical for all sentences tested.

in cochlear implantees are consistent with the computational
findings. Cochlear implantees performed relatively better when
processing was applied to 5 dB SNR speech in noise compared
to 10 dB SNR speech in noise (24% vs. 7% improvement), with
one patient consistently having a three-fold improvement at
5 dB compared to a more modest improvement at 10 dB (see
Figure 12B).

The Role of Contrast-Tuned Neurons
The effects of contrast shaping on a computed intelligibility
score, the NCM, indicated that the contrast shapes most effective
at improving computed speech intelligibility on average closely
matched the distribution of best contrasts in the auditory
cortex of marmoset monkeys (Figure 11). Furthermore, the
peaks of the contrast weighting functions fell near 5 dB for a
range of SNR values, indicating that a similar noise-reduction
procedure might be effective across a variety of SNRs. We
computed the intelligibility of the processed speech at many
combinations of accentuation and attenuation of contrast,
sorting by intelligibility score and taking the mean of the best
contrast-weighting functions. The resulting functions compared
favorably with the representations of contrast-tuned neurons
in primate auditory cortex. These computational data were
derived from an algorithm designed to improve computed
speech intelligibility and not by fitting physiological data. This
independent result lends plausibility to the hypothesis that
contrast-tuned neurons may participate in a biological contrast-
shaping algorithm whose purpose is to extract vocalizations
or other sounds from a noisy environment. While no causal
relationship has yet been established between contrast-tuned
neurons and the effect of contrast shaping on altering computed
speech intelligibility as reported here, this scenario represents
a compelling example where the responses of neurons in the

central nervous system prompted exploration that led to a
candidate algorithm for performing a useful engineering task.

Despite the similarities in top weight combinations and tuning
curves, it is an open question as to how a firing rate tuning curve
might effectively perform local contrast enhancement. From the
perspective of what contrast tuning could be doing to the brain’s
representation of the signal, a simple explanation might be that
contrast tuning effectively skews the neuronal representation
of the stimulus contrasts. The majority of neurons, which are
un-tuned to contrast, could be rate-coding spectral contrast
information with a maximizing information capacity strategy
(Laughlin, 1981), such that their spiking activity produces a
representation of spectral contrast distribution in the sensory
environment. The tuned neurons could use this representation
to skew the contrast distribution toward higher contrasts, similar
to what happens artificially with the best flat weighting scheme.
This could happen if the shape of the rate function of the
tuned neurons relative to the input contrast distribution shape
represented howmuch of the respective contrast components are
passed through to successive levels in the neuronal network. So,
if after some normalization (e.g., relative to the maximum firing
rate), the firing rate function matched the input distribution,
faithful reproduction could occur. Whereas if the rate deviates
lower for low contrasts and higher for high contrasts, the effective
output distribution may be closer to what occurs in simulation
with the best flat weighting.

The design and implementation of the contrast-shaping signal
processing array draws inspiration from neurophysiological
findings, although the computational components are not
intended to model the physiological implementation of the
underlying algorithms. Coupling engineering approaches
directly with neurophysiological findings represents a powerful
tool for devising new, effective algorithms for use in signal
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processing. Such a strategy of biologically-inspired engineering
derived from cochlear physiology has been quite successful in
designing devices to alleviate hearing loss. A broader application
of these principles to central nervous system physiology may

FIGURE 11 | Comparison of best contrast weighting shapes to

preferred contrasts of contrast-tuned neurons. Shown is an overlay of

averaged contrast shapes achieving the best computed speech intelligibility

improvements (from the systematic weight search, see Figure 5) compared

with the distribution of peak contrast responses from a population of 45

contrast-tuned auditory cortex neurons. The normalized shapes of the best

10% of contrast shapes for 5, 0, and −5dB SNR of white, Gaussian noise

closely resemble this neuronal response distribution. Additionally, these

contrast weighting distributions resemble one another even more, each one

peaking at around 5dB SD, despite a total SNR range of 10 dB across all

three signals.

yield further improvements in these devices, extending analytical
results demonstrating that modeling of auditory cortex neuronal
responses can be useful for estimating speech intelligibility in
normal subjects (Chi et al., 1999).

Human Performance with Contrast
Shaping
Cochlear implantees employing their own implant devices and
performing a hearing-in-noise test (HINT) exhibited improved
noisy speech intelligibility under the uniformweighting contrast-
shaping manipulation. Subjects reported subjectively that these
signals sounded much better than the unprocessed noisy signals.
Although contrast shaping was not compared directly with
other noise-reduction strategies, it appears to be a promising
candidate for assisting cochlear implant wearers in noisy
situations.

Effective noise-reduction strategies in theoretical tests
often show little measurable benefit to human noisy speech
intelligibility for non-implantees, even for individuals with
considerable hearing loss and even when listeners subjectively
indicate a preference for the noise-reduction (Kuk et al., 1990;
Moore, 2003). It is possible that real-world tests demonstrate little
intelligibility improvement for most individuals because native
neuronal noise-reduction circuitry normally does such a good
job that trying to improve upon it with an engineered system
generally fails to provide additional capabilities (Trine and
Tasell, 2002). Even if the above is true, however, noise-reduction
strategies could be particularly useful in other situations, such
as (1) in subjects such as cochlear implantees, whose native
noise-reduction circuitry may not be functioning normally
because of the dramatic alteration in signal input relative to
normal (Hochberg et al., 1992; Weiss, 1993; Dorman and Loizou,
1996; Loizou and Poroy, 2001; Henry and Turner, 2003; Turner
et al., 2004; Henry et al., 2005); (2) in situations where no humans
are listening, such as automatic speech recognition (Virag, 1999);
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FIGURE 12 | Speech recognition performance of cochlear implant subjects evaluated with the HINT in 5 conditions. (A) Displayed are the raw

performance scores (mean ± standard deviation) of cochlear implantees (n = 5 subjects) and the predicted performance (mean ± standard deviation; n = 260

sentences). Improved speech recognition was seen in the 5 and 10dB SNR flat weighting conditions. (B) Recognition performance (% correct) with contrast shaping

is plotted against performance on speech in noise without processing (% correct) for each test session (n = 5 subjects, 2 test sessions per subject). The arrows point

toward the scores from the second test session.
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or (3) to reduce the effort of understanding speech in noise,
even if maximal listening effort does not yield improved speech
recognition (Kuk et al., 1990; Moore, 2003; Sarampalis et al.,
2006).
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