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The Iowa Gambling Task (IGT) has been standardized as a clinical assessment tool

(Bechara, 2007). Nonetheless, numerous research groups have attempted to modify

IGT models to optimize parameters for predicting the choice behavior of normal controls

and patients. A decade ago, most researchers considered the expected utility (EU) model

(Busemeyer and Stout, 2002) to be the optimal model for predicting choice behavior

under uncertainty. However, in recent years, studies have demonstrated that models with

the prospect utility (PU) function are more effective than the EU models in the IGT (Ahn

et al., 2008). Nevertheless, after some preliminary tests based on our behavioral dataset

and modeling, it was determined that the Ahn et al. (2008) PUmodel is not optimal due to

some incompatible results. This study aims to modify the Ahn et al. (2008) PU model to a

simplified model and used the IGT performance of 145 subjects as the benchmark data

for comparison. In our simplified PU model, the best goodness-of-fit was found mostly

as the value of α approached zero. More specifically, we retested the key parameters

α, λ, and A in the PU model. Notably, the influence of the parameters α, λ, and A has

a hierarchical power structure in terms of manipulating the goodness-of-fit in the PU

model. Additionally, we found that the parameters λ and A may be ineffective when the

parameter α is close to zero in the PUmodel. The present simplified model demonstrated

that decision makers mostly adopted the strategy of gain-stay loss-shift rather than

foreseeing the long-term outcome. However, there are other behavioral variables that

are not well revealed under these dynamic-uncertainty situations. Therefore, the optimal

behavioral models may not have been found yet. In short, the best model for predicting

choice behavior under dynamic-uncertainty situations should be further evaluated.

Keywords: Iowa Gambling Task, expected utility model, prospect utility model, dynamic-uncertainty situations,

gain-loss frequency, loss aversion, delta learning rule, prominent deck B phenomenon

INTRODUCTION

The Iowa Gambling Task (IGT) is an experience-based decision-making task used extensively
as a diagnostic tool for neuropsychiatric disorders (Bechara et al., 1994, 1997). It can identify
various psychological disorders, such as schizophrenia and substance addiction (Bechara, 2007).
Following the logic of IGT development, researchers have attempted to discover the predictors and
explored the mechanisms of emotional systems and decision-making functioning under situations
of uncertainty. In the IGT, decks A and B have a negative final outcome (that is, a long-term
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outcome of -$250) over an average of 10 trials. Conversely, decks
C and D have a positive final outcome (+$250) over an average
of 10 trials. According to these standard final outcomes, decks
A and B are termed “bad decks” and decks C and D are termed
“good decks.” At the same time, decks B andD contain infrequent
losses (10 gains and 1 loss over 10 trials) while decks A and
C contain relatively frequent losses (10 gains and 5 losses over
10 trials). IGT-related neuropsychological studies have mostly
demonstrated that patients (e.g., individuals with ventromedial
prefrontal lesions) prefer to choose the bad decks to a greater
degree than do healthy controls. However, in recent years, some
IGT studies have demonstrated that healthy controls also prefer
to choose the bad deck B due to its frequent gains (Wilder et al.,
1998; Steingroever et al., 2013), a finding which has been called
the “prominent deck B phenomenon” (Lin et al., 2007; Chiu et al.,
2012).

The expected utility (EU) theory (von Neumann and
Morgenstern, 1947) has been used most frequently over the
years to predict choice behavior. The original assumption and
design of the IGT was based mainly on extensions of the EU
theory (Bechara et al., 1994, 1997; Bechara and Damasio, 2005).
However, studies on behavioral decision-making over the past
five decades (Edwards, 1954; Tversky and Kahneman, 1986;
Kahneman, 2003) have indicated that a decision maker’s choice
is not guided by the EU, but mainly by information regarding
gain and loss under risk, as suggested by Prospect Theory (PT)
and the Framing Effect. Prospect Theory demonstrated that
most decision makers prefer to take risks in situations with
negative descriptions (e.g., loss and death) and become risk-
averse in situations with positive descriptions (e.g., gain and life)
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1981).
Experiments in PT showed that normal decision makers ignored
the EU and that their attitudes toward risks varied according
to the depiction of the situation. This finding goes completely
against the traditional viewpoints of economics and rationales in
terms of invariant axioms (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1981, 1986). However, these studies were based
mostly on description-based rather than dynamic-consecutive
(experience-based) games such as the IGT (Barron and Erev,
2003; Hertwig et al., 2004; Hau et al., 2008; Fantino and Navarro,
2012).

Behavioral modeling is efficient for interpreting behavioral
results and predicting differences in choice patterns between
normal decision makers and neuropsychiatric patients. Many
IGT modeling studies have indicated that modeling based
on the EU theory is sufficient for distinguishing between
neuropsychiatric patients (or criminals) and healthy subjects
(Busemeyer and Stout, 2002; Garavan and Stout, 2005; Stout et al.,
2005; Yechiam et al., 2005; Luo et al., 2011). However, some
alternative theories, such as the viewpoint based on gain-loss
frequency, have also been used to interpret the choice behavior
in such dynamic-uncertain games (Wilder et al., 1998; Lin et al.,
2007; Chiu et al., 2008; Upton et al., 2012). Furthermore, based

Abbreviations: DEL, delta learning rule; DRI, decay reinforcement learning rule;

EU, expected utility; IGT, Iowa Gambling Task; MSD, mean square deviation; PU,

prospect utility; PT, prospect theory.

on the profound finding of Ahn et al. (2008), more and more
behavioral-modeling studies have demonstrated that the PT-
related models (which consider the effects of both gains and
losses, or PU function, in their modeling) are more predictive
than EU models (Ahn et al., 2008; Fridberg et al., 2010;
Horstmann et al., 2012; Worthy et al., 2013a,b; Worthy and
Maddox, 2014; Dai et al., 2015). In short, these modeling studies
have consistently indicated that the prospect of an immediate
gain-loss is an important guiding factor in the choice of behavior
in the IGT (Lin et al., 2004, 2007; Chiu et al., 2005, 2008):

“Subjects may apply an implicit strategy to cope with the uncertain

game, therefore they favored high-frequency gains over high-

frequency losses in the experiment. This “gain-stay, lose-randomize”

strategy (Figure 3) [42] has been observed in human and animal

appetitive and avoidance experiments in which human or animal

encounter reward or punishment [42–48].” (Chiu et al., 2008, p. 5).

To explain their results, most of these IGT-PU models (e.g.,
Yechiam and Busemeyer, 2005, 2008; Ahn et al., 2008; Fridberg
et al., 2010; Horstmann et al., 2012; Steingroever et al., 2014;
Worthy and Maddox, 2014; Dai et al., 2015) were modified from
the EUmodels or were hybridmodels combining the PU function
with general behavioral learning models such as the Prospect
Valence Learning (PVL) model (Ahn et al., 2014), and learning
rules such as the delta learning rule, DEL (see Ahn et al., 2008,
p. 1384, Equation 3; Rescorla and Wagner, 1972) and the decay
reinforcement learning rule, DRI (see Ahn et al., 2008, p. 1385,
Equation 4; Erev and Roth, 1998).

For instance, to determine an optimized decision model
under dynamic-uncertainty, Ahn et al. (2008) compared eight
decision-learning models with regard to their generalizability.
Each decision maker took part in two dynamic-uncertain games,
namely the IGT and the Soochow Gambling Task (SGT) (Chiu
et al., 2008). Data from the first game was used to estimate
the parameters of each model and to make a prediction for
the second game. Furthermore, Ahn et al. (2008) adopted three
methods to evaluate the goodness-of-fit of each model for each
participant: a post-hoc fit criterion, a generalization criterion
for short-term estimations, and a generalization criterion for
long-term estimations. Consequently, they suggested that the PU
function provides the optimized predictions for new conditions,
but different learning models are needed to make short- vs.
long-term learning predictions.

However, these refined PU models were relatively complex,
compared to the original PU function (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992). Recent studies in behavioral
modeling have suggested that a simplified model based on the
gain-stay loss-shift (or win-stay lose-shift) principle may provide
a sufficient explanation of choice behavior under uncertainty (Lin
et al., 2007; Chiu et al., 2008, 2012; Worthy et al., 2013a,b).
Moreover, some research has suggested that these simplified
models could be consistent with a large number of behavioral
studies:

“These pioneer behavior studies with the concurrent schedules

of reinforcement have displayed the frequency effect for choice
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pattern [45–49]. Additionally, these concepts have also been applied

to examine the behavioral model of neuropsychological deficit

[50,51].” (Chiu et al., 2008, p. 5).

The purpose of this study is to simplify the structure of the PU
model and to provide the behavioral modeling to test the effects
of some parameters. Additionally, this study identifies which type
of parameter modulation has an optimal goodness-of-fit for the
behavioral data. Based on the original assumption of the PU
function and the findings of recent gain-loss frequency studies,
we hypothesized that if the choice behavior of normal decision
makers is based mostly on the gain-stay loss-shift (win-stay
lose-switch) strategy, the optimized behavioral model should be
relatively simpler than that which Ahn et al. (2008) had proposed.
Namely, the weighting power of immediate gain-loss should be
larger than the learning effect of gaining long-term outcome.
(Note: For the original form of the equations and the method of
simulation adopted in the present study, please refer to Ahn et al.
(2008).)

MATERIALS AND METHODS

Participants
We recruited 145 participants who were all college students
(102 males and 43 females, mean age: 18.6, SD: 0.97). Most
of the subjects were first-year students. All statistical data
was analyzed at a group level and presented anonymously. In
this study, the participants were welcome and totally free to
participate in the psychological experiment in the university, and
the procedure was consistent with publicly available literature.
After completing the whole game, the authors provided a 2-h
lecture on human decision-making behaviors that also explained
the testing purpose and the psychological mechanism of the
IGT for all the subjects. The behavioral data was collected in
October 2010, at which time the Institutional Review Board
approval system was still in the process of being implemented
at our university. The study was conducted in accordance with
the unwritten rules of the Taiwan Psychological Association.
Further, the IGT was conducted to simulate real-life decisions, so
it looked like a common computerized card game that someone
might play on the Internet. Many research websites provide
online versions of the IGT to recruit general participants via
the Internet (such as http://www.millisecond.com/download/
samples/v3/IowaGamblingTask/IowaGamblingTask.web and
http://pebl.sourceforge.net/battery.html). Simply put, anyone
can play the online version of IGT totally free.

Materials
The gain-loss structure of the IGT in this study followed
the original table outlined by Bechara et al. (1994), and the
computerized version of the IGT was programmed with Matlab
2010a (MathWorks, Natick, MA, USA). Figure 1 shows the
appearance of this computerized version.

Procedures for Collecting Behavioral Data
The original instruction of the IGT was adopted in this study. At
the beginning of the game, the instructor provided instructions

to ensure that the participants knew how to play this game. Each
participant had a 200-trial selection. Participants used a mouse
to pick a desired deck and the screen displays “win money” or
“lose money” immediately, and the outcomes are summarized
in the top bars (Figure 1). The participants did not know when
the game would terminate. They were asked to do their best to
earn money or avoid losing money in the IGT, but the instructor
provided no hints for success in this task. Each participant in the
present study played a game consisting of 200 trials, but only the
dataset for the first 100 trials was used as the comparison data.
This use of the data from the first 100 trials is comparable to the
standard approach used for administering the IGT in past IGT-
related studies. Meanwhile, the dataset for the last 100 trials for
each participant was not analyzed in this study. The dataset for
the last 100 trials could be valuable, however, in future studies
aimed at exploring the extended learning effect.

Procedures for Producing Simulation Data
A simulation method (see Ahn et al., 2008, p. 1401, Appendix B)
was used to estimate the parameters (Yechiam and Busemeyer,
2005; Ahn et al., 2008), with a few initial steps modified. First,
the behavioral datasets for all participants were averaged and
inserted into the model. Here we averaged the behavioral data
across subjects to reduce the variance in the individual results;
specifically, we used the mean probability of each deck chosen
as the initial index during simulation. Second, according to the
results of the eight models in Ahn et al. (2008), the models with
the PU function (see Ahn et al., 2008, p. 1384, Equation 2) were
proven to be better than those with the EU model. In summary,
Ahn et al. (2008) applied the PU function to decision-learning
models (DEL and DRI) and showed that the PUmodels are more
powerful than EU models for achieving optimized simulation
results. They also showed that the mean square deviation (MSD)
of the DEL model was relatively small, in comparison with the
DRI model (see Ahn et al., 2008, p. 1392, Table 6). The original
formula suggested by Ahn et al. (2008) is as follows [see p. 1384,
Equations (2) and (3)].

PU model (PU-DEL learning model):

Ej(t) = Ej(t− 1)+ A · δj(t) · [|x(t)|
α − Ej(t− 1)], if x(t) ≥ 0;

Ej(t) = Ej(t− 1)+ A · δj(t) · [−λ|x(t)|α− Ej(t−1)], if x(t)<0.

In the above formula, Ej(t) refers to the expectancy for deck j on
trial t, A is the updating parameter, and δj(t) a dummy variable
which is 1 if deck j is chosen and 0 otherwise. In addition, x(t)
symbolizes the net gain on trial t, λ represents a loss-aversion
parameter, and α is defined as a shape parameter of the utility
function (Ahn et al., 2008).

In this study therefore, we used only the best learning models
in Ahn et al. (2008). In the first step of the preliminary test,
we used two general approaches: the general simulation method
and the one-step-ahead method (see Ahn et al., 2008, p. 1400,
Appendix A). Applying the general simulation method, the
chance level probability of each deck being chosen in the first
trial is used (25% in the case of four decks). Therefore, the
first trial is randomly produced. Given the result of the first
trial, the selection probability of the following trials can be

Frontiers in Psychology | www.frontiersin.org 3 August 2016 | Volume 7 | Article 1201

http://www.millisecond.com/download/samples/v3/IowaGamblingTask/IowaGamblingTask.web
http://www.millisecond.com/download/samples/v3/IowaGamblingTask/IowaGamblingTask.web
http://pebl.sourceforge.net/battery.html
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lin et al. A Simplified Model of Choice Behavior under Uncertainty

FIGURE 1 | Appearance of the computerized version of the Iowa Gambling Task (IGT) used in this study. The computerized version of the IGT used in this

study had most of the characteristics of the original IGT design. However, it used the Chinese language for participants in Taiwan increases the monetary value to fit

the New Taiwan Dollar currency. The blue bar represents money borrowed from the bank and the yellow bar represents extra money (bonus) in this task.

determined using the default initial values (see Ahn et al., 2008,
p. 1385, Equation 5). For instance, if j represents one of the
four decks, and j = 1 corresponds to deck A, then Pr1(2)
marks the probability of deck A in the second trial, whilst E1(1)
marks the expectancy of deck A in the first trial. Hence, the
probability of each deck can be determined. Conversely, the one-
step-ahead approach was totally dependent on the empirical data.
Specifically, feeding real data from each trial into the model
generated the probability of each following trial. These two
approaches integrated the DEL model (Rescorla and Wagner,
1972; Yechiam and Busemeyer, 2005, 2008; Ahn et al., 2008) and
the DRI model (Erev and Roth, 1998; Yechiam and Busemeyer,
2005, 2008; Ahn et al., 2008, 2014; Luo et al., 2011) for the
final simulation, and the optimal parameters (α, λ, and A) were
evaluated by MSD (see Ahn et al., 2008, p. 1391, Equation 11).
Consequently, we found that the best result was obtained by using
the model of general simulation combined with the DEL model.
This result is mostly consistent with the observation by Ahn et al.
(2008, see p. 1392, Table 6). The result of the preliminary test is
listed in Table 1.

Why is Parameter C Removed First?
The c parameter (see Ahn et al., 2008, p. 1386, Equation 6)
is defined as the consistency between choices and expectancies
and is known as the response-sensitivity parameter (Yechiam
et al., 2005). However, this parameter c was designed for

TABLE 1 | Comparison of the optimized parameter values of DEL and DRI

models.

Evaluation method Learning model MSD A λ α

General simulation method DEL 0.015131 0.1 1.3 0

General simulation method DRI 0.017857 1 1.2 0.9

EU-based models and to modulate the differences between
the behavioral data and EU model predictions. Therefore,
we consider it can be ruled out in our model because the
present study was mostly based on the PU models of Ahn
et al. (2008) in which the response-sensitivity parameter is
removed, whilst virtual decision-making responds directly to
parameters α, λ, and A. Therefore, the parameters were defined
as the three modulators α, λ, and A. Otherwise, all procedures
followed appendix B in the study by Ahn et al. (2008; see
Figure 2).

To explain further the removal of c, it is worth noting that the
response-sensitivity parameter was introduced into behavioral
models to resolve a problem of inconsistency. An explanation for
this is as follows. Yechiam et al. (2005) suggested that:

“the decision maker’s choice on each trial is based not only on the

expectancies produced by the decks, but also on the consistency with

which the decision maker applies those expectancies when making

choices.” (Yechiam et al., 2005, p. 975).

Frontiers in Psychology | www.frontiersin.org 4 August 2016 | Volume 7 | Article 1201

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lin et al. A Simplified Model of Choice Behavior under Uncertainty

FIGURE 2 | The modeling procedure of the present study. The flowchart shows the common procedure for performing the modeling study. The general game

rule with random choice was first launched to simulate the initial stage when performing the IGT. However, the present study reexamines the power of influence of

some critical parameters (α, λ, and A) in the PU model. There were 1936 rounds (11× 16 × 11 = 1936) (α: 11 values [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

(λ: 16 values [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5]) (A: 11 values [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]).

The final outcome defined the good and bad decks in the
IGT; therefore, most behavioral models have been based largely
on this basic assumption. Notably, while performing the IGT,
participants typically do not realize the internal rules of the
game during the initial stage. However, some participants will
continue to select a single deck even as they are gaining insight
regarding the good decks (Maia and McClelland, 2004) or will
misinterpret the internal rule of the IGT, which may stand
against the basic final outcome assumption (Lin et al., 2007; Chiu
et al., 2008). Therefore, some research groups added the new
parameter c in these models in order to solve this problem of
inconsistency.

However, we considered that the incongruence between the
basic final outcome assumption and modeling result can be
solved by modulating the original parameters α, λ, and A. In fact,
the value of parameters α and λ can directly modulate the effect
of the monetary value in each gain-loss. Moreover, the value of
parameter A can modulate the choice probability of consecutive
trials through the influence of past experience. The modulations
of these original parameters (α, λ, and A) can be used to observe

the subjects’ sensitivity to monetary value, the degree of skew
for loss aversion, and the influence of past experience. In other
words, if the simplified model does not increase the error rate
(e.g., MSD) and decreases the calculation time, then this model
may be considered much better than the original one (Busemeyer
and Stout, 2002).

Why Adopt the MSD, Not G2 Scores?
Based on the statement by Ahn et al. (2008, p. 1387, Equation 9)
for using the MSD and G2 scores as the criteria for evaluating
these behavioral models, we decided to adopt the MSD but not
the G2 scores as the evaluation criterion in this study. On the use
of G2 scores, Ahn et al. (2008) state:

“It is incorrect to simply use the product of the probabilities for

choices across trials because independence does not hold.” (Ahn

et al., 2008, p. 1399).

And on MSD scores, Ahn et al. (2008) state:

Frontiers in Psychology | www.frontiersin.org 5 August 2016 | Volume 7 | Article 1201

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lin et al. A Simplified Model of Choice Behavior under Uncertainty

“MSD scores are more intuitive for examining how good a model is

in explaining overall choice patterns.” (Ahn et al., 2008, p. 1399).

Ahn et al. (2008) also pointed out the characteristics of the two
evaluation indexes. Bearing all of this in mind therefore, we
adopted the MSD scores as the index of parameter estimation to
discover the optimal parameter sets.

RESULTS

In this study, we found a set of parameters and produced
a simplified PU model to predict the choice behavior under
uncertainty. The behavioral datasets were collected to serve as
the benchmark data for comparisons with the modeling data.
In addition, the key parameters α, λ, and A were systematically
modulated and produced by the simulation data based on the
PU models of Ahn et al. (2008). Specifically, the parameters
were tested to screen out the best-fitted models as well as to
determine the optimized range of parameters via MSD indexing.
Based on the PU models, we found that there are some best-
fitted models formed when some parameters are fixed. Notably,
for the best-fitted models that we found, all three parameters
were consistently nearly equal, with α ≈ 0; λ ≈ 1.3; and A
≈ 0.1. Obviously, the PU model in the present study was
simpler than previous ones. However, the present PU model
can produce optimized predictions for choice behavior under
uncertainty, which is mostly consistent with the viewpoint of
gain-loss frequency.

Behavioral Data
The average card selection indicated that subjects preferred the
good decks (C + D) nearly equally to bad decks (A + B; see
Figure 3), which is inconsistent with the original finding from the
IGT (Bechara et al., 1994). The two-factor repeated measurement
ANOVA (final outcome vs. gain-loss frequency) was launched
here to process the statistical testing. The testing result indicated
no significant difference between the bad (A + B) and good
(C + D) decks [F(1, 144) = 0.23, p = 0.88], but the results
showed a difference between the high-frequency (B + D) and
low-frequency (A + C) gain decks [F(1, 144) = 65.89, p < 0.001].
Furthermore, the interaction between the two factors (final
outcome vs. gain-loss frequency) was also significant [F(1, 144) =
66.28, p < 0.001]. However, detailed analysis of each of the two
decks showed that the subject preferred to choose the bad deck B
rather than the other three decks [tA−B(144) =−12.59, p < 0.001;
tB−C(144) = 4.80, p < 0.001; tB−D(144) = 4.93, p < 0.001]
and that deck A was avoided compared to the other three decks
[tA−C(144) = −6.28, p < 0.001; tA−D(144) = −7.50, p < 0.001].
Nevertheless, there are no significant differences between decks
C and D [tC−D(144) = −0.48, p = 0.63]. The present behavioral
evidence confirmed the “prominent deck B phenomenon,” in
which most normal decision makers were influenced by the
frequent gain of the deck and the preference for the bad deck
was difficult to inhibit by a few unexpected losses in the standard
administration of the IGT (Wilder et al., 1998; MacPherson et al.,
2002; Toplak et al., 2005; Fernie and Tunney, 2006; Chiu and
Lin, 2007; Fernie, 2007; Lin et al., 2007; Martino et al., 2007;

Takano et al., 2010; Upton et al., 2012; Steingroever et al., 2013;
Worthy et al., 2013a).

The one-way ANOVA was applied to test the learning effect
in each block of 20 trials (Figure 4). In detail, subjects’ choice
pattern for the bad decks A and B are descending over time,
whereas the choice pattern for the good decks C and D are
ascending. The learning-tendency analysis based on long-term
outcome used the subtracted number between good decks and
bad decks [(C+D)—(A+ B)] in each block. The result indicated
that the learning effect based on long-term outcome can be
observed in this analysis [F(4, 720) = 9.80, p < 0.001].

The learning-tendency analysis based on gain-loss frequency
subtracted the number between frequent-gain (B + D) and
frequent-loss (A + C) decks in each block. The result indicated

FIGURE 3 | Mean number of card selections in an average of 100 trials

in the behavioral data. The behavioral result showed that most subjects

avoided the bad deck A, but preferred the bad deck B. The chosen number of

bad deck B was nearly double that of bad deck A. However, participants

preferred the good decks C and D only about the chance level (100/4 = 25).

FIGURE 4 | Mean number of card selections in each block of 20 trials in

the behavioral data. Subjects preferred the bad deck B over the other three

decks throughout most blocks. However, most subjects gradually avoided

selecting the bad deck A from the beginning to the game end. Additionally, a

slight ascending tendency for the good decks was observed from the first

block to the end block, although statistical testing for the blocks in each deck

was not significant.
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that the learning effect based on gain-loss frequency cannot be
observed in this analysis [F(4, 720) = 0.60, p = 0.66].

However, detailed analysis of each deck in the blocks indicated
that only three decks showed a significant learning tendency
[FA(4, 720) = 5.96, p < 0.001; FB(4, 720) = 3.96, p < 0.01;
FC(4, 720) = 1.05, p = 0.38; FD(4, 720) = 6.85, p < 0.001].
Furthermore, the post hoc analysis of each two-block in each deck
demonstrated that the significant difference between each paired
block existed mostly in deck A; in decks B and D there were only
one and two significant differences between each paired block,
respectively. The statistics are listed in detail in Table 2.

The choice probability of each deck in each trial showed that
decks B, C, and D were preferred by the subjects throughout the
game (Figure 5). The results confirmed the learning tendency for
each deck (Figure 4).

TABLE 2 | Summarized statistics after post hoc analysis of each

two-block set for each deck.

Deck A B C D

Paired t-test for each

two-block set

Sig. Sig. Sig. Sig.

B1-B2 1.000 0.072 1.000 0.218

B1-B3 0.264 0.129 1.000 0.007

B1-B4 0.002** 0.002** 0.745 0.000***

B1-B5 0.009** 0.059 0.976 0.003**

B2-B3 0.448 1.000 1.000 1.000

B2-B4 0.005** 1.000 1.000 0.086

B2-B5 0.020* 1.000 1.000 1.000

B3-B4 1.000 1.000 1.000 1.000

B3-B5 1.000 1.000 1.000 1.000

B4-B5 1.000 1.000 0.976 1.000

The values * <0.05; ** <0.01; *** <0.001 (Bonferroni Correction).

FIGURE 5 | Chosen probability maps for each deck across the 100

trials. The red marks the high probability of card chosen and the blue marks

the low probability of cards chosen. Of the 145 participants in the 100 trials of

the IGT, most preferred to stay at decks B–D rather than deck A.

Simulation Data
In the simulation data, the mean number of card selections
showed that the number of cards chosen from the good decks (C
+ D) was nearly equal to the number chosen from the bad decks
(A + B; Figures 6, 7). The two-factor repeated measurement
ANOVA (final outcome vs. gain-loss frequency) was used to
further demonstrate the statistical result under the simulation
level. The results showed significant differences between the bad
(A + B) and good (C + D) decks [F(1, 144) = 135.85, p <

0.001]. On the other hand, a significant effect was also observed
between the high-frequency (B + D) and low-frequency (A +

C) gain decks [F(1, 144) = 312.47, p < 0.001]. Additionally,
the interaction of the final outcome and gain-loss frequency
was significant [F(1, 144) = 34.32, p < 0.001]. However, a
paired-t analysis showed that differences between each two decks
were all significant [tA−B(144) = −19.37, p < 0.001; tA−C(144)

= −15.86, p < 0.001; tA−D(144) = −25.38, p < 0.001;
tB−C(144)=4.63, p < 0.001; tB−D(144) = −3.44, p < 0.001;
tC−D(144) = −8.26, p < 0.001]. The present data confirmed that
the “prominent deck B phenomenon” is reproduced under the
simulation environment. According to learning curve analysis
(Figure 7), the choice patterns for the bad deck B and good deck
D seem to rise over time, whereas the choice pattern of the good
deck C stays consistent while that of bad deck A decreases.

Comparison between Behavioral and
Simulation Data
A comparison of the behavioral and simulation data (the group
data with the smallest MSD) shows that no significant difference
was observed [F(1, 288) = 1.06, p = 0.30]. In short, the simulation
data was similar to the actual chosen pattern of these participants.

Simulation Result Evaluation
There were 1936 optimal MSD parameter sets after the
parametric estimation (α: 11 values (per 0.1): range [0–1]; λ:
16 values (per 0.1): range [1–2.5]; A: 11 values (per 0.1): range

FIGURE 6 | Mean number of card selections in the simulation data.

Using optimized parameters simulated into the PU DEL model, the chosen

number of decks B–D were larger than that of deck A. This simulation result is

similar to the results of the participants in this study. The good deck D is widely

selected, and the bad deck B was chosen slightly more frequently than the

good deck C in the present simulation data.
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FIGURE 7 | Mean number of card selections in each block of 20 trials in

the simulation data. Putting parameters λ = 1.3, α = 0, and A = 0.1 into the

PU model, the learning curve for deck A is descending, and decks B and D

show a slightly ascending pattern from the beginning to the end of the game.

The position of each curve in the simulation data is comparable to that done

by the participants.

[0–1]). First, we presented the data using an ascending sequence
to show the situations of 1, 5, and 10% MSD distribution.
Figure 8 shows the first 10% MSD error distribution. The result
demonstrates the number on the horizontal axis to be positively
correlated with theMSD error on the vertical axis. Therefore, this
observation confirms the high reliability of these parameter sets
(α, λ, A).

We overlaid the MSDs of the DRI and DEL models in
Figure 8. The result showed that the DEL model was more
accurate in making prediction than the DRI model. This finding
is consistent with the previous observation of Ahn et al. (2008, p.
1392; Table 6) which showed that the MSD of the DEL model
was relatively small in comparison with the MSD of the DRI
model. The following figures demonstrate the number of value
distributions (0 < α < 1; 1 < λ < 2.5; 0 < A < 1) under three
MSD conditions (1, 5, 10%) for each parameter (α, λ, A) in the
DEL model (Figures 9–11).

Figure 9 shows that the 1% MSD is clearly allocated mostly
in the low α-value section (e.g., 0 and 0.1). This impact of gain-
loss value is relatively restricted or vanishing for decision makers.
When α is close to zero, x(t) is almost close to 1. This indicates
the influence of the gain-loss frequency and the impact of λ and
A. Based on the three hierarchies of MSD (the error rates from 1
to 10%), the small value of α possessed a relatively high reliability.

As shown in Figure 10, the simulation test demonstrates that
when the λ value was in the present range (1 < λ < 2.5),
the MSD distribution patterns (MSD of 1–10%) did not change
significantly. When the value of α was close to zero (MSD of
1%), the λ value influenced the fluctuation of MSD value to a
lesser degree. Furthermore, when the α value was equal to 0,
the function of x(t) was equal to 1, and the weight effect of λ

disappeared. In fact, the probability of loss trial in the IGT was
only 20%. As the probability of choosing loss trial is relatively

small, the appearance frequency of the λ value has an averaged
distribution globally.

Additionally, the value of A influenced the consecutive trials;
namely, the acquisition of strategy learning in an abstract
manner. For instance, if the A value is small, the effect of
influencing the consecutive trial by the previous gain-loss
experiences is relatively small. In Figure 11, it can be observed
that the A value is located in a relatively small range of the MSD.

DISCUSSION

The empirical results of this study replicated the “prominent
deck B phenomenon” in the IGT and demonstrated that most
subjects preferred the bad deck B and good decks C and D
rather than the bad deck A in the standard administration of IGT
(see Figures 3–5). However, various research groups have made
this observation on the behavioral level over the past decades
(Wilder et al., 1998; Takano et al., 2010; Upton et al., 2012;
Steingroever et al., 2013; Worthy et al., 2013a,b). The present
modeling study indicated that some parameters in the PU model
may be ineffectual in predicting the choice behavior in IGT.
Therefore, we suggest that the Ahn et al. (2008) PU model is
not the optimal one and that there should be some room for
modification.

The Simulation Based on the Mean
Number of Card Selections
According to the simulation result of the choice pattern in each
deck, deck A is relatively lower than the other three decks
(Figure 12). Decks B, C, and D have a similar mean number of
card selections. This choice pattern (A < B, C, D) existed not
only in the empirical data, but also in the simulation data. The
simulation result is similar to the empirical observation of the
IGT choice behavior. We found that in the gain-loss structure
of the IGT, two main factors, monetary value and gain-loss
frequency, correlated highly with the present choice pattern. For
instance, in a circle of 10 trials, decks B and D have relatively high
frequency gains; for example, nine gains and one loss (Wilder
et al., 1998; Worthy et al., 2013a,b; Seeley et al., 2014). If the
monetary value is controlled between the two decks, the two
decks will have the same gain-loss structure. The choice pattern of
simulation data shows that decks B and D have a similar number
of choices when the α value is close to zero. Monetary value has
less influence in this condition (Lee et al., 2014).

Observation of the Learning Processing
The empirical and simulation data consistently demonstrated
the learning curve of deck A to be gradually descending
(Figures 4, 7). On the other hand, both behavioral and simulation
findings showed similar ascending choice patterns for decks
C and D. However, some differences between the behavioral
and simulation data for deck B was observed, which may have
arisen from some limitations in the present models. In fact, Ahn
et al. (2008) mentioned that the best model (DEL) in their IGT
and SGT simulation study could make enhanced predictions
for global choice patterns (long-term predictions) but not for
learning processing (Ahn et al., 2008, 2014).
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FIGURE 8 | The MSD of DRI and DEL in first 10%. Based on the simulation results of the DRI and DEL models, we took the first 10% (194 simulation cases) of the

simulation samples that possessed the smallest MSD value. The red line represents the MSD value (by simulation) of the DRI model, and the blue line marks that of the

DEL model. The MSD of the DEL model is smaller than that of the DRI model. The DEL model possessed a better goodness-of-fit than the DRI model.

FIGURE 9 | Counts of smallest MSD value when modulating the α value based on the DEL model. Based on the DEL model, this test modulated the value of

α from 0 to 1 and processing with 1936 simulations. The MSD values of the 1936 samples were listed in ascending order. Accordingly, in the first smallest MSD

conditions (ranked as 1, 5, 10%), the counts of variant α value were calculated. Notably, when the α value was nearly equal to zero, there was the largest number of

smallest MSD in the collection. In other words, the conditions with the smallest MSD were observed mostly when the α value was close to zero. The parameter α can

be changed as a constant in the best-predictive DEL models.

Additionally, based on the viewpoint of gain-loss frequency,
the ascending curves of decks B and D may be due to the
decreasing influence of monetary value. Moreover, the location of
the learning curve of deck C in the middle of the four curves may
be due to the deck’s occasional draws (for example, “+50, −50”
in some trials) and small gains from the viewpoint of net-value
calculation (Chiu and Lin, 2007; Chiu et al., 2012).

The model in the present study combined the PU function
and delta learning model and undoubtedly created a hierarchical

influence. The order of influence could be α to A (positive
net value) or α, λ to A (negative net value). Based on this
observation, α is a powerful parameter for modulating the
model and predicting the participant’s behavior. Conversely,
when α is fixed, λ and A have less influence in mediating
the model. Therefore, the value of α obviously determines the
effect significantly. On the other hand, the simulation result of
α (Figure 9) demonstrated the model to be insensitive to value
change, but it correlated increasingly to the gain-loss frequency
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FIGURE 10 | Counts of smallest MSD value when modulating the λ value based on DEL model. Based on the DEL model, this test modulated the value of λ

from 1 to 2.5 and processing with 1936 simulations. The simulation trials were ranked according to the MSD value in ascending power. In the three smallest MSD

conditions (1, 5, 10%), when the λ value was located on 1–1.5 there are stable numbers of the smallest MSD in the distribution. This indicates that in the DEL model,

λ can be made a constant by giving it the value of 1.3.

FIGURE 11 | Counts of smallest MSD value when modulating the A value based on DEL model. The present test modulated the value of A from 0 to 1 and

processing with 1936 simulations based on the DEL model. The simulation results were listed with regard to the MSD value. Here we demonstrated that in the three

collections (1, 5, 10%) of smallest MSD values, the A value close to zero has the largest number of smallest MSD. This indicates that in the best-fit model (e.g., DEL),

the parameter A may be fixed to a constant (close to zero) rather than a variable, which represents the ineffective influence of past experience.

effect (Figure 13). Nevertheless, based on the behavioral result
(Figure 4), the selection of bad deck B gradually and unsteadily
decreased. This may imply that the largest loss of deck B truly

does influence choice behavior; thus, the small α value (0) of
the simulation and the λ value (1.3) may not totally reflect all
situations.
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Over the past decade, studies of IGT modeling have evolved
from the linear EU model (Busemeyer and Stout, 2002) to
the non-linear PU model (Ahn et al., 2008). These models
aim to quantify behavioral impact by monetary value. Notably,
the PU model possessed unequal valence and value function
between gain and loss; namely, unbalanced marginal effect
in gain and loss conditions. However, many components
from the input (perception) to the output (decision making)
may influence the behavioral results. For example: visual
fields, figure and character distinction, the ability to integrate
information, memory encoding, and retrieval, comprehension,
logical reasoning, and decision drivers may be latent causes that
also influence choice behavior. The present PUmodel considered

FIGURE 12 | Comparison of two datasets for average card selection

(for the first 100 trials). Comparing the data of the subjects and the

simulation data, we observe that the number of chosen cards from decks B

and D was higher than that of the other two decks. The high selection of these

two decks suggests high frequent gain to be the critical factor in choice

behavior under uncertainty. Furthermore, the bad deck A was consistently the

least chosen in the behavioral and simulation data. This observation is

congruent with those of most previous IGT studies.

only a partial set of relevant variables when predicting the
decision behavior under uncertainty. There may be better and
more simplified models using dynamic-change parameters.

CONCLUSION

Based on PT theory and the study by Ahn et al. (2008), we found
a simpler model of IGT behavior in the present study. Over the
years, many IGT modeling studies have suggested that the PU
model (Ahn et al., 2008) is better than the EU model (Busemeyer
and Stout, 2002) for predicting choice behavior under uncertainty
because the PU model considers the distinct influences of gain
and loss. However, we considered that some parameters in the PU
model may be ineffective and render this model suboptimal. In
this study, we provided a method of model testing by modulating
some key parameters (α, λ, and A) in the PUmodel. The findings
from the model testing demonstrated that these parameters (α, λ,
and A) possessed hierarchical influences and specific optimized
ranges in the PU model. By setting α ≈ 0; λ ≈ 1.3; and A ≈ 0.1
as the optimized parameters of the simulation, the modified PU
function (u(t)) can be calculated as follows:

u(t) =

{

x(t)α

−λ|x(t)|α
=

{

1, if x(t) ≥ 0
−1.3, if x(t) < 0

As α is approaching zero, the shape of this function is similar to a
Heaviside (step) function (see Figure 13).

Combined with this result, we suggest a simplified model as
follows:

Ej(t) = Ej(t− 1)+ 0.1 · δj(t) · [1− Ej(t− 1)], if x(t) ≥ 0;

Ej(t) = Ej(t− 1)+ 0.1 · δj(t) · [−1.3− Ej(t− 1)], if x(t) < 0.

Further, we conclude that the change in some parameters (e.g.,
λ and A) may be powerless in influencing the models when α

FIGURE 13 | Prospect utility function and simulated gain-loss frequency effect (λ = 1 (left panel); λ = 1.3 (right panel)). According to the definition

provided by Ahn et al. (2008), α is defined as the shape of the utility function and λ as the response to the effect of loss aversion. When α or λ is adjusted in the PU

function, we observed little loss-aversion effect. Notably, the present study indicated that both α and λ might not be the variables that shape the selection pattern of

decks A, B, C and D. Particularly, when λ = 1, the loss-aversion effect is no longer present in this figure. According to our simulation result, the optimized α value is

nearly equal to zero, the PU function only represents the effect of gain-loss frequency and the effect of value is greatly diminished. More specifically, when the

optimized λ value is nearly equal to 1 and α close to zero in this simulation, the value function is similar to the Heaviside (step) function. This observation implies that

the effect of insensitivity to value is actually the same as the effect of sensitivity to gain-loss frequency (Lin et al., 2007; Chiu et al., 2008). The present simplified PU

model mostly represents the adoption of a gain-stay loss-shift strategy under uncertainty. This finding may explain the “prominent deck B phenomenon” for healthy

groups in the growing number of recent IGT studies.
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approaches zero. This model testing shows that the PU model
may need further simplification for it to be optimized. The
simulation of this simplified model implied that decision makers
were sensitive to gain-loss frequency rather than the long-term
outcome. The modified model may possess better predictors
for clinical categorization and distinguishing between normal
subjects and neuropsychiatric patients. However, the present
study determined a set of the three fixed values for α, λ, and A
only by analyzing a specific dataset of IGT experimental data.
To make this dataset of estimated values applicable to a wider
range of IGT and SGT experiments, more data from different
experimental sets would be needed. Supposing the fitting values
for α, λ, and A could be converged to an acceptable range across
a sufficient number of experiments, this simplified model may
turn out to be a better explanation of choice behavior under
uncertainty.
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