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We explored perceived material properties (roughness, texturedness, and hardness) with
a novel approach that compares perception, image statistics and brain activation, as
measured with fMRI. We initially asked participants to rate 84 material images with
respect to the above mentioned properties, and then scanned 15 of the participants
with fMRI while they viewed the material images. The images were analyzed with a
set of image statistics capturing their spatial frequency and texture properties. Linear
classifiers were then applied to the image statistics as well as the voxel patterns of
visually responsive voxels and early visual areas to discriminate between images with
high and low perceptual ratings. Roughness and texturedness could be classified above
chance level based on image statistics. Roughness and texturedness could also be
classified based on the brain activation patterns in visual cortex, whereas hardness
could not. Importantly, the agreement in classification based on image statistics and
brain activation was also above chance level. Our results show that information about
visual material properties is to a large degree contained in low-level image statistics, and
that these image statistics are also partially reflected in brain activity patterns induced
by the perception of material images.

Keywords: fMRI, material perception, material properties, image statistics, MVPA

INTRODUCTION

The perception of material and surface properties is crucial for many aspects of our interaction
with the environment, yet until now we have only a limited understanding of how this is achieved.
For example, it is not yet well understood how the brain can quickly and successfully differentiate
between a smooth, slippery object and a rough one that will provide a good grip. Since the neuronal
processes underlying such judgments are largely unknown, we chose to investigate the question,
how material properties are represented in the brain’s visual system. In particular, we examined
what image features the brain might rely on during the processing of material properties and where
in the brain information about material properties can be decoded.

In psychophysical research, material perception has received increasing attention over the
past years. It has been pointed out that the visual system probably relies on sets of invariant
image statistics, or cues, in order to estimate object and material properties, instead of carrying
out costly computations to work out the physics of a visual scene (Nishida and Shinya, 1998;

Frontiers in Psychology | www.frontiersin.org 1 August 2016 | Volume 7 | Article 1185

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.01185
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2016.01185
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.01185&domain=pdf&date_stamp=2016-08-17
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.01185/abstract
http://loop.frontiersin.org/people/138135/overview
http://loop.frontiersin.org/people/1069/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-01185 August 12, 2016 Time: 15:24 # 2

Baumgartner and Gegenfurtner Image Statistics and Material Properties

Motoyoshi et al., 2007; Fleming et al., 2011; Marlow et al., 2011,
2012; Giesel and Zaidi, 2013; for a review, see Fleming, 2014).
For example, spatial frequency information (Giesel and Zaidi,
2013) or skewness of the luminance histogram (Motoyoshi et al.,
2007) have been shown to influence material property perception.
However, it is unclear how these image statistics act on a neuronal
basis. Previous fMRI studies on texture and material perception
found that tasks associated with visual material perception,
like texture discrimination or material categorization, led to an
increase in activation in medial regions of the ventral extrastriate
cortex in human observers (Newman et al., 2005; Cant and
Goodale, 2007, 2011; Cant et al., 2009; Jacobs et al., 2014). There
has been very little work on the neural processing of individual
material properties except gloss (monkeys: Nishio et al., 2012,
humans: Sun et al., 2015). Very recently, Sun et al., 2016) showed
that visual stimuli with different surface properties (e.g., rough vs.
glossy) led to differential activity both in somatosensory cortex
and in early visual areas.

Hiramatsu et al. (2011) conducted an fMRI experiment to
investigate the categorical representation of visually presented
materials in the human brain. By means of multivoxel pattern
analysis, they were able to show that throughout the ventral
stream, information about material categories can be decoded.
Importantly, they could show that the representation of materials
in early areas is strongly based on low-level image statistics like
contrast, spatial frequency and color information. In higher visual
areas, the representation of materials was observed to be based
on perceptual similarity instead, i.e., it reflected participants’
judgments of material properties. These results were recently
replicated in macaques (Goda et al., 2014). Even though category
information is already present in V1, they conclude that a
semantic or categorical distinction between materials does not
arise before the fusiform gyrus/collateral sulcus. Several studies
have demonstrated that perceptual representations of materials
are arranged in a meaningful and consistent fashion (Rao and
Lohse, 1996; Baumgartner et al., 2013; Fleming et al., 2013).
Fleming et al. (2013), for example, showed that visual material
properties are well defined and closely associated to category
memebership, and Baumgartner et al. (2013) could show that
visual and haptic material perception is robust and closely
related.

While Hiramatsu et al.’s (2011) study convincingly
demonstrated the existence of different representational levels
in material perception, it remains unclear how the perception
of different material properties arises and propagates in the
human visual cortex, and what information these perceptions
are based on. We were interested in where and how early in
the visual system material properties are represented, and,
importantly, which image statistics are used by the visual
system during the perception of materials. We conducted this
study to answer these fundamental questions about material
property perception. Our goal was to relate perceived material
properties of the images, their statistical properties, and the
brain activation elicited by them. These three are intrinsically
connected to each other, so we applied well-established
methods that have been used to approach several similar
problems in vision science (Britten et al., 1996; Stone and

Krauzlis, 2003) in order to investigate how they relate to each
other.

MATERIALS AND METHODS

Participants
Fifteen participants completed the material property experiment,
11 of them in addition completed the retinotopy scans. However,
only for 9 out of these 11 participants could we obtain reliable
maps. Nine of our participants were female, six male. Mean
age was 24.1 years. All were students at Giessen University and
right-handed according to the Edinburgh Handedness Inventory
(Oldfield, 1971). The study was approved by the local ethics
committee and all participants signed a consent form according
to the Declaration of Helsinki.

Stimuli
We used a set of 84 pictures of material surfaces as stimuli in
our experiment. These material surfaces had been collected for
psychophysical studies on visual and haptic material perception
in blind and sighted observers (Baumgartner et al., 2013,
2015). The actual samples were collected from different sources,
mounted on tiles and photographed with a Nikon D70 SLR
(Nikon, Tokyo, Japan). The stimuli were 14 cm × 14 cm flat
patches of different samples of the following material categories:
plastic, paper, fabric, leather, fur, stone, metal, and wood. For
further information we refer to Baumgartner et al. (2013),
where the stimulus database is described in great detail. We
photographed the stimuli in the conditions of the experimental
setup of our previous study from the participant’s point of view,
with a window behind the participant/photographer and a point
light source above the setup. Part of the photographs was also
used in a study on image statistics by Wiebel et al. (2015). The
photographs were then cropped to a size of 768 × 768 pixels
such that only the material surface was retained (see Figure 1).
Background luminance, when stimuli were presented on the
projector in the experimental setup, was 176 cd/m2, mean
stimulus luminance was 189 cd/m2. The images are made
available for downloading1.

Rating and Material Properties
Procedure
We asked 6 of our 15 participants to indicate their assessments
of the three material properties roughness, texturedness, and
hardness on a 7-point Likert scale for each stimulus. In contrast to
shape perception, material perception is intrinsically multimodal,
so we wanted to use a visual, a haptic, and a bimodal material
property. Baumgartner et al. (2013) found visual and haptic
representations to be tightly linked. This is likely to be the result
of learning processes (Goda et al., 2016). Therefore it is difficult
to attribute certain properties to one of the senses but from
our earlier work it seems that texturedness can be judged more
reliably in the visual sense, while roughness is a property that
is easily and reliably accessible to both senses from an object’s

1http://www.allpsych.uni-giessen.de/MID/
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FIGURE 1 | The material photographs used in the fMRI experiment.

material surface. Hardness, in contrast, even though it can be
derived to some degree using visual information (Baumgartner
et al., 2013), is mainly perceived via the haptic sense and therefore
served as a counterpart to the visually accessible properties.
The photographs were presented on a computer screen in fully
randomized order. Participants would rate each property one
at a time, i.e., they rated one property for all stimuli, had a
little break, and then rated the next property for all stimuli.
The order of properties was also randomized. Participants were
allowed to look at each stimulus as long as they wanted to. At
the beginning of each property block, the participant was given a
written definition of the property:

Roughness
How rough or smooth does the material seem to you? Low values
indicate that the surface feels smooth; high values indicate that it
feels rough.

Texturedness
How textured/patterned or homogeneous/uniform is the
material’s surface? Low values indicate that the surface is
uniform, high values indicate that the material has a pattern or
texture.

Hardness
How hard or soft does the material seem to you? How much force
would be required to change the shape of the material? Low values
indicate that the surface feels soft; little force is required to change
the shape of the material. High values indicate that it feels hard
and cannot easily be deformed.

Image Groups
For each material property, we formed groups of images with
high and low ratings. We did this by ordering the images
according to the ratings and then choosing the 25% percent of
images with the highest property ratings for the high-ratings
group, and the 25% percent of images with the lowest property
ratings for the low-ratings group (21 images in each group).
This resulted in two groups of images per material property with
relatively low vs. relatively high values of the respective property,
e.g., a group of rough images vs. a group of smooth images (for
roughness).

Image Statistics
In order to capture information about our material images we
analyzed them according to the image statistics by Simoncelli
and Portilla (1998) and Portilla and Simoncelli (1999, 2000).
Although the algorithm has been extended to work on color
images2, we worked with the initial version that uses grayscale
images to keep the number of image statistics at a manageable
level. The images were converted to luminance by multiplying
R, G, and B with the relative luminance of the display device’s
respective channel. The texture model by Portilla and Simoncelli
is a complex model developed primarily for texture synthesis.
The algorithm first extracts a large set of image statistics from
the photographs. These image statistics are later used for an
iterative image synthesis procedure. Here, however, we used the
parameters computed by the model to describe our material

2http://www.cns.nyu.edu/∼lcv/texture/
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images. We analyzed three types of statistics that the algorithm
provides separately.

Pixel Statistics
Initially, the texture analysis algorithm computes marginal
statistics of the textures gray level distribution (the number
of pixels per gray level). These statistics are mean, variance,
skew, kurtosis and the range (minimum and maximum) of
the distribution. These statistics we will subsequently call ‘pixel
statistics.’

Filter Statistics
The algorithm then decomposes an image into oriented, linear
filters at different scales by means of a steerable pyramid
(Simoncelli et al., 1992) and computes statistics to describe these
filter outputs as well as relationships between them. Even though
the model is inspired by filter responses in V1, the parameters
do not necessarily correspond to particular statistics of V1 and
V2 neurons’ responses. Non-spatial summary statistics of these
responses that are implemented in the model might be computed
at a later stage, presumably in V2 (Freeman and Simoncelli, 2011;
Freeman et al., 2013).

In our case, we used a steerable pyramid with four scales
and four orientations. First, the algorithm computes the local
autocorrelation of the lowpass images that the steerable pyramid
computes at each level. These autocorrelations capture regularity
(periodic features) of the textures and salient spatial frequencies.
Second, joint statistics of subband magnitude coefficients are
computed. Specifically, correlations of neighbors in space,
orientation and scale are used at this stage. These capture
structures (e.g., edges) in images as well as ‘second order textures.’
Third, the algorithm computes cross-scale phase statistics.
Hereby, the local relative phase between a subband’s coefficients
and their neighbors at the next coarser scale is computed.
These coefficients capture gradients within the textures, and can
differentiate between edges and lines. In our case, the image
analysis resulted in 877 image parameters.

Spatial Frequency Parameters
Spatial frequency has previously been described to directly
affect perceived material properties (Giesel and Zaidi, 2013).
The steerable pyramid of the model by Portilla and Simoncelli
already captures the spatial frequency content to a certain extent.
However, in order to exhaustively explore the spatial frequency
content of our images, we reran the steerable pyramid with
more filters, i.e., we built another steerable pyramid with twelve
orientations and six scales. The 74 coefficients (12× 6+ highpass
and lowpass residuals) that resulted from the decomposition
with the steerable pyramid constitute our third group of image
statistics.

FMRI Experiment
We showed each participant the 84 stimuli in randomized order.
Between trials (i.e., images), we had intervals of at least 14 s
(plus 0–2.5 s jitter) in order to keep the BOLD contamination of
temporally neighboring images at a minimal level. Each stimulus
was presented for 5 s. After 25% percent of trials, the participant

was asked a rating question. The participant was asked to assess
one of the three material properties for the stimulus he or she had
just seen. The trials after which a rating question was presented
were randomized such that it was impossible for the participants
to predict if they would have to answer a question afterward while
they looked at each material image. For each rating, we randomly
chose a material property that we asked the participant to assess
in order to avoid that participants had a certain material property
in mind when looking at the stimuli. We did this to ensure that
participants paid close attention to each stimulus. Participants
had to assess the stimulus property on a 3-point Likert scale. They
indicated their answers by pressing one of three response buttons.
The experimental data was collected in a single functional run
that lasted approximately 35 min. Please note that each material
image was only seen once by each participant.

Stimulus Presentation
Stimuli were projected with an XGA-Projector (Epson, Model
7250, resolution: 1024× 768) projection screen (460× 350 mm)
behind the scanner bore. The visual stimulation could be seen
by means of a double mirror attached to the head coil (visual
field 18◦ in horizontal and 16◦ in vertical, rectangular aperture).
Our stimuli encompassed approximately 14◦ × 14◦ of the screen.
We used Presentation software (Version 16, Neurobehavioral
Systems TM, Albany, CA, USA) for stimulus presentation and
response registration.

Scanning Parameters
Data was collected with a SIEMENS Symphony 1.5 Tesla
MR imaging system with a quantum gradients system. The
anatomical scan was collected in 160 T1-weighted sagittal
images by means of a MP-RAGE sequence. Slice thickness was
1 mm. Afterward, a field map scan was acquired to measure
inhomogeneities of the magnetic field. The functional data was
collected using a single shot T2∗-weighted gradient-echo planar
imaging (EPI) sequence, with 25 slices covering the whole brain,
acquired in descending order (slice thickness 5 mm; 1 mm gap;
TA = 2.4 s; TR = 2.5 s; TE = 55 ms; flip angle 90◦; field of
view 192 mm × 192 mm; matrix size 64 × 64; voxel size 3 mm
× 3 mm× 5 mm.).

Preprocessing and Data Analysis
DICOM-files were converted to NIFTI-files using MRI Convert
(Version 2.0; Lewis Center for NeuroImaging, Oregon). SPM8
(Statistical Parametric Mapping; Wellcome Department of
Cognitive Neurology, London, UK) was used for pre-processing
of the data. Pre-processing consisted of unwarping, realignment,
co-registration, and smoothing (6 mm FWHM). Before the
searchlight analysis procedure, anatomical and functional data
were additionally normalized to the MNI template brain.

Retinotopy
Retinotopy stimuli consisted of a rotating wedge and an
expanding circle with a high contrast (black and white)
checkerboard pattern that changed phase with a frequency of
4 Hertz. Both wedge and circle were presented simultaneously,
whereby the wedge stimulus completed 5 cyles per run (80 s/run)
and the ring completed eight cycles per run (50 s/run).
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Participants had to fixate a gray fixation dot in the center of the
screen and were asked to press a button whenever they noticed
a color change of the fixation dot. Participants completed 3 or 4
runs of retinotopy.

Retinotopy data was collected in a separate (second) session.
Stimulus presentation and scanning parameters were identical to
those of the main experiment. Retinotopy data was unwarped,
co-registered, and smoothed (6 mm FWHM). We delineated
retinotopic areas V1-V3 by means of a phase-encoded retinotopic
mapping approach. A fast Fourier transformation was applied to
each voxel’s time series to identify activation that corresponded
to the frequencies of the wedge and ring stimuli. The phase
lags (i.e., the resulting polar angle and eccentricity maps)
were then overlaid onto the reconstructed, inflated cortical
surface (obtained via FreeSurfer, Martinos Center for Biomedical
Imaging, Boston, MA, USA). We then defined the borders of V1–
V3 as reversals in the polar angle map. The resulting masks served
as regions-of-interest (ROIs) in further analyses.

Classification
Image Statistics Classifier
For assessing how much information about the material property
in question was contained in the image statistics, we applied
a classifier to the image statistics. For each observation (i.e.,
image), we built a feature vector (i.e., z-scored image statistical
parameters). We then trained the classifier on our set of images
and tried to predict for each image if it belonged to the high-
or low-ratings group, i.e., if it scored high on the property
in question or low. Note that we did this for each property
separately, thus we always conducted a two-way classification
between images with high and low property ratings, for example
“smooth” vs. “rough.” Since we built the groups from the same
pool of 84 material images, several of the images appeared in
more than one group. All classification analyses were performed
using code that employed the linear discriminant analysis
implemented in the classify function of the statistics toolbox
for MATLAB (versions R2012a and R2013a3). The function
was used with the option ‘diaglinear’ which fits a multivariate
normal density to each group and estimates the covariance matrix
based on the diagonal. Out of interest, we also conducted the
classification analyses with a Support Vector Machine (SVM)
implemented in MATLAB (Statistics Toolbox). This yielded
very similar results to the ones obtained with the discriminant
analysis. Therefore, in this manuscript, we will focus only on the
results of the discriminant analysis.

Multivoxel Pattern Analyses (MVPA)
Multivoxel pattern analyses, in contrast to ‘traditional’ fMRI
analysis methods, allows for the analysis of how much
information about a certain feature is contained in a particular
brain area, even if this feature does not lead to an average
activation difference, for example because the neurons coding for
two different conditions are intermingled. In MVPA, a classifier is
applied to the voxel patterns just as we did with our sets of image
statistics.

3http://www.mathworks.com

For decoding property ratings from brain activity patterns,
we first set up a general linear model (GLM) in SPM for each
participant. In the GLM, we included a separate regressor for each
of the 84 stimuli. We then masked the resulting β-maps (one for
each image) with our ROIs. The voxel values within each ROI
were vectorized and used as feature vectors in the classification
procedure. Again, we built a two-way classifier for each of our
material properties to tell apart images with high and low ratings.

Leave-One-Out Cross-Validation and Permutation
Tests
Classification performance accuracy can be greatly overestimated
when a classifier is tested on the same dataset it is trained
on. Therefore, we employed a leave-one-out cross-validation.
In this procedure, the classifier is iteratively trained on all but
one observation and then tested on the remaining observation.
Specifically, each classifier was run 42 times, each image serving
once as test observation. This ensures that the training and test
sets remain independent throughout the classification procedure.

One-tailed t-tests were used to compare the mean accuracies
across subjects to chance performance (50%). To test the
significance of the image statistics classifier and the MVPA in a
stricter manner, we additionally used a bootstrapping procedure.
We ran each classifier repeatedly, each time permuting the
observations’ group labels in a random fashion. From these
permuted classifications we estimated our classifiers’ chance
distributions.

Searchlight Analysis
In order to exhaustively search the brain for material property
information, we applied an exploratory searchlight analysis in
addition to the ROI-analyses (Kriegeskorte et al., 2006). In
this analysis, a spherical searchlight is placed at all possible
locations in the brain. Then, an MVPA was conducted within
each searchlight sphere in order to explore where in the brain
information about material properties is contained. For this, we
masked the β-maps of each participant with the participant’s
gray-matter mask. On each voxel in turn, we centered a
searchlight in the form of a sphere with a 4 voxel radius (e.g.,
Bannert and Bartels, 2013; de Haas et al., 2013). This searchlight
acted as a mask. We built a feature vector out of the voxel
values within the mask and employed a leave-one-out classifier
to distinguish between high- and low-rating images. For each
searchlight, the classifier’s performance accuracy was written
back to the center voxel. Consequently, for each participant
and material property, we obtained a searchlight accuracy map.
From these, we subtracted the classifiers chance level (50%), and
combined individual participants’ accuracy maps in a second-
level analysis in SPM to detect group effects.

RESULTS

Image Ratings
The high- and low-rating groups were based on participants’
ratings. Figure 2 shows the distribution of ratings for each
property.
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FIGURE 2 | Rating distributions (average ratings of six observers) for all 84 images for each of the three material properties (A) and example images
(B). Vertical red lines indicate the 25th and 75th percentile of ratings. Images with ratings below the 25th percentile made up the low-rating images for that property,
and images above the 75th percentile made up the high-rating images. The cutoffs were at 2.3 and 4.2 for roughness, at 2.5 and 4.7 for texture, and at 2.5 and 5.7
for hardness.

In order to estimate the amount of information about the
material property groups contained in our participants’ brain
activity patterns while they observed our material stimuli, we
ran the classifier on the β-weights extracted from areas V1, V2,
and V3 in the subset of participants who had completed the
retinotopy (Figure 3). The pattern of results is rather similar to
that found with visually responsive voxels, with best classification
performances for roughness and texture.

Image Statistics
To see how much information about our image groups was
contained in the different sets of image statistics, we applied
a classifier to the statistics derived from the Portilla and
Simoncelli algorithm. Figure 4 shows the results of the image
statistics classifier. Results are reported for the following groups
of image statistics: (1) marginal statistics of the pixelwise
luminance distribution, (2) spatial frequency parameters, (3)

filter parameters. All Portilla and Simoncelli statistics performed
rather well in the classification of high and low roughness and
texturedness. Interestingly, even the ‘simple’ spatial frequency
and pixel statistics lead also to relatively good classifications;
they outperform the Portilla and Simoncelli filter and pixel
statistics.

Roughness could be classified well by the Portilla and
Simoncelli parameters, which of course capture important
low-level aspects (e.g., contrast) as well as crucial texture
appearance (e.g., granularity, lack of directionality). However,
spatial frequency information performs even better in predicting
high and low roughness.

For texturedness, all image statistics perform similarly as
for roughness, indicating that similar features can be used to
discriminate high and low texturedness and roughness. This
might stem from the fact that even though roughness and
texturedness are different concepts, at least the images that were
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FIGURE 3 | Classification accuracies of a discriminant analysis in
retinotopically defined visual areas V1-V3 (nine participants). Again, the
horizontal line indicates chance level (0.5). The shaded area indicates the
p-threshold resulting from the permutation test (p < 0.05, one-tailed test). The
threshold was averaged across all participants.

rated as low in both properties are very similar, namely smooth,
textureless surfaces.

Hardness was not classified above chance. This makes sense
because hardness per se does not have a proper visual correlate.
Instead, higher level factors, like category perception and learning
come into play in the visual perception of hardness.

Seeing that spatial frequency alone performed quite well for
visual material properties, we wanted to explore which oriented
spatial frequency subbands discriminate best between images
with high and low ratings. We therefore conducted t-tests to
compare high- and low-rating groups with regard to the energy
contained in each subband of the steerable pyramid. The results
of this analysis are shown in Figure 5. Clearly, for roughness and
texture, mid- to high-frequency bins contain more energy than
low-frequency bins.

For surfaces to appear rough, they need to have higher power
at medium and high spatial frequencies, while the appearance
of texturedness requires energy at the low to medium spatial
frequencies. Except from very low spatial frequencies, however,
images with high levels of both properties show higher power in
almost all frequencies except very low ones. This makes sense
considering that for both properties, images that received low
ratings were images of smooth, homogeneous surfaces, as shown
in the example images.

For hardness, the differences are obviously very small and
could therefore not be picked up by our classifier.

Consistency between MVPA and Image
Statistics Classifier
Having shown that we can classify material properties using
image statistics and brain activation patterns, the crucial question
is of course whether the features we extracted from image
analysis are in fact the ones used by the visual cortex. Therefore
we compared the consistency between the image statistics
classifier and the fMRI classifier to the amount of agreement
we would expect from chance based on the accuracies of the
two classifiers. Specifically, we checked if the labels that the
two classifiers gave each single image (high vs. low) coincided
more often than expected under and assumption of independence
between the two classifiers. This procedure is similar to and
inspired by the choice probability approach (Britten et al.,
1996) that was used to study the relationship between cell
activity and behavior. It was, for example, also applied by
Stone and Krauzlis (2003) to study if motion perception and
oculomotor signals are driven by shared neuronal substrates.
Both of these approaches look for common variance of two
measures in order to determine the degree to which those
two measures are connected. We used it because we were
interested in the association between image statistics and neural
response.

An agreement between image statistics and brain activation
emerges, of course, by the fact that both aim to classify the
perceptual judgment. To avoid this problem, we looked at the

FIGURE 4 | Accuracies of the image statistic classifier. The shaded area indicates the p-threshold resulting from the permutation test (p < 0.05, one-tailed test,
500 permutations).
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FIGURE 5 | Comparisons of steerable pyramid subbands between images with high and low ratings. The steerable pyramid is a bank of multi-scale,
multi-orientation band-pass filters, spanning roughly one octave in bandwidth at each scale. Spatial frequency increases from bottom to top. Spatial frequency
increases from bottom to top, ranging approximately from 0.07 to 4.6 cpd in logarithmic steps. Orientation represents the orientation of components in the Fourier
spectrum. Positive t-values mean that the high-rating images have more energy in that subband. Left and right of the graph are example images that were correctly
classified into the low- and high-rating groups, respectively. As examples we chose those images with the highest probabilities of belonging to their respective group
as estimated by the classifier. Since the classifier performed at chance for images with high and low hardness rating, no material images are depicted here.

two poles of each property separately. We took, for example, the
21 images judged to show rough surfaces, and calculated how
many were classified as rough using Portilla and Simoncelli filter
statistics or brain activation, in this case 14 and 16.2 (averaged
across 15 participants) images. Based on these numbers, we
then computed (for each participant) the consistency we would
expect if the two classifiers were independent (averaged across 15
participants: 59%) and compared that to the actual consistency
of the two classifiers (averaged across participants: 67%). We
did the same analysis for images low-rating images, in that case

smooth images. In essence, we compared the actual agreement
to the chance level calculated from the classification accuracies.
If the agreement is significantly higher than the chance level we
computed, this indicates that both could be driven by the same
underlying factors.

Summarized matches for each group of image statistics (bars
show mean results for high- and low-rating images) are shown
in Figure 6. The Portilla and Simoncelli filter statistics as well
as the spatial frequency statistics show more consistency with
the MVPA than we would expect from chance. This indicates

FIGURE 6 | Summary of the two classifiers’ (image statistics and MVPA) actual vs. expected agreement for the three different image statistic groups.
Error bars indicate standard deviations; asterisks indicate statistical significance (p < 0.05).
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that the image statistics are closely associated with the brain
activation differences that can be picked up by the MVPA. Both
show significant consistencies for roughness and texturedness,
but not for hardness. This is, however, expected, since the
MVPA performed at chance for hardness. For texturedness,
the classifier with pixel statistics shows more overlap with
the labels given by the MVPA than we would expect from
chance. This suggests that spatial frequency information and
filter statistics, but also grayscale pixel statistics partly drive the
differential response patterns for high and low rating images
in early visual cortex. We analyzed all pixel statistics separately
and found that minimum and maximum contribute most to
classification.

Searchlight Analysis
Since the pattern classification in visually responsive voxels and
V1, V2, and V3 showed rather similar results, we wanted to
look at where information about material properties is contained
in BOLD patterns across the brain in a more exploratory
manner. The searchlight results are summarized in Figure 7
and Table 1. The results from the searchlight analysis confirm
those of the mask analysis, showing that best discrimination
can be achieved for roughness, and texturedness, especially in
early visual areas. Beyond early ventral stream, we could not
observe significant above chance classification accuracy within
the visual system. High and low property ratings could obviously
be decoded best from early visual areas. For hardness, we did
not find significant classification accuracies in early visual areas.
Instead, we found above chance classification accuracy in the

TABLE 1 | Overview of the significant clusters (k > 5) identified with the
searchlight approach.

MNI-
Coordinates

Size Location Labeling Probability T-Value

Roughness

−21 −98 −3 2011 Left inferior
occipital gyrus

hOC3v (V3v) 60% 19.81

24 −88 −2 Right lingual
gyrus

Area 17 30% 17.43

−27 −61 −5 32 Left lingual gyrus hOC4v (V4) 20% 3.87

Texture

24 −94 −11 1912 Right lingual
gyrus

Area 18 60% 9.69

−15 −94 −8 Left inferior
occipital gyrus

Area 18 50% 9.40

−39 −82 −2 Left middle
occipital gyrus

hOC5 (V5) 10% 4.46

Hardness

9 −55 −2 129 Right lingual
gyrus

Area 18 50% 6.35

right lingual gyrus (see Table 1 for a complete list of labeling
results).

DISCUSSION

Our results indicate that information about material properties
is to a large degree contained in low-level image statistics, and

FIGURE 7 | Results of the whole-head searchlight classification procedure for the different properties [t(14) = 3.79, p < 0.001]. Transverse slices at
z = 7, 0, −7 and −14.
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that these image statistics could be also reflected in brain activity
patterns evoked by material images.

Image Statistics
The image statistics classification analysis showed that high and
low levels of roughness and texturedness could very well be
decoded with the features of the Portilla and Simoncelli texture
model. The model produces impressive synthesis results and
seems to contain sets of features that are perceptually important
(Balas, 2006). It aims at describing textures in terms of non-
spatial summary statistics, and has been shown to mimic filter
responses in V1 and the computations carried out with these filter
responses at a later stage in the early visual system, presumably
in V2 (Freeman and Simoncelli, 2011; Freeman et al., 2013).
Therefore it is not surprising that it can capture aspects of
material property perception, even though this has not previously
been shown.

More surprisingly, roughness and texturedness could
be classified even better with spatial frequency parameters.
Neumann and Gegenfurtner (2006) could show in their study
that spatial frequency statistics were able to predict the perceived
similarity of natural images rather well, and Balas (2008) could
show that participants’ grouping of natural textures could even
better be predicted with a simple frequency power spectrum
model than with the Portilla and Simoncelli model. This is
clearly in accordance with our results and especially impressive
when considering that most of the images in our high- and
low-rating groups were not extreme examples of their respective
property spectrum. Obviously, spatial frequency features lack
complexity in order to exhaustively explain the computations
done by the visual system when extracting material information.
However, the fact that these features perform rather well
indicates that the visual system might rely on them to quite
some degree in order to obtain information about material
properties.

In recent years, it has been pointed out that the visual
system probably relies on sets of invariant image statistics,
or cues, in order to estimate object and material properties,
instead of carrying out costly computations to work out the
physics of a visual scene (for a review, see Fleming, 2014).
For example, Ho et al. (2006, 2007) found that the lighting
angle of a surface affects perceived roughness. They explained
this with a model according to which the lighting angle of
the surface affects luminance and contrast, which then leads to
a change of the roughness percept, even though participants
viewed the stimuli stereoscopically and therefore, had true
3D-information available. Within their model, they identified
luminance and roughness cues that observers could use for
roughness estimation. They concluded that the visual system
could in principle rely on such a simple statistics as contrast to
estimate a material’s roughness. Similarly, spatial frequency has
been suggested as another candidate cue for material property
perception. Giesel and Zaidi (2013) found that the perception
of 3D material properties undulation, thickness, and roughness
could systematically be altered by increasing or decreasing
the energy of specific spatial frequency bands of a material
photograph. The exact image-based cues employed by the visual

system are not known, but it is clear from the earlier results and
from the results presented in this study that the brain can rely
on statistics such as the moments of the luminance and color
distribution or spatial frequency information. Doing so seems
like an efficient heuristic.

Hardness could not be decoded reliably by means of
our image statistics. In a previous study, we could show
that observers can make accurate hardness judgments based
on visual information (Baumgartner et al., 2013). However,
there are no simple, straightforward statistics that could
explain this. Judging hardness without touch might rely on a
combination of perception, memory and cognition. Therefore,
the described image statistics are of little help in the decoding of
hardness.

Representation of Material Properties in
the Brain
In the present study, we chose to present each stimulus image
only once. We did this because of our relatively large pool of
images, and because we wanted to ensure the BOLD response
to a previous trial to diminish substantially before the beginning
of a new trial. Kay et al. (2008) have shown that image
identification is possible from single trials. We therefore consider
our approach valid. We even consider it strength of the present
study that we were able to decode image information from single
trials.

The results from the retinotopically defined masks as well as
those from the searchlight approach suggest that there is a lot
of information about material properties in early visual areas.
As the results from the image statistics classification analysis
show, very simple image statistics, in particular luminance and
spatial frequency information, as well as the filter parameters
defined by Portilla and Simoncelli, can be quite informative
about certain types of material properties. The involvement of
these could be the driving force for the classifier results in
early visual areas. This notion is confirmed by the comparison
of the labels assigned by the images statistics classifier and
the MVPA. The effects of this analysis seem to be moderate,
which is, however, expected, taking into account the noisiness
of fMRI data and the fact that each material image was seen
only once by each participant. All together, our results argue
for an involvement of low-level image statistics in material
perception. This agrees well Hiramatsu et al. (2011), who
found highest accuracies in V1 and V2 for classification of
material categories. The few studies that have examined the
neural basis of surface/material perception have found that
tasks associated with visual material perception lead to an
increase in activation in medial regions of the ventral extrastriate
cortex, especially the collateral sulcus and parahippocampal
gyrus (Newman et al., 2005; Cant and Goodale, 2007, 2011;
Cant et al., 2009; Cavina-Pratesi et al., 2010). In contrast,
shape perception is known to be associated with lateral
parts of the ventral stream (Malach et al., 1995). While
these studies have made a substantial contribution to our
understanding of cortical processes during the perception of
different visual features, it is also quite evident that the task
of understanding material property perception is complex and
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needs to be looked at in detail. Nishio et al. (2012), in a
single-cell recording study, could show that perceived level
of glossiness, independent of shape, material, or illuminant,
was coded by neurons in the inferior temporal lobe—in
other words, in a region relatively high up in the visual
processing hierarchy. However, in a recent fMRI study, which
also investigated gloss perception in monkeys, Okazawa et al.
(2012) found higher BOLD signals in the whole ventral
stream (from V1 to the inferior temporal lobe) in response
to glossy objects (when compared with matte or scrambled
objects).

This discrepancy in the results of the two studies demonstrates
once again that it is important to not only look at the perceptual
consequences of materials but also take image-based information
and its propagation through the visual system into account.
However, no brain imaging study has so far looked at the
differential processing of individual material properties and
especially the image-based features that the brain relies on. In
the present study we could show a close correspondence between
low-level image statistics, brain activity in early visual areas, and
perception. Our results indicate that low-level image statistics
are reflected in brain activity patterns elicited by images of
materials. This confirms and expands Hiramatsu et al.’s (2011)
results who cleverly demonstrated that the representation of
rendered material surfaces changes from a more image-statistics
based one in early visual areas to one that emphasizes perceptual
similarity between materials in higher regions of the ventral
pathway.

In addition, the high classification accuracies that could be
achieved with some of our low-level image statistics suggest that
they might contribute directly to the perception of materials. The
visual system could in principle rely on these image statistics
to get a first idea of the visual input, similar to the “gist” that
has been suggested to guide scene processing (Oliva and Schyns,
2000; Torralba and Oliva, 2003). For example, image statistics
have been shown to affect the perception of gloss (Motoyoshi
et al., 2007; Wiebel et al., 2015), while at the same time they still
leave open contributions of higher level aspects of the stimuli
(Kim and Anderson, 2010; Kim et al., 2011; Marlow et al.,
2011).

The results for our two ‘visual’ properties, roughness and
texturedness, are quite similar, both in terms of the image
statistics classifier as well as the MVPA classifier. When we
trained the MVPA classifier on roughness, it could also decode
texturedness above chance, and vice versa. Obviously, at this low
level, the two properties cannot be discriminated. Keeping the
results of the image statistics classifier in mind, which performed
similarly for the two properties, this is not surprising. Obviously,
there have to be more elaborate computations that can later
judge materials in a more fine-grained manner, carried out
in higher visual areas. Such computations could, for example,
take 3-dimensional information into account to determine
a surface’s roughness, or access haptic representations of a
surface (Goda et al., 2016). So, even though low-level statistics,
namely pixel statistics, filter parameters and spatial frequency
information seem to play a role in material perception, mid-
and high-level areas of the visual system must be involved in

the perception of material properties. So why did we observe
the above-chance classification accuracies in early visual areas?
The increasingly complex processing and larger receptive field
sizes and therefore blurred retinotopy in areas higher up the
ventral stream might render the patterns there less reliable for
decoding material properties. Even though Hiramatsu et al.
(2011) found the representation of materials to correspond
better to the perceived image similarity, they also found highest
classification accuracies in earliest areas. In addition, in our
case it is rather hard to say what participants actually did
in the scanner when watching the materials, therefore the
processing higher up in the visual stream might have been
subject to some variation between participants and trials.
But note that for hardness, the searchlight analysis yielded
above chance accuracy in the anterior lingual gyrus. It has
been suggested that ventromedial regions of the visual system
are crucial to texture and material perception (Cant and
Goodale, 2007, 2011; Jacobs et al., 2014), so we consider it
likely that this result reflects more complex material-related
computations.

Limitations and Outlook
We are aware that with the present correlative data we
cannot ultimately conclude that our image statistics cause the
perception of material properties or that the perception of
certain material properties is what causes the above-chance
classification accuracy. Our data do, however, provide a strong
link between simple image statistics and brain activity in
response to material images. Low-level aspects of the images
contain information that co-varies with judgments of material
properties.

There are also a few further limitations of our study that
are caused by its exploratory nature. Both the stimulus set
and the set of properties are, of course, limited. Our choices
were mainly motivated by the idea to link these experiments
to our previous research using the same stimuli. We originally
chose the property ‘texturedness’ because we aimed for a purely
visual property. However, there is a distinction between visual
texture and surface texture (Bergen and Landy, 1991) that
our participants did not seem to make in their ratings. The
overall high correlation between the results for texturedness and
roughness suggests this, too. This is probably also caused by our
limited stimulus set that did not contain many textured, i.e.,
patterned surfaces.

Our stimulus set is also limited with respect to the flat
mounting of our materials. We chose flat stimuli on purpose
because we wanted to eliminate variance due to shape and restrict
ourselves to surface cues. This could be handled differently in
future studies.

In addition, the rating task we chose for our participants in
the scanner is slightly problematic with respect to the variations
it probably caused in our participants. They were instructed to
pay attention to the materials and material properties. We did not
apply a fixation task because we also wanted to explore possible
effects of high-level material processing.

In the future, this work should be pursued with parametrically
modulated stimuli in order to overcome the restrictions of our
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correlative approach and seek evidence for a causal relationship
between low level image statistics and material perception.

CONCLUSION

For us to perceive materials with all their properties there
must be an interaction of various complex computations in the
brain. As we could show here, rather simple image statistics
and low-level image features contain much information about
various material properties and seem to contribute to their neural
processing.
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