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Words with richer semantic representations are recognized faster across a range of

lexical processing tasks. The most influential account of this finding is based on the

idea that semantic richness effects are mediated by feedback from semantic-level to

lower-level representations. In an earlier lexical decision study, Yap et al. (2015) tested

this claim by examining the joint effects of stimulus quality and four semantic richness

dimensions (imageability, number of features, semantic neighborhood density, semantic

diversity). The results of that study showed that joint effects of stimulus quality and

richness were generally additive, consistent with the idea that semantic feedback does

not typically reach the earliest levels of representation in lexical decision. The present

study extends this earlier work by investigating the joint effects of stimulus quality and

the same four semantic richness dimensions on syntactic classification performance (is

this a noun or verb?), which places relatively more emphasis on semantic processing.

Additive effects of stimulus quality and richness were found for two of the four targeted

dimensions (concreteness, number of features) while semantic neighborhood density

and semantic diversity did not seem to influence syntactic classification response times.

These findings provide further support against the view that semantic information reaches

early letter-level processes.

Keywords: stimulus quality, semantic richness, visual word recognition, syntactic classification, semantic

feedback, RT distributional analyses

INTRODUCTION

In order to understand the mechanisms and processes that support reading, researchers have
examined the effect of a myriad of word properties on lexical processing performance (see
Yap and Balota, 2015, for a review). However, although the ultimate goal of reading is
comprehension, the visual word recognition literature has traditionally been dominated by studies
that consider the influence of orthographic (e.g., bigram frequency, word length, frequency
of occurrence, orthographic neighborhood density), phonological (e.g., regularity, consistency),
and morphological (e.g., morphological family size, derivational, and inflectional entropy)
characteristics on tasks such as lexical decision (i.e., discriminating between a word and nonwords
such as FLIRP) and speeded pronunciation (i.e., reading letter strings aloud). In addition to these
variables, there is increasing evidence that semantic richness (i.e., the extent to which words are
associated with relatively more semantic information) is also an important predictor of word
recognition performance (see Pexman, 2012, for a review).

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.01394
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.01394&domain=pdf&date_stamp=2016-09-15
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:melvin@nus.edu.sg
http://dx.doi.org/10.3389/fpsyg.2016.01394
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.01394/abstract
http://loop.frontiersin.org/people/18024/overview
http://loop.frontiersin.org/people/19473/overview


Yap and Pexman Role of Feedback

Across standard lexical processing paradigms, including
lexical decision, speeded pronunciation, perceptual identification
(i.e., identifying visually degraded stimuli), and semantic decision
(e.g., classifying words as animate or inanimate), it is now well-
established that semantically rich words are generally recognized
more quickly and accurately (Pexman et al., 2008; Yap et al.,
2012). We should point out here that semantic richness should
not be considered a unitary construct, but is instead most
appropriately reflected by a number of dimensions which map
onto distinct theoretical perspectives.

These dimensions include, but are not limited to, the number
of semantic features participants associate with a word’s referent
(e.g., COW’s features include has four legs, eats grass, produces
milk; McRae et al., 2005), its semantic neighborhood density
(Shaoul and Westbury, 2010), its number of senses (Miller, 1990;
Hoffman et al., 2013), the number of distinct first associates
elicited by the word in free association (Nelson et al., 1998),
imageability or concreteness, the extent to which the word evokes
mental imagery (Cortese and Fugett, 2004; Brysbaert et al., 2014),
body-object interaction, the extent to which a human body can
interact with the word’s referent (Siakaluk et al., 2008), sensory
experience ratings, the extent to which a word evokes a sensory or
perceptual experience (Juhasz and Yap, 2013), modality-specific
perceptual strength, the extent to which a word’s referent is
experienced through the five senses (Lynott and Connell, 2009;
Connell and Lynott, 2014), and emotional valence (i.e., whether a
word is positive, negative, or neutral; Yap and Seow, 2014). While
investigators typically focus on one semantic richness variable
at a time, there have been attempts to characterize the relative
predictive power of different dimensions. For instance, Yap et al.
(2012) compared the influence of number of features, number of
senses, semantic neighborhood density, imageability, and body-
object interaction across multiple word recognition tasks. While
every variable produced significant effects in at least one task,
only the effects of imageability and number of features were
reliable (or borderline reliable) across all tasks, indicating that
imaginal and featural aspects may be weighted relatively more
heavily in a word’s semantic representation.

RICHNESS EFFECTS THROUGH
SEMANTIC FEEDBACK

Collectively, the foregoing findings converge on the idea that
the word recognition system has access to a word’s meaning
before a word is fully identified (Balota, 1990). The theoretical
framework most commonly used to explain this finding is an
embellished version of the interactive activation and competition
(IAC) model of letter perception (McClelland and Rumelhart,
1981). The IAC model contains processing nodes that are
organized at three levels (features, letters, words) and is both
interactive (i.e., activation can flow bidirectionally between levels)
and cascaded (i.e., as soon as processing at a level begins,
it sends activation to the next level). Cascaded processing
contrasts with thresholded processing, in which a later process
begins only after an earlier process is complete. By augmenting
the standard IAC model with meaning-level representations,

Balota (1990; see also Balota et al., 1991) suggested that
semantic influences in word recognition can be accommodated
by feedback from semantic-level to lexical-level (i.e., word-level)
representations. Specifically, semantically richer words (e.g.,
words with many semantic features) generate more semantic-
level activity, thereby producing stronger feedback to lexical-level
units. If one further assumes that lexical decision and speeded
pronunciation responses are driven by lexical-level orthographic
and phonological activity, respectively, the semantic feedback
received by lexical-level units will consequently speed up lexical
decision and pronunciation times (Hino and Lupker, 1996;
Pexman et al., 2002).

Although studies have explored feedback from semantic- to
lexical-level representations (Pexman et al., 2002) and from
phonological to orthographic representations (Pexman et al.,
2001), the extent to which semantic richness effects are mediated
by word-to-letter feedback is less well-understood. The top-
down influence of word- on letter-level representations is an
integral assumption of McClelland and Rumelhart’s (1981) IAC
model, and remains a fundamental aspect of the field’s most
influential word recognition models, including the dual-route
cascaded (DRC) model (Coltheart et al., 2001), the multiple read-
out model (Grainger and Jacobs, 1996), the bimodal interactive
activation framework (Grainger et al., 2005), and the CDP+
and CDP++ models (Perry et al., 2007, 2010). On a related
note, the interaction between semantic priming and target
degradation (i.e., stronger semantic priming when targets are
visually degraded, e.g., Balota et al., 2008) has also been explained
using semantic feedback to letter-level representations by way of
lexical-level representations (McNamara, 2005).

To test the assumption that meaning-level information
reaches the letter level, Yap et al. (2015), using the lexical decision
task, investigated the joint effects of stimulus quality (clear vs.
degraded) with four richness dimensions, imageability, number
of features, semantic neighborhood density, and ambiguity,
which map onto distinct and influential theoretical perspectives
(see Pexman, 2012, for more discussion). Presenting words in
a degraded manner slows down early feature- and letter-level
processing (Blais et al., 2011), and interactive effects of stimulus
quality and a factor (e.g., semantic richness) indicate that the
factor exerts an influence on an early processing locus (see,
Sternberg, 1998, for more discussion of additive factors logic).
If semantic richness effects indeed reflect partially activated
letter-level representations, the most straightforward prediction
is that the deleterious impact of visual degradation should be
smaller for words which are semantically richer. Interestingly,
Yap et al. (2015) did not observe this pattern. Instead, they found
robust additive effects of stimulus quality and richness (i.e., two
main effects and no interaction) for the targeted dimensions. In
other words, degradation effects were equivalent in magnitude
for words that were high and low in semantic richness. In
the light of these findings, Yap et al. (2015) suggested that
semantic feedback does not appear to reach earlier levels of
representation in lexical decision. Additionally, accommodating
the additive effects of stimulus quality and richness seems to
require a more complex theoretical account wherein activation
is thresholded at the letter level but cascaded from the lexical
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level onwards (Besner and Roberts, 2003; Reynolds and Besner,
2004).

Yap et al. (2015) proposed that their findings are also
consistent with a flexible lexical processor (Balota and Yap, 2006)
which adaptively modulates the processing dynamics of early
word recognition processes (i.e., whether letter-level processing
is cascaded or thresholded) in response to task contexts and
demands. In lexical decision, the ultimate goal of the participant
is to discriminate between familiar/meaningful real words
and unfamiliar/meaningless nonwords, making familiarity an
important dimension for word-nonword discrimination (Balota
and Chumbley, 1984). Stimulus degradation may undermine
such familiarity-based information (Yap and Balota, 2007), and
thresholding the letter output helps to recover the familiarity
signal by perceptually normalizing degraded stimuli.

THE PRESENT STUDY

The results from Yap et al. (2015) show quite clearly that the
effects of stimulus quality and richness are additive in lexical
decision. However, as discussed above, it is possible that this
pattern is idiosyncratic to lexical decision, because of the task’s
emphasis on familiarity-based information. The first goal of the
present study was to explore if the additive effects of stimulus
quality and richness generalize to a syntactic classification task
(is this word a noun or verb?), a task which demands more
extensive consideration of the word’s meaning (see Sidhu et al.,
2014, for more discussion of task demands). The richness
dimensions of interest are similar to those studied in Yap et al.
(2015) and include concreteness, number of features, semantic
neighborhood density, and ambiguity. Experiment 1 examines
the effects of concreteness and number of features, while
Experiment 2 examines the effects of semantic neighborhood
density and ambiguity.

Unlike lexical decision, which is primarily driven by the
familiarity of the orthographic code (Balota and Chumbley,
1984), syntactic classification reflects the ease with which
semantic coding can be completed (Hino et al., 2006). If
letter-level thresholding is indeed a flexible and adaptive
consequence of lexical decision’s heavy reliance on familiarity-
based information, then such thresholding (and its attendant
additive effects) may be absent in the syntactic classification
task, which places less emphasis on orthographic familiarity.
Instead, one might predict an interaction between stimulus
quality and semantic richness in syntactic classification, with
smaller degradation effects for richer targets. We should also
point out that uninflected verb stimuli will be used in the
present study, that is, “verbness” cannot be simply assessed by
a superficial check for diagnostic morphemes or suffixes. Instead,
participants need to judge if a word’s meaning denotes actions
or entities, which likely requires more semantic processing than
standard lexical decision.

More importantly perhaps, there is evidence that the nature of
semantic richness effects varies across tasks. For example, there
is a theoretically intriguing dissociation in the literature, where
ambiguous words are associated with a processing advantage in

lexical decision (Borowsky and Masson, 1996) but a processing
disadvantage in semantic decision (Piercey and Joordens, 2000).
Multiple meanings produce greater feedback from semantic- to
lexical-level representations, which is helpful in lexical decision.
However, in a task which relies more heavily on the semantic
code, multiple meanings can slow responses down due to one-to-
many mappings from orthography to semantics (Borowsky and
Masson, 1996), greater competition between different meanings
(Grainger et al., 2001), or competition between the activated
meanings and the required response (Pexman et al., 2004).
Thus far, task dissociations have been studied at the level of
main effects. For example, Hino et al. (2002) examined how
the main effect of semantic ambiguity varied across three lexical
processing tasks, lexical decision, speeded naming, and semantic
categorization. Our second goal is to determine if similar
dissociations are observable for the joint effects of stimulus
quality and the different semantic richness dimensions.

In order to characterize our effects in a more fine-grained
manner, we will examine our data both at the level of mean
response times (RTs) and at the level of RT distributional
characteristics (Balota and Yap, 2011). Specifically, empirical
RT distributions will be fitted to the ex-Gaussian function
(Heathcote et al., 1991), a convolution of a normal and
exponential distribution. Such an analysis yields three parameter
estimates: µ and σ (mean and standard deviation of the normal
distribution) and τ (mean of the exponential distribution). Along
with quantile plots, which provide a graphical representation
of distributional effects, ex-Gaussian analysis helps determine
the extent to which semantic richness effects in syntactic
classification are reflected by distributional shifting (µ) and/or an
increase in the tail of the distribution (τ ). More relevantly for the
present study, there is evidence that spurious additivity in means
can be driven by opposing interactive effects in the underlying
distribution. For example, Yap et al. (2008) found additive effects
of stimulus quality and word frequency at the level of the mean
that were due to the combination of an overadditive interaction
inµ (reflecting modal RTs) and an underadditive interaction in τ

(reflecting slowest RTs). The distributional analyses will therefore
help us to rule out such trade-offs in our data. More broadly,
the present analyses help extend our earlier work by providing
complementary insights into the influence of semantic richness
in a task which places greater weight on semantic processing.

EXPERIMENT 1

Method
Participants
Thirty-two undergraduates from the University of Calgary
participated for partial course credit. Participants reported in a
pre-screening survey that their first language was English; they
also had normal or corrected-to-normal vision.

Design
Two 2 × 2 designs were incorporated within the same
experiment, with non-overlapping items used to examine the
effects of each variable. Specifically, we examined stimulus quality
(clear or degraded) × concreteness (high or low) and stimulus
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quality × number of features (high or low). All variables were
manipulated within-participants and the dependent variables
were RTs and accuracy rates.

Stimuli
A total of 240 nouns were selected, with 120 words (60 high
and 60 low) each for concreteness and number of features. To
determine whether a word is a noun, we examined its part of
speech in the English Lexicon Project (Balota et al., 2007; http://
elexicon.wustl.edu) and selected words that were coded only as
NN (i.e., noun); we avoided words (e.g., CAN) which can be
used both as a noun and a verb. Concreteness ratings were
based on the norms collected by Brysbaert et al. (2014). Number
of features values were taken from McRae et al. (2005). Word
sets in each of the experimental conditions were matched on
number of letters, number of syllables, number of morphemes,
orthographic neighborhood size, and log-transformed subtitle-
based contextual diversity (Brysbaert and New, 2009; see Table 1
for descriptive statistics). Additionally, words in the two levels of
concreteness were matched on semantic diversity and semantic
neighborhood size1, while words in the two levels of number
of features were matched on concreteness, semantic diversity,
and semantic neighborhood size. Using the Match program (Van
Casteren and Davis, 2007), an additional 240 verbs (120 for each
semantic richness dimension) were selected from the English
Lexicon Project to serve as distracters; these were matched as
closely as possible to the nouns on number of letters, number of
syllables, orthographic neighborhood size, and frequency. While
there was no significant difference (ps > 0.2) between nouns and
verbs on number of letters, orthographic neighborhood size, and
number of syllables, nouns (M = 2.21) were slightly higher in
frequency than verbs (M = 2.08). We should also note that verbs
and nouns were not explicitly matched on semantic properties
(e.g., concreteness); this will be further addressed in the General
Discussion.

Procedure
Computers running E-prime software (Schneider et al., 2001)
were used to present stimuli and collect data. Participants were
tested individually in sound-attenuated cubicles, and positioned
about 60 cm from the monitor. They were instructed to decide
if the word presented formed a noun or verb by making the
appropriate button press response (slash key for nouns and Z
key for verbs). Participants were encouraged to respond quickly
but not at the expense of accuracy. The 20 practice trials were
followed by six experimental blocks of 80 trials each, with breaks
between blocks. Additionally, the order in which stimuli were
presented was randomized anew for each participant. Stimuli
were presented in uppercase 18-point Courier New, and each
trial comprised the following events: (a) a fixation point (+)
at the center of the monitor for 400ms, (b) a blank screen for
200ms, and (c) the target. The target remained on the screen
for 4000ms or until a response was made. If a response was
incorrect, a 170ms tone was presented simultaneously with the

1Due to the fact that number of features is available for only a relatively small set of

words (N = 541), it was not possible to match high- and low-concreteness words

on number of features.

TABLE 1 | Descriptive statistics for the noun and verb stimuli used in

Experiment 1.

High concreteness Low concreteness

(N = 60) (N = 60)

Mean SD Mean SD

CONCRETENESS

Concreteness 4.92 0.06 2.89 0.65

Number of letters 5.90 1.53 5.92 1.29

Number of

syllables

1.75 0.57 1.80 0.44

Number of

morphemes

1.17 0.53 1.10 0.30

Frequency 2.26 0.44 2.24 0.54

Orthographic

neighborhood size

2.25 3.67 1.97 3.76

Semantic diversity 1.50 0.17 1.54 0.24

ARC 0.55 0.09 0.57 0.09

High no. of Low no. of

features (N = 60) features (N = 60)

Mean SD Mean SD

NUMBER OF FEATURES

Number of

features

14.58 2.12 9.08 1.82

Number of letters 5.87 1.79 6.38 2.02

Number of

syllables

1.85 0.76 2.07 0.82

Frequency 2.22 0.40 2.14 0.39

Orthographic

neighborhood size

3.05 4.46 2.12 3.76

Semantic diversity 1.42 0.23 1.42 0.24

ARC 0.52 0.10 0.51 0.09

Concreteness 4.85 0.21 4.81 0.18

Mean SD

VERBS (N = 240)

Number of letters 6.21 1.66

Number of

syllables

1.86 0.70

Frequency 2.08 0.58

Orthographic

neighborhood size

5.14 8.08

Frequency, log10 transformed subtitle contextual diversity (Brysbaert and New, 2009);

Orthographic neighborhood size, number of words that can be formed by substituting

a single letter in the target word (Coltheart et al., 1977); ARC, semantic neighborhood

density (Shaoul and Westbury, 2010).

word “Incorrect” displayed slightly below the fixation point for
450ms. The same degradation procedure used in Yap et al.
(2015) was adopted, i.e., half the targets were degraded by rapidly
alternating letter strings with a randomly generated mask of the
same length. For example, the mask @$#&% was presented for
14ms, followed by a five-letter target word for 28ms, and the two
rapidly alternated until a response was detected. Mask patterns
were consistent within a trial, and were generated from random
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permutations of the following symbols: &@?!$∗%#?. Across
participants, targets were counterbalanced across degraded and
clear conditions.

Results and Discussion
Trials with response errors (7.9% of trials) were first excluded
from the analyses. Noun responses faster than 200ms or slower
than 3000ms (0.8% of responses) were then eliminated before a
mean and standard deviation was computed for each participant
as a function of stimulus quality. RTs beyond 2.5 SDs from
each participant’s mean were excluded, removing a further 2.0%
of the responses. Estimates for ex-Gaussian parameters (µ,
σ , τ ) were obtained using the quantile maximum likelihood
estimation (QMLE) procedure in the QMPE program (Version
2.18; Cousineau et al., 2004). All fits converged successfully
within 250 iterations. The mean RTs, accuracy rates, and
ex-Gaussian parameters are presented in Table 2. Using the
lme4 package (Bates et al., 2015), RT effects were analyzed
using linear mixed effects (LME) models while accuracy effects
were analyzed using generalized linear mixed (GLM) models;
p-values for fixed effects were obtained using the lmerTest
package (Kuznetsova et al., 2016). The main and interactive
effects of stimulus quality and semantic richness were treated
as fixed effects. Effect coding was used, whereby clear and
degraded words were, respectively, coded as −0.5 and 0.5, and
words high and low on semantic richness were, respectively,
coded as −0.5 and 0.5. Random intercepts for participants
and targets, along with by-participant and by-target random
slopes for stimulus quality, were included in each model. To
the extent models could converge, the by-participant random
slope for the relevant semantic richness variable was also
included.

TABLE 2 | Mean RTs and accuracy rates as a function of

concreteness/number of features and stimulus quality.

RT Accuracy µ σ τ

HIGH CONCRETENESS

Clear 796 (21) 0.96 (0.008) 554 (11) 54 (7) 247 (15)

Degraded 925 (24) 0.95 (0.007) 633 (14) 70 (9) 297 (20)

Stimulus quality effect 129 0.01 79 16 50

LOW CONCRETENESS

Clear 945 (32) 0.86 (0.013) 668 (21) 113 (16) 284 (27)

Degraded 1095 (33) 0.86 (0.017) 739 (23) 119 (16) 370 (27)

Stimulus quality effect 150 0.00 71 6 86

HIGH NUMBER OF FEATURES

Clear 772 (19) 0.98 (0.005) 556 (11) 57 (7) 217 (11)

Degraded 901 (24) 0.97 (0.007) 618 (15) 52 (8) 287 (16)

Stimulus quality effect 129 0.01 62 −5 70

LOW NUMBER OF FEATURES

Clear 804 (20) 0.97 (0.007) 563 (11) 52 (6) 241 (17)

Degraded 950 (27) 0.97 (0.006) 635 (12) 48 (7) 323 (21)

Stimulus quality effect 146 0.00 72 −4 82

Standard errors are in parentheses.

Table 3 presents the results for the joint effects of stimulus
quality with concreteness. For RTs, the main effects of
concreteness (p < 0.001), and stimulus quality (p < 0.001)
were both significant. RTs were faster for high-concreteness
(M = 864ms) than for low-concreteness (M = 1029ms)
nouns, and faster for clear (M = 877ms) than for degraded
(M = 1015ms) nouns. The stimulus quality × concreteness
interaction was not significant. Comparing the additive model
(two main effects) to the interactive model (two main effects and
an interaction) did not reveal a significant difference in their
likelihood, χ2

(1)
= 0.327, ns. For accuracy, only the main effect

of concreteness (p < 0.001) was significant; accuracy was higher
for high-concreteness (M = 0.95) than for low-concreteness
(M = 0.86) nouns.

We now turn to the ex-Gaussian parameters. For µ, the
main effect of concreteness was significant, Fp(1, 31) = 90.91,
p < 0.001, MSE = 4251.25, ηp

2
= 0.75; µ was greater for

low-concreteness (M = 703ms) than for high-concreteness
(M = 593ms) nouns. The main effect of stimulus quality
was significant, Fp(1, 31) = 21.97, p < 0.001, MSE = 8147.09,

TABLE 3 | LME (top panel: RT) and GLM (bottom panel: Accuracy) model

estimates for fixed and random effects for the joint effects of stimulus

quality with concreteness.

Random effects Variance SD r

ITEMS

Intercept 6563.70 81.02

Stimulus quality 339.40 18.42

PARTICIPANTS

Intercept 19272.40 138.83

Stimulus quality 2409.30 49.08

Concreteness 4436.00 66.60 0.52

Fixed effects Coefficient Standard error p-value

Intercept 946.25 26.21 <0.001

Concreteness 165.10 21.87 <0.001

Stimulus quality 138.00 14.04 <0.001

Stimulus quality × concreteness 12.58 22.08 NS

Random effects Variance SD r

ITEMS

Intercept 1.09 1.04

Stimulus quality 0.00 0.00

PARTICIPANTS

Intercept 0.24 0.49

Stimulus quality 0.02 0.15

Concreteness 0.49 0.70 1.00

Fixed effects Coefficient Standard error p-value

Intercept 2.98 0.16 <0.001

Concreteness −1.41 0.28 <0.001

Stimulus quality −0.15 0.14 NS

Stimulus quality × concreteness 0.38 0.29 NS
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ηp
2
= 0.42; µ was greater for degraded (M = 686ms) than for

clear (M = 611ms) nouns. The stimulus quality × concreteness
interaction was not significant, F < 1. For σ , only the effect
of concreteness was significant, Fp(1, 31) = 25.75, p < 0.001,
MSE = 3669.62, ηp

2
= 0.45; σ was greater for low-concreteness

(M = 116ms) than for high-concreteness (M = 62ms) nouns.
Finally, for τ , the main effects of concreteness, Fp(1, 31) = 11.37,
p = 0.002, MSE = 8480.01, ηp

2
= 0.27, and stimulus quality,

Fp(1, 31) = 18.43, p < 0.001, MSE = 8038.08, ηp
2
= 0.37, were

significant; τ was greater for low-concreteness (M = 327ms)
than for high-concreteness (M = 272ms) nouns, and greater

for degraded (M = 333ms) than for clear (M = 265ms)
nouns. The stimulus quality × concreteness interaction was not
significant, F < 1.

To illustrate these effects graphically, the mean quantiles
(0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85) for the different
experimental conditions are plotted on Figure 1. In the top two
panels of the figure, the empirical quantiles are represented by
data points and error bars, while the theoretical quantiles for
the best-fitting ex-Gaussian distribution are represented by lines.
The bottom panel of the figure represents concreteness effects
as a function of stimulus quality. In general, the empirical data

FIGURE 1 | Syntactic classification performance as a function of concreteness and quantiles for clear (top left panel) and degraded (top right panel)

words. Empirical quantiles are represented by error bars, whereas fitted ex-Gaussian quantiles are represented by lines. The bottom panel shows concreteness

effects as a function of stimulus quality. Con, concreteness.
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were well-captured by the ex-Gaussian parameters; empirical and
theoretical quantiles generally did not diverge by more than one
standard error.

Number of Features
Table 4 presents the results for the joint effects of stimulus quality
with number of features. For RTs, the main effects of number
of features (p = 0.019) and stimulus quality (p < 0.001) were
both significant. RTs were faster for nouns with more features
(M = 838ms) than for nouns with fewer features (M = 879ms);
they were also faster for clear (M = 789ms) than for degraded
(M = 928ms) nouns. The stimulus quality × concreteness
interaction was not significant. Comparing the additive model
to the interactive model did not reveal a significant difference in
their likelihood, χ2

(1)
= 0.758, ns. For accuracy, none of the effects

were statistically significant.
Turning to the ex-Gaussian parameters, for µ, only the main

effect of stimulus quality was significant, Fp(1, 31) = 73.34, p <

0.001, MSE = 1952.19, ηp
2
= 0.70; µ was greater for degraded

(M = 626ms) than for clear (M = 560ms) nouns. The stimulus
quality × number of features interaction was not significant,

TABLE 4 | LME (top panel: RT) and GLM (bottom panel: Accuracy) model

estimates for fixed and random effects for the joint effects of stimulus

quality with number of features.

Random effects Variance SD r

ITEMS

Intercept 6390.39 79.94

Stimulus quality 2135.66 46.21

PARTICIPANTS

Intercept 13098.23 114.45

Stimulus quality 2539.68 50.40

Number of features 48.53 6.97 1.00

Fixed effects Coefficient Standard error p-value

Intercept 858.36 22.02 <0.001

Number of features 41.59 17.42 0.019

Stimulus quality 139.33 13.63 <0.001

Stimulus quality × number of features 17.89 20.64 NS

Random effects Variance SD r

ITEMS

Intercept 1.22 1.11

Stimulus quality 9.42 × 10−10 3.07 × 10−5

PARTICIPANTS

Intercept 0.24 0.49

Stimulus quality 0.74 0.86

Number of features 0.11 0.33 0.12

Fixed effects Coefficient Standard error p-value

Intercept 4.29 0.23 <0.001

Number of features −0.24 0.32 NS

Stimulus quality −0.36 0.26 NS

Stimulus quality × number of features 0.25 0.48 NS

F < 1. For σ , none of the effects were significant, Fs < 1.
Finally, for τ , the main effects of number of features, Fp(1, 31)
= 5.43, p = 0.026, MSE = 5316.32, ηp

2
= 0.15, and stimulus

quality, Fp(1, 31) = 29.83, p < 0.001, MSE = 6156.83, ηp
2
=

0.49, were significant; τ was greater for nouns with fewer features
(M = 282ms) than for nouns with more features (M = 252ms),
and greater for degraded (M = 305ms) than for clear (M =

229ms) nouns. The stimulus quality × concreteness interaction
was not significant, F < 1. These effects are graphically
represented in Figure 2.

Summary
In Experiment 1, reliable additive effects of stimulus quality
and semantic richness were observed in RTs. That is, responses
were faster for clear nouns and for semantically rich nouns,
but richness effects were not statistically different in magnitude
for clear and degraded nouns. The supplementary distributional
analyses indicated that the stimulus quality × semantic richness
interaction was not significant for any ex-Gaussian parameter,
confirming that the additive patterns in mean RTs were not
qualified by trade-offs between distributional parameters. There
are a couple of other noteworthy observations. In Yap et al.’s
(2015) lexical decision study, richness effects were generally
mediated by a combination of distributional shifting (µ) and
an increase in the tail of the distribution (τ ). In the present
study, while this pattern was indeed observed for concreteness
effects, the influence of number of features was predominantly
reflected in τ . Interestingly and unexpectedly, the main effect of
concreteness (M = 165ms) was much larger than the main effect
of number of features (M = 41ms); we will comment on this
further in the General Discussion.

EXPERIMENT 2

Method
Participants
Thirty-two undergraduates from the University of Calgary
participated for partial course credit. Participants reported in a
pre-screening survey that their first language was English; they
also had normal or corrected-to-normal vision. Participants who
had taken part in Experiment 1 were not allowed to participate in
Experiment 2.

Design
Like E1, two 2 × 2 designs were incorporated within the
experiment: Stimulus Quality× Semantic NeighborhoodDensity
(dense or sparse) and Stimulus Quality × Ambiguity (high or
low). All variables were manipulated within-participants and the
dependent variables were RTs and accuracy rates.

Stimuli
A total of 240 nouns were selected, with 120 nouns (60 high and
60 low) each for semantic neighborhood density and ambiguity.
Semantic neighborhood density was operationally defined by
average radius of co-occurrence (ARC; Shaoul and Westbury,
2010), which refers to the mean of the distance between the
target word and all neighbors within a pre-specified threshold;
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FIGURE 2 | Syntactic classification performance as a function of number of features and quantiles for clear (top left panel) and degraded (top right

panel) words. Empirical quantiles are represented by error bars, whereas fitted ex-Gaussian quantiles are represented by lines. The bottom panel shows number of

feature effects as a function of stimulus quality. NF, number of features.

higher ARC values indicate denser neighborhoods. Ambiguity
was operationally defined by Hoffman et al.’s (2013) recently
developed semantic diversity measure, which estimates semantic
ambiguity by tracking the variability in the contextual usage of
words; words with higher values on semantic diversity are more
ambiguous.

Experimental conditions were matched on the same control
lexical variables described in Experiment 1 (see Table 5 for
descriptive statistics). Additionally, words in the two levels of
semantic neighborhood density were matched on concreteness
and semantic diversity, while words in the two levels of

semantic diversity were matched on concreteness and semantic
neighborhood size. As in Experiment 1, the Match program
(Van Casteren and Davis, 2007) was used to select an additional
240 distracter verbs that were matched as closely as possible
to the nouns on number of letters, number of syllables,
orthographic neighborhood size, and frequency. There was
no significant difference (ps > 0.38) between nouns and
verbs on number of letters, orthographic neighborhood size,
and number of syllables; however, nouns (M = 2.17) were
marginally higher in frequency than verbs (M = 2.08), p =

0.05.
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TABLE 5 | Descriptive statistics for the noun stimuli used in Experiment 2.

Word stimuli High neighborhood Low neighborhood

density (N = 60) density (N = 60)

Mean SD Mean SD

SEMANTIC NEIGHBORHOOD DENSITY

ARC 0.62 0.02 0.42 0.06

Number of letters 5.95 1.38 6.02 1.41

Number of syllables 1.75 0.54 1.73 0.52

Number of morphemes 1.17 0.38 1.23 0.43

Frequency 2.23 0.29 2.19 0.29

Orthographic neighborhood size 2.27 3.75 2.27 3.72

Semantic diversity 1.45 0.17 1.42 0.17

Concreteness 4.39 0.64 4.46 0.60

Word stimuli High semantic Low semantic

diversity (N = 60) diversity (N = 60)

Mean SD Mean SD

SEMANTIC DIVERSITY

Semantic diversity 1.81 0.09 1.06 0.15

Number of letters 5.63 1.34 5.80 1.26

Number of syllables 1.67 0.57 1.77 0.59

Frequency 2.16 0.44 2.09 0.41

Orthographic neighborhood size 2.37 3.40 2.00 3.06

ARC 0.55 0.11 0.54 0.07

Concreteness 4.14 0.79 4.15 0.72

Mean SD

VERBS (N = 240)

Number of letters 5.96 1.38

Number of syllables 1.73 0.55

Frequency 2.08 0.56

Orthographic neighborhood size 2.23 3.54

Orthographic neighborhood size, number of words that can be formed by substituting

a single letter in the target word (Coltheart et al., 1977); Frequency, log10 transformed

subtitle contextual diversity (Brysbaert and New, 2009); Concreteness, concreteness

ratings (Brysbaert et al., 2014); ARC, average radius of co-occurrence, a measure of

semantic neighborhood density (Shaoul and Westbury, 2010).

Procedure
Same as Experiment 1.

Results and Discussion
As in Experiment 1, trials with response errors (10.6% of trials)
were first excluded from the analyses. Noun responses faster than
200ms or slower than 3000ms (0.7% of responses) were then
eliminated before a mean and standard deviation was computed
for each participant as a function of stimulus quality. RTs beyond
2.5 SDs from each participant’s mean were excluded, removing a
further 2.1% of the responses. The mean RTs, accuracy rates, and
ex-Gaussian parameters are presented in Table 6.

Semantic Neighborhood Density
Table 7 presents the results for the joint effects of stimulus
quality with semantic neighborhood density. For RTs, only the

TABLE 6 | Mean RTs and accuracy rates as a function of semantic

neighborhood density/semantic diversity and stimulus quality.

RT Accuracy µ σ τ

HIGH NEIGHBORHOOD DENSITY

Clear 820 (29) 0.93 (0.011) 583 (22) 63 (10) 242 (21)

Degraded 943 (35) 0.92 (0.011) 636 (14) 51 (7) 315 (27)

Stimulus quality effect 123 0.01 53 −12 73

LOW NEIGHBORHOOD DENSITY

Clear 831 (28) 0.93 (0.013) 586 (14) 56 (9) 249 (19)

Degraded 965 (34) 0.92 (0.011) 641 (14) 62 (7) 331 (26)

Stimulus quality effect 134 0.01 55 6 82

HIGH SEMANTIC DIVERSITY

Clear 826 (26) 0.86 (0.014) 585 (17) 68 (9) 247 (18)

Degraded 981 (39) 0.82 (0.015) 643 (15) 60 (7) 350 (32)

Stimulus quality effect 155 0.04 58 −8 103

LOW SEMANTIC DIVERSITY

Clear 833 (27) 0.94 (0.010) 590 (14) 61 (7) 249 (20)

Degraded 987 (37) 0.92 (0.012) 659 (16) 76 (10) 332 (29)

Stimulus quality effect 154 0.02 69 15 83

Standard errors are in parentheses.

main effect of stimulus quality (p < 0.001) was significant;
RTs were faster for clear (M = 830ms) than for degraded
(M = 957ms) nouns. Comparing the model with only a main
effect of stimulus quality to the additive model did not reveal
a significant difference in their likelihood, χ2

(1)
= 1.018, ns. For

accuracy, none of the effects were statistically significant.
Turning to the ex-Gaussian parameters, for µ, only the

main effect of stimulus quality was significant, Fp(1, 31) = 26.91,
p < 0.001, MSE = 3476.21, ηp

2
= 0.46; µ was greater for

degraded nouns (M = 639ms) than for clear nouns (M =

585ms). For σ , none of the effects were significant. Finally,
for τ , only the main effect of stimulus quality was significant,
Fp(1, 31) = 21.57, p < 0.001, MSE = 8871.92, ηp

2
= 0.41; τ

was greater for degraded nouns (M = 323ms) than for clear
nouns (M = 245ms). These effects are graphically represented in
Figure 3.

Semantic Diversity
Table 8 presents the results for the joint effects of stimulus
quality with semantic diversity. For RTs, only the main effect
of stimulus quality (p < 0.001) was significant; RTs were faster
for clear (M = 836ms) than for degraded (M = 992ms) nouns.
Comparing the model with only a main effect of stimulus quality
to the additive model did not reveal a significant difference in
their likelihood, χ2

(1)
= 0.024, ns. For accuracy, both the main

effects of stimulus quality (p = 0.003) and semantic diversity
(p = 0.002) were significant. Accuracy was higher for clear
(M = 0.90) than for degraded (M = 0.87) nouns, and higher for
less ambiguous (i.e., low semantic diversity) nouns (M = 0.93),
compared to more ambiguous (i.e., high semantic diversity)
nouns (M = 0.84).

Turning to the ex-Gaussian parameters, for µ, only the
main effect of stimulus quality was significant, Fp(1, 31) =
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TABLE 7 | LME (top panel: RT) and GLM (bottom panel: Accuracy) model

estimates for fixed and random effects for the joint effects of stimulus

quality with semantic neighborhood density.

Random effects Variance SD

ITEMS

Intercept 6300.00 79.37

Stimulus quality 370.40 19.25

PARTICIPANTS

Intercept 27391.90 165.50

Stimulus quality 4726.70 68.75

Fixed effects Coefficient Standard error p-value

Intercept 893.75 30.58 <0.001

Semantic neighborhood

density

17.88 17.76 NS

Stimulus quality 127.02 15.98 <0.001

Stimulus quality × semantic

neighborhood density

8.89 20.73 NS

Random effects Variance SD

ITEMS

Intercept 1.26 1.12

Stimulus quality 0.00 0.00

PARTICIPANTS

Intercept 0.50 0.71

Stimulus quality 0.33 0.57

Fixed effects Coefficient Standard error p-value

Intercept 3.18 0.19 <0.001

Semantic neighborhood

density

−0.10 0.25 NS

Stimulus quality −0.15 0.17 NS

Stimulus quality × semantic

neighborhood density

0.04 0.25 NS

43.86, p < 0.001, MSE = 2885.90, ηp
2
= 0.59; µ was greater

for degraded nouns (M = 651ms) than for clear nouns
(M = 588ms). For σ , none of the effects were significant.
Finally, for τ , only the main effect of stimulus quality was
significant, Fp(1, 31) = 22.82, p < 0.001, MSE = 12251.46, ηp

2

= 0.42; τ was greater for degraded (M = 341ms) than for clear
(M = 248ms) nouns. These effects are graphically represented in
Figure 4.

Summary
Compared to Experiment 1, semantic richness effects in
Experiment 2 were far less robust. Specifically, semantic
neighborhood density had no effect on RT or accuracy rates,
while the influence of semantic diversity was restricted to
accuracy rates. Importantly, as in the previous experiment,
there was no evidence that these effects were qualified
by stimulus quality, either in the mean RTs or in the
underlying RT distributional characteristics. To establish the
robustness of the null findings in Experiment 2, we conducted
supplementary analyses to examine the effects of concreteness,

semantic neighborhood density, and semantic diversity, using
newly available megastudy data from the Calgary semantic
decision project (Pexman et al., 2016). In this megastudy,
participants were required to classify words as concrete or
abstract. In total, semantic decision RTs and accuracy rates
were collected for 5000 concrete and 5000 abstract words
from 321 participants. For present purposes, we conducted
a simultaneous multiple regression analysis for 2451 concrete
words which were associated with an accuracy rate of at least
70%. The predictors included control lexical variables (number of
letters, number of syllables, number of morphemes, orthographic
neighborhood size, word frequency), along with concreteness,
semantic neighborhood density, and semantic diversity2. For
RTs, the effects of semantic neighborhood density (p = 0.13)
and semantic diversity (t < 1) were not significant. However,
there was an effect of concreteness, with faster responses to
concrete words (β = −0.51, p < 0.001, sr2 = 0.24). Turning to
accuracy rates, the effects of all three variables were significant
or approached significance. Concrete words (β = 0.51, p <

0.001, sr2 = 0.24) and words in dense neighborhoods (β = 0.05,
p = 0.015, sr2 = 0.002) were responded to more accurately,
while ambiguous words (β = −0.04, p = 0.052, sr2 = 0.001)
were responded to less accurately. These regression analyses,
although based on an independent abstract/concrete semantic
decision dataset, are broadly consistent with the key findings in
Experiment 2.

Combined Analyses
We conducted an additional analysis in which RT data from both
experiments were combined, in order to statistically compare
the magnitude of richness effects for different dimensions. To
do this, all words high on richness (e.g., high concreteness, high
number of features, high neighborhood density, high diversity)
were coded as −0.5, while words low on richness were coded
as 0.5. As before, clear and degraded words were, respectively,
coded as −0.5 and 0.5. Table 9 presents the results for this
combined analysis. The main effects of stimulus quality (p <

0.001) and semantic richness (p < 0.001) were significant, but
there was no interaction. Following this, we created six contrast
codes corresponding to the six possible pairwise comparisons
between the four dimensions (C1: concreteness vs. number of
features; C2: concreteness vs. semantic neighborhood density;
C3: concreteness vs. semantic diversity; C4: number of features
vs. semantic neighborhood density; C5: number of features
vs. semantic diversity; C6: semantic neighborhood density vs.
semantic diversity). For each contrast, we tested a model
where the joint effects of stimulus quality, richness, and the
respective contrast code were examined. Richness interacted
significantly with C1 (p < 0.001), C2 (p < 0.001), and C3
(p < 0.001), but not with the other contrast codes. In other
words, although the effects of concreteness were significantly
larger than the effects of the other three variables, there was
no significant difference between the effects of number of
features, semantic neighborhood density, and semantic diversity.

2We did not include number of features in the regression analysis because this

measure is available for a very small set of words, and its inclusion would have

greatly reduced the size of the dataset.
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FIGURE 3 | Syntactic classification performance as a function of semantic neighborhood density and quantiles for clear (top left panel) and degraded

(top right panel) words. Empirical quantiles are represented by error bars, whereas fitted ex-Gaussian quantiles are represented by lines. The bottom panel shows

semantic neighborhood density effects as a function of stimulus quality. SND, semantic neighborhood density.

This suggests that although the effect of number of features
was statistically significant in the individual analyses, while
the effects of semantic neighborhood density and semantic
diversity were not, this distinction did not hold up in the
composite analysis. That being said, our study was designed
to separately test the joint effects of stimulus quality with
different semantic richness dimensions, and most likely lacks
the statistical power to adequately compare the magnitude of
different semantic richness effects. This question can be explored
more systematically in future research based on more powerful
designs.

GENERAL DISCUSSION

In the present study, we examined the joint effects of stimulus
quality and four semantic richness dimensions (concreteness,
number of features, semantic neighborhood density, semantic
diversity) in verb/noun syntactic classification. Our primary
objective was to ascertain if the additive effects of stimulus
quality and semantic richness previously reported in lexical
decision (Yap et al., 2015) generalized to a different binary
decision task which is not familiarity-based, and which places
more emphasis on semantic processing. With respect to this
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TABLE 8 | LME (top panel: RT) and GLM (bottom panel: Accuracy) model

estimates for fixed and random effects for the joint effects of stimulus

quality with semantic diversity.

Random effects Variance SD

ITEMS

Intercept 8041.10 89.67

Stimulus quality 401.50 20.04

PARTICIPANTS

Intercept 29332.00 171.27

Stimulus quality 4392.80 66.28

Fixed effects Coefficient Standard error p-value

Intercept 914.12 31.82 <0.001

Semantic diversity 3.00 19.59 NS

Stimulus quality 156.55 15.89 <0.001

Stimulus quality × semantic diversity −1.05 21.46 NS

Random effects Variance SD

ITEMS

Intercept 1.92 1.39

Stimulus quality 5.63 × 10−14 2.37 × 10−7

PARTICIPANTS

Intercept 0.38 0.62

Stimulus quality 0.00 0.00

Fixed effects Coefficient Standard error p-value

Intercept 2.87 0.19 <0.001

Semantic diversity 0.89 0.29 0.002

Stimulus quality −0.34 0.12 0.003

Stimulus quality × semantic diversity 0.18 0.23 NS

basic question at least, our results are clear-cut. There was no
evidence for an interaction between stimulus quality and any
of the targeted richness dimensions, either in mean RTs or in
the RT distributional characteristics. In other words, the additive
effects of stimulus quality and semantic richness cannot be fully
attributed to the specific demands of lexical decision. That being
said, the study also yielded a number of other findings which are
more surprising and less straightforward. For example, semantic
diversity (a measure of ambiguity) had no effect on RTs, but
ambiguous words were associated with lower accuracy rates.
On the other hand, concreteness effects were atypically large
compared to the effects of number of features and semantic
neighborhood density. These findings will now be discussed at
greater length.

Semantic Richness Effects: The Role of
Feedback
As mentioned in the Introduction, the semantic feedback
account has been a popular perspective for accommodating
semantic richness effects. Although not usually articulated, there
is an underlying assumption that meaning-level activation also
reaches the letter level by way of orthographic and phonological

representations. Indeed, this fundamental assumption continues
to inform influential computational models of visual word
recognition (e.g., DRC, multiple read-out, CDP+) that
incorporate the interactive activation model (McClelland
and Rumelhart, 1981) as a cornerstone. Complementing the
empirical observation of additive effects of stimulus quality
and richness in lexical decision (Yap et al., 2015), the additive
patterns reported by the present study provide further evidence
against the view that feedback from semantics is able to reach
earlier levels of representation in visual word recognition.

The notion that letter-level processing is not modulated by
semantic information meshes well with some recent findings
from the semantic priming domain. Specifically, there is a well-
known overadditive interaction between stimulus quality and
semantic priming, wherein degradation effects are larger for
related (e.g., cat—DOG), compared to unrelated (e.g., hat—
DOG), prime-target pairs (Meyer et al., 1975). One explanation
for this interaction is that the prime word (e.g., CAT) activates
related words (e.g., DOG) through spreading activation, and
through feedback, there is prospective pre-activation of the
lexical- and letter-level representations of the related words, thus
attenuating the deleterious impact of degradation. This account
has been undermined by a study by Thomas et al. (2012), who
examined the stimulus quality× priming interaction for different
types of prime-target pairs. Forward asymmetric pairs (e.g.,
keg—BEER) have a prime-to-target association but no target-
to-prime association, backward asymmetric pairs (e.g., small—
SHRINK) have a target-to-prime association but no prime-to-
target association, and symmetric prime-target pairs (e.g., cat—
DOG) are related in both directions. The key finding was that
the stimulus quality × priming interaction was reliable only
for pairs with a target-to-prime association (i.e., symmetric and
backward asymmetric pairs), suggesting that the interaction was
carried by a retrospective strategic process that depended on
a relationship from the target to the prime. For our purposes,
these results cannot be reconciled with an account based on
a prospective semantic feedback mechanism, since that would
predict an interaction for pairs with a prime-to-target association
(i.e., symmetric and forward asymmetric pairs).

As discussed in the Introduction, additivity in computational
models can be achieved by implementing thresholded output
from the letter level (Besner and Roberts, 2003; Reynolds and
Besner, 2004). However, why would letter-level processing be
thresholded in the syntactic classification task? We do not have
a definitive answer here, but suggest that the results may reflect
a flexible lexical processor that is responsive to task context and
demands, and which modulates processing pathways in order to
optimize performance on a task (Balota et al., 1999; Balota and
Yap, 2006; Tousignant and Pexman, 2012). As mentioned in the
Introduction, uninflected verb stimuli were used in the present
study. Therefore, in order to produce a correct response on the
syntactic classification task, it is necessary to precisely identify a
specific lexical representation to determine if its meaning denotes
an action or entity.

Letter-level thresholding, which allows degraded stimuli to
be normalized to match perceptually clear stimuli (Yap and
Balota, 2007), can reduce the likelihood of a degraded letter
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FIGURE 4 | Syntactic classification performance as a function of semantic diversity and quantiles for clear (top left panel) and degraded (top right

panel) words. Empirical quantiles are represented by error bars, whereas fitted ex-Gaussian quantiles are represented by lines. The bottom panel shows semantic

diversity effects as a function of stimulus quality. SemD, semantic diversity.

string activating the meaning of an incorrect candidate. The
impact of such an error would be profound and particularly
difficult to recover from in syntactic classification. Our account
is conceptually inspired by O’Malley and Besner’s (2008)
proposal that there is letter-level thresholding in the speeded
pronunciation task when participants have to name both words
and nonwords. By “cleaning up” the stimulus, thresholding

minimizes the possibility of lexical capture, whereby degraded

nonwords may activate a word sufficiently strongly such that

readers mistakenly read it as a word instead of the nonword.

Task-Specificity of Semantic Richness
Effects
The present study was designed to extend the earlier lexical
decision study by Yap et al. (2015) by examining the
joint effects of the same variables in syntactic classification.
There were some noteworthy differences in the results of
the two studies. Specifically, in lexical decision, all four
semantic richness dimensions (imageability, number of features,
semantic neighborhood density, semantic diversity) produced
robust effects. In contrast, in syntactic classification RTs,
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TABLE 9 | LME model estimates for fixed and random effects for the joint

effects of stimulus quality with semantic richness (composite analysis).

Random effects Variance SD r

ITEMS

Intercept 8666.90 93.10

Stimulus quality 1019.80 31.93

PARTICIPANTS

Intercept 21522.00 146.70

Stimulus quality 2932.40 54.15

Concreteness 567.30 23.82 0.20

Fixed effects Coefficient Standard error p-value

Intercept 904.68 19.05 <0.001

Semantic richness 49.65 9.97 <0.001

Stimulus quality 140.31 8.65 <0.001

Stimulus quality × semantic richness 10.45 10.71 NS

semantic neighborhood density and semantic diversity effects
were not reliable. Interestingly, this is not the first time
these between-task dissociations have been reported. In order
to tease apart task-general from task-specific processing,
Yap et al. (2012) evaluated the influence of five semantic
richness dimensions (imageability, body-object interaction,
ambiguity, semantic neighborhood density, number of features)
on five lexical processing tasks (lexical decision, go/no-go
lexical decision, speeded pronunciation, progressive demasking,
concrete/abstract semantic decision). Importantly, they also
found that effects of ambiguity and semantic neighborhood
density were not significant in the semantic decision task;
Pexman et al. (2008) also failed to find semantic neighborhood
effects in semantic categorization. Indeed, these null finding are
corroborated by the item-level regression analyses we conducted
on the recently published Calgary semantic decision project data
(Pexman et al., 2016), which yielded the same pattern of results.
In summary, although semantic richness is multidimensional,
it is evident that the effect of some of these dimensions (e.g.,
number of features, concreteness/imageability) are more stable
and generalizable across tasks, compared to others (e.g., semantic
neighborhood density, semantic diversity) which show greater
task-specificity. This suggests that particular facets of a word’s
semantic representation may carry more weight in influencing
lexicosemantic processing.

A few additional aspects of the foregoing findings are
instructive. First, semantic neighborhood density effects seem
to be relatively variable in tasks which place relatively more
weight on semantic processing; they appear in some studies but
not in others. There have been suggestions (e.g., Mirman and
Magnuson, 2006) that there could be a trade-off between close
neighbors (facilitatory effects) and distant neighbors (inhibitory
effects); such opposing effects would produce diminished or null
effects.

Second, it is reassuring that the analyses on the Calgary
megastudy data revealed no effect of semantic diversity on
RTs, but an inhibitory effect on accuracy rates (i.e., ambiguous

words are less accurately responded to). Yap et al. (2011) also
found that ambiguous words were less accurately classified in
concrete/abstract semantic decision. Taken together, these trends
mirror the findings of the present study, and further support
the idea that the facilitation afforded by ambiguity is specific to
lexical decision (e.g., Piercey and Joordens, 2000). As discussed
earlier, an ambiguity disadvantage is typically reported in tasks
which place an emphasis on semantic processing. The modeling
work of Hoffman and Woollams (2015) suggests that the high
contextual variability associated with semantically diverse words
leads to noisy, underspecified semantic representations, which
could impede semantic coding. It is unclear why the inhibition
afforded by semantic diversity tends to influence accuracy rates,
rather than RTs. This is an issue that merits future research.

Finally, based on the semipartial correlations in the
supplementary regression analyses, it is clear that the proportion
of variance accounted for by concreteness is far greater than
that of the other richness dimensions. This was also reported by
Pexman et al. (2016), and is consistent with the unusually large
concreteness effect observed in Experiment 1. In the Pexman
et al. (2016) megastudy, participants had to discriminate between
concrete and abstract words, and the concreteness ratings of
the concrete words, compared to the abstract words, were, by
definition, much higher. This encourages participants to rely on
the concreteness dimension to drive the concrete/abstract binary
decision, thereby exaggerating the size of concreteness effects.
Such a line of reasoning is analogous to participants relying
on familiarity-based information in lexical decision, which
inflates the size of frequency effects (Balota and Chumbley,
1984). Although Experiment 1 featured the verb/noun rather
than concrete/abstract decision, the concreteness ratings were
higher for nouns (M = 4.41) than for verbs (M = 2.81). As a
result, it is likely that the concreteness effect was inflated by
an emphasis on concreteness information as a discrimination
dimension. Moving forward, it is methodologically better if
semantic richness properties were more tightly matched for
both categories in a semantic decision task. Nonetheless, the
important point here is that concreteness effects, large as they
were, were not moderated by stimulus quality in the present
study. Even in an experimental setting which places such a
premium on a particular semantic richness dimension, there
is no evidence that this semantic information reaches early
letter-level processes.

LIMITATIONS AND CONCLUDING
REMARKS

We acknowledge that the present results may partly reflect the
specific task demands of the syntactic classification task adopted.
The decision to use the broad categories of verb and noun was
to maximize the number of items that can be presented under
the same task demands (see Pexman et al., 2016). However,
there is evidence that the decision selected for a semantic
task can moderate observed effects (Tousignant and Pexman,
2012; see Pexman et al., 2016, for more discussion). That being
said, all other things being equal, researchers (e.g., Jared and
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Seidenberg, 1991) have recommended using broader, rather than
narrower, categories. We are also encouraged by the degree of
convergence between the results of Pexman et al. (2016), which
used concrete/abstract decision, and the present study, which
used verb/noun decision.

Certain methodological aspects of the present work could
also be further tightened in future research. While the two
levels of semantic richness for each dimension were well-
matched on lexical and semantic characteristics, the automated
procedure (Van Casteren and Davis, 2007) we used matched
nouns and verbs on lexical, but not semantic, variables. Nouns
and verbs were not significantly different on number of
letters, number of syllables, and orthographic neighborhood
size, but nouns, compared to verbs, were slightly higher on
frequency. Furthermore, as already discussed, concreteness
ratings were higher for nouns than verbs in Experiment 1,
which is likely to increase the reliance on concreteness for
noun/verb discrimination. However, while verb/noun differences
may modulate the emphasis on particular word dimensions for
driving binary decisions, this does not qualify the joint effects
of stimulus quality with richness, since the counterbalancing
procedure ensures that the same items were rotated through
clear and degraded conditions, and they thus serve as their own
control.

Additionally, while the present study focused on four
particular semantic richness dimensions (concreteness, number
of features, semantic neighborhood density, semantic diversity)
in order to facilitate comparisons to our previous lexical
decision study (Yap et al., 2015), other richness dimensions of
a more embodied nature (e.g., body-object interaction, sensory
experience ratings, perceptual strength, emotional valence)
remain unstudied in this paradigm and should be the object of
future investigations.

Along with the study by Yap et al. (2015), the present work
reinforces the claim that one central aspect of the interactive
activation framework, i.e., the interactive activation between

letter- and lexical-level representations, does not appear to
be compatible with how semantic richness effects unfold in
visual word recognition. In both lexical decision and syntactic
classification, we have observed additive effects of stimulus
quality and richness, indicating that the additive pattern cannot
be simply explained by lexical decision’s emphasis on familiarity-
based information. It is possible that the present results reflect a
flexible lexical processor that can strategically engage thresholded
early processing to optimize task performance. Specifically, we
have suggested that thresholding reduces the likelihood that
degraded words incorrectly activate the semantics of some other
word, but this is speculative and needs to be empirically verified
in future investigations.

In sum, the present findings help to further constrain our
understanding of the interplay between semantic processing and
semantic feedback mechanisms. Our results are consistent with
others in the semantic richness literature, in showing that there
are multiple dimensions of semantic richness and that these
can have different effects both within and between tasks. At a
broader level, this study adds to a growing literature showing

that lexical semantics is multidimensional, variable, dynamic, and
context-sensitive (Pexman et al., 2013).
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