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A Tutorial on Hunting Statistical
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There is increasing concern about the replicability of studies in psychology and cognitive
neuroscience. Hidden data dredging (also called p-hacking) is a major contributor to this
crisis because it substantially increases Type I error resulting in a much larger proportion
of false positive findings than the usually expected 5%. In order to build better intuition
to avoid, detect and criticize some typical problems, here I systematically illustrate
the large impact of some easy to implement and so, perhaps frequent data dredging
techniques on boosting false positive findings. I illustrate several forms of two special
cases of data dredging. First, researchers may violate the data collection stopping rules
of null hypothesis significance testing by repeatedly checking for statistical significance
with various numbers of participants. Second, researchers may group participants post
hoc along potential but unplanned independent grouping variables. The first approach
‘hacks’ the number of participants in studies, the second approach ‘hacks’ the number
of variables in the analysis. I demonstrate the high amount of false positive findings
generated by these techniques with data from true null distributions. I also illustrate that
it is extremely easy to introduce strong bias into data by very mild selection and re-
testing. Similar, usually undocumented data dredging steps can easily lead to having
20–50%, or more false positives.

Keywords: replication crisis, Type I error, false positive error, null hypothesis significance testing (NHST), bias
and data dredging, p-hacking, N-hacking

INTRODUCTION

It is increasingly acknowledged that psychology, cognitive neuroscience and biomedical research
is in a crisis of producing too many false positive findings which cannot be replicated (Ioannidis,
2005; Ioannidis et al., 2014; Open Science Collaboration, 2015). The crisis wastes research funding,
erodes credibility and slows down scientific progress. Here I systematically review two potential
major sources of false positive production: the neglect of hidden multiple testing in studies both in
terms of case (participant) and variable numbers. First, researchers may test a sample for statistical
significance and then re-run significance tests after adjusting case (participant) numbers (Barnett
and Lewis, 1994; Wilcox, 1998; Wagenmakers, 2007; Simmons et al., 2011; Bakker et al., 2012;
Bakker and Wicherts, 2014; Simonsohn et al., 2014). Second, researchers may run significance tests
for multiple, ad hoc selected independent grouping variables (Meehl, 1967; Simmons et al., 2011;
Francis, 2013; Silberzahn and Uhlmann, 2015). Both of these phenomena can vastly inflate false
positive Type I error. While many researchers may be in principle conscious of the dangers of
manipulating case and variable numbers in analyses, they may not appreciate just how easily such
practices lead to generating a large number of false positive results. In order to provide a better
intuition for such Type I error inflation and to provide a reference point to avoid, recognize and
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criticize these mistakes, here I illustrate the impact of data
dredging steps through a number of simulations which can be
understood easily visually.

Data dredging techniques aim to achieve statistically
significant p-value levels and hence, they are also called
‘p-hacking’ (e.g., Bruns and Ioannidis, 2016). A lot suggests
that unintentional and intentional data dredging is a very
likely contributing factor to the overwhelmingly positive
results published in many sciences (Ioannidis and Trikalinos,
2007). Psychology especially seems to be affected by this
as positive results are about five times more likely in this
discipline than in some physical science areas (Fanelli, 2010).
In general, social sciences are 2.4 times are more likely to
generate positive reports than physical sciences (Fanelli,
2010). In addition, the prevalence of positive results seems
steadily increasing during the past decades, especially
in social and some biomedical sciences which suggests
that the prevalence of data dredging is increasing (Fanelli,
2012).

In this paper I deal with special cases of what Simmons
et al. (2011) called ‘researcher degrees of freedom,’ or put
otherwise, special factors behind what Ioannidis (2008) termed
‘the vibration ratio.’ ‘Researcher degrees of freedom’ refers
to undisclosed flexibility in data analysis, i.e., to the fact
that researchers have many potential analysis solutions to
choose from and many of their choices (and their rationale)
are undocumented. ‘Vibration ratio’ refers to widely varying
effect sizes on the same association in response to different
analytical choices. In general, the more analytical choices
researchers try latently, the higher is the chance of hitting
some spurious statistically significant findings because of the
multiple testing problem (see below). My intention here is to
systematically illustrate some easy to implement and therefore
perhaps typical data dredging techniques which can highly inflate
Type I error and thus, of course, can result in false positive
publications with statistically significant findings. In response,
these techniques will hopefully become easier to recognize,
prevent and criticize.

Sequential re-analysis of study data is a well-known
potential contributor to an excess of statistically significant
findings (Demets and Gordon-Lan, 1994; Goodman, 1999).
Similarly, cherry-picking variables with statistically significant
relationships is another well-known potential contributor to
spurious findings (Bakan, 1966; Meehl, 1967; Waller, 2004;
Bruns and Ioannidis, 2016). In this sense, here I illustrate
these two special cases of p-hacking in detail. These special
cases could be termed ‘N-hacking’ because they latently
manipulate case and variable numbers with the intention
of p-hacking. I use visualization of simulation data because
this approach has been thought to be helpful for better
understanding of statistical phenomena (see Sellke et al., 2001)
and visualization is thought to increase the understanding
of mathematical functional data in general (Gleason and
Hughes Hallett, 1992). However, note that claims about the
efficacy of visualization require further empirical validation
and as such are worthy goals for future study on their
own.

The Multiple Testing Problem
During Null Hypothesis Significance Testing (NHST) researchers
aim to reject a null hypothesis (the null; often signified
as H0) which assumes that there is no difference between
experimental conditions and/or groups on some measure.
Researchers compute a test statistic from their data and examine
the associated p-value (p). The p-value is the probability of having
a test statistic as extreme or more extreme than the one computed
from the data given that the null is true. NHST controls the
long run probability of false positive (Type I) errors through
setting α, a pre-determined critical threshold parameter, the long
run probability of finding a statistically significant test outcome
when the null hypothesis is in fact true. The NHST framework
assumes that the null is too unlikely to be true if p ≤ α (note
that this is a false assumption from the Bayesian point of view but
discussing this is out of the scope of this paper; see e.g., Pollard
and Richardson, 1987; Ioannidis, 2005). In such a case the null
is rejected and the alternative hypothesis (often signified as H1)
of having a non-null effect is accepted. NHST can also control
the long run probability of discovering true effects provided that
their effect size is known and the sample size can be adjusted. This
probability is called ‘power’ and it is the complement of the long-
run probability of not discovering true effects if they exist (Type
II error), called β. Hence, Power = 1−β (Neyman and Pearson,
1933).

In the overwhelming majority of studies α is set to 0.05 which
means that researchers expect that only 5% of studies with true
null effects would turn up statistically significant findings. The
core problem in all the data dredging problems illustrated here
is the well-known multiple comparison problem of NHST: if we
repeatedly test for statistical significance in multiple tests with
a certain α level than the Type I error rate becomes inflated.
If the repeated tests concern independent data sets where the
null is true than the probability of having at least one Type I
error in k independent tests, each with significance level α, is
αTOTAL = 1−(1−α)k. For example if k= 1, 2, 3, 4, 5, and 10 than
αTOTAL is 5, 9.75, 14.26, 18.55, 22.62, and 40.13%, respectively
(e.g., Curran-Everett, 2000). A group of statistical tests which are
somehow related to each other can be defined as a ‘family of
comparisons’ and the probability that this family of comparisons
contains at least one false positive error is called the family-wise
error rate (FWER), defined as αTOTAL above. Figure 1 illustrates
the logic behind computing the family-wise Type I error rate.

HACKING THE NUMBER OF
CASES/PARTICIPANTS IN A SAMPLE

While many researchers may be conscious of the dangers of
multiple testing it is often less appreciated that not adhering to the
data collection stopping rules of NHST also inflates Type I error
rate due to the multiple comparison problem. Data collection
stopping rules are violated when, after initial significance testing
researchers add new participants to the sample, drop some
participants and/or swap some participants for new participants
either randomly or with some (perhaps unconscious) selection
bias and then re-run tests to repeatedly check for statistical
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FIGURE 1 | The computation of family-wise error rate. Let’s assume that the null hypothesis is true and we run two independent significance tests with
α = 0.05. There are four possible outcomes: (A) The probability that none of the tests can reject the null is 0.95 × 0.95. (B) The probability that the first test does not
reject the null but the second does reject it is 0.95 × 0.05. (C) The probability that the first test rejects the null but the second test does not reject it is 0.05 × 0.95.
(D) The probability that both tests reject the null is 0.05 × 0.05. The family-wise Type I error rate is the probability that at least one of the tests rejects the null. This is
the probability of the complement of (A). That is, the summed probability of all other possible outcomes besides (A). Put more technically, the complement of (A) is
the probability of the union of (B–D): 0.0475 + 0.0475 + 0.0025 = 0.0975. Because (A–D) represent all possible outcomes their probabilities sum to 1. Hence, the
complement of (A) can also be computed as 1−0.952

= 0.0975.

FIGURE 2 | Illustrating how repeated testing of non-independent data sets can lead to the accumulation of false positive Type I errors. The boxes
stand for statistical tests run on true null data samples. The empty boxes denote tests with non-significant results. The filled boxes denote tests with statistically
significant false positive results. First, we run 40 tests with α = 0.05 and 5% of them (two tests) will come up statistically significant (Run 1). Second, we slightly
change the data sets and re-run the tests (Run 2). While again 5% of tests will come up statistically significant, these will not necessarily be the same two data sets
as before. A similar phenomenon happens if we slightly change the data again and re-run the tests (Run 3). In the example, the consequence of repeated testing of
altered data is that the total Type I error rate in terms of the 40 data sets will be 10% rather than 5%.

significance. Such techniques can be used during sequential data
collection and/or when dealing with supposedly outlier cases
(Barnett and Lewis, 1994; Wilcox, 1998; Wagenmakers, 2007;
Bakker et al., 2012; Francis, 2013; Bakker and Wicherts, 2014;
Simonsohn et al., 2014).

For example, if we collect 40 data sets about a true null
phenomenon with 16 participants/cases in each and run tests
with α = 0.05 then about two tests will turn up statistically
significant results by chance alone. Now, after this first run of
tests we may not be fully satisfied with the results and may think
that we did not have enough power in our previous series of
tests. So, we may decide to add another participant to all the
samples and re-run the tests. If we use α = 0.05 then we may
again find two statistically significant results in this new series of
tests, that is, the Type I error rate is 5% as before. However, by
adding new participants to the samples and retesting for statistical

significance we also exposed ourselves to the multiple comparison
problem.

An important point is that if we add new participants to our
original sample, the repeated tests will not be run on independent
samples because most of the participants are the same in all
samples. Nevertheless, it is not guaranteed that the same data
sets will provide statistically significant findings during both the
first and the second series of tests because adding additional
participants changes some parameters of the data sets. So, data
sets with previously statistically significant findings may now
provide non-significant findings and vice-versa. That is, while the
Type I error rate is 5% in both series of tests, different data sets
may turn out to be false positives in both cases. This means that at
the end of the second test series more than 5% of the 40 data sets
may have provided statistically significant findings if we consider
both 2× 40 test runs (see Figure 2).
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FIGURE 3 | Increase in statistically significant results when adding additional participants to samples (A,B) and when randomly swapping
participants for new ones (C). (A) The figure shows the proportion of false positive significant results independently for each N (green line) and when considered
cumulatively up to a particular N (red and blue lines). (B) The rate of increase in statistically significant test outcomes represented in Panel A from a particular N to
N+1. (C) Increase in statistically significant results when swapping one randomly chosen participant in the sample for another one. The number of swaps is
represented on the Y-axis (0–14 swaps). The green line shows the proportion of statistically significant results independently for each test run. The red line shows the
proportion of statistically significant results cumulatively for each test run. The blue line shows the rate of increase in statistically significant results from one swap to
the next.

The violation of stopping rules may happen frequently in real
research for various reasons. Below I demonstrate the extreme
impact of some of these techniques on generating false positive
results on simulated data even when all data is coming from a
null distribution. (All simulations were run in Matlab 2015b1).

Adding Participants to Samples and
Re-Testing
In real world experimentation researchers may initially collect
(pilot) data from a relatively small number of participants and
test results for statistical significance. If the results are not
statistically significant but they are fond of the experimental idea
researchers may decide to add some more participants to the
sample and re-test for statistical significance. Tests for statistical
significance may be repeated numerous times after adding more
and more participants to the sample. Researchers often perceive
this procedure as legitimate means to increase power through
increasing the sample size and may not be conscious of the
fact that they are violating the basic sampling rules of NHST:
If they repeatedly check for statistical significance after adding
each individual participant to the sample they quickly accumulate

1www.mathworks.com

Type I error. Hence, the ‘cumulative’ Type I error across all the
statistical tests done will be much higher than 5%.

Figure 3A demonstrates the accumulation of Type I error
with repeated testing. First, one million data sets were simulated
with N = 6 from a standard normal distribution (M = 0;
SD = 1). One-sample t-tests with α = 0.05 determined whether
the sample mean was zero. After this, another participant was
added to each sample (N = 7) and the tests were re-run. This
process was repeated until N reached 30. As shown, we have
5% false positives as expected when samples with each N are
tested independently. However, the cumulative number of false
positives is increasing rapidly and exceeds 10% just after adding
four more participants (N = 10) and 15% after reaching N = 16.
In practice, if researchers carry out the above procedure and they
detect a statistically significant result they may decide to stop and
publish that result. As the simulations demonstrate researchers
actually have a fairly good chance of detecting a statistically
significant finding even when the null is true.

It is worth noting that the increase in the proportion of
statistically significant findings is the fastest at smaller Ns because
with smaller samples adding one additional data point can exert
a relatively large effect on the overall parameters of a data set
(Figure 3B). This can be appreciated if we observe what happens
when we start testing with a larger number of participants (from
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N = 16; blue line in Figure 3A). In this case Type I errors
accumulate just as well as when starting at N = 6 but the rate
of increase of Type I errors is smaller (Figure 3B). This is because
adding one additional data point exerts a smaller relative effect
on the overall parameters of a larger than a smaller data set.
Hence, there is less variability in which data sets show statistically
significant findings after repeated testing. This also means that
larger Ns are more resistant to false positive generation (but
do not protect against it), so running larger studies can be
recommended from this point of view. For this reason, Simmons
et al. (2011) recommended that studies should have at least
20 cases per relevant statistical cell. Also note that larger Ns
also boost power which is often very low in psychological and
neuroscience research (Sedlmeier and Gigerenzer, 1989; Rossi,
1990; Button et al., 2013).

Swapping Participants for New
Participants
Another way of violating stopping rules is removing some
participants deemed to be too noisy, to be ‘outliers,’ or ‘failed
experiments’ and replace them with randomly selected new
ones (without increasing the overall participant numbers as
above). Of course, sometimes such participant replacement is
inevitable (in genuinely failed experiments). However, each new
replacement provides another chance for Type I error even if
there is absolutely no bias in removing and swapping participants.

Figure 3C demonstrates the accumulation of Type I error
when swapping a randomly selected participant from the original
sample for a new participant and retesting. First, one million
data sets were simulated with N = 16 from a standard normal
distribution (M = 0; SD = 1). One-sample t-tests with α = 0.05
determined whether the sample mean was zero. After this,
a randomly selected participant was deleted from the sample
and replaced with another participant also generated from the
standard normal distribution keeping N = 16 and the tests were
re-run (Y = 1 in Figure 3C). Fourteen swaps were generated
(Y = 1 to 14 in Figure 3C).

As expected, we have 5% false positives when samples with
each N are tested independently. However, the cumulative
number of false positives is increasing rapidly and exceeds 10%
just after four swaps and 15% after nine swaps (Y = 4 and
Y = 9 in Figure 3C). The rate of increase in the proportion
of statistically significant findings is the fastest for the initial 1–
5 swaps because some of the randomly created data sets are
easier to move into the ‘statistically significant direction’ than
others.

Researchers should be conscious of this implication and
should not liberally remove ‘suspected’ outliers when such
removal cannot be justified clearly. Removal and swapping of
participants is a particular concern in neuroscience experiments
where it may be easy to refer to physiological noise as a
justification for the removal of participants. As a minimum,
all removals and swaps should be documented. When removal
cannot be justified clearly confidence intervals and effect sizes
should be presented with and without the removed participants
added to the sample.

Culling ‘Outliers’ without Replacement
In section “Swapping Participants for New Participants”
(Figure 3C) supposed ‘outliers’ to be removed from the sample
were selected completely at random without any bias. However,
researchers can easily have some slight unconscious or conscious
biases which can infiltrate the data and these can also lead to
substantial increase in Type I errors. For example, it may happen
that participants are judged ‘outliers’ if they are dissimilar to
expectations and such outliers are then replaced with new
data values. Such practices may still be the consequence of
unconscious bias but they may also constitute outright fraud if
they are done systematically through many studies. As illustrated
below, such bias can be introduced into the data in very delicate
ways and still have a major impact on the number of false positive
findings.

Figures 4A,B demonstrate the effect of removing the least
fitting participants from the sample without replacing them. First,
1 million samples were generated from a normal distribution
for each N (M = 0; SD = 1). One sample t-tests tested
whether the sample means were zero (α = 0.05). As the
black line indicates, the proportion of Type I errors was 5%.
After the initial tests the participant with the most negative
value was removed from the sample and the tests were re-
run. As shown, the proportion of Type I errors increased
noticeably, for small Ns (N = 6–12) the proportion of
Type I error doubled. When one additional participant (with
the remaining most negative value) was removed from each
sample the proportion of Type I errors increased dramatically,
becoming larger than 13% for all Ns studied and when a
third participant was removed from each sample the proportion
of Type I errors exceeded 25% for Ns between 7 and 23.
This range of participants is extremely typical in psychological
research.

Culling Outliers with Replacement
Figures 5A–C demonstrate the extreme fast accumulation of
Type I error when we bias results by consecutively removing
the participants least fitting our expectations and replacing them
with randomly selected new participants. First, one million data
sets were simulated with N = 16 from a standard normal
distribution (M = 0; SD = 1). One-sample t-tests with α = 0.05
determined whether the sample mean was zero. After this, the
participant with the most negative data point was deleted from
the sample and replaced with another participant’s data generated
randomly from the standard normal distribution. Fourteen swaps
were generated. Note that the above procedure replaces the old
data with in principle unbiased values generated completely at
random from the standard normal distribution. However, the
continuous ‘culling’ of ‘outliers’ still makes a massive impact
on the sample mean: Just after swapping two participants the
proportion of false positives is nearly 20% even when considering
tests independently for that particular test run! Then, after
swapping just 4 out of 16 participants the proportion of false
positives reaches 40% and after swapping five participants (less
than 1/3 of the sample), the cumulative false positive rate passes
50%!
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FIGURE 4 | Removing the least fitting participants from the sample without replacing them. (A) The proportion of statistically significant findings
independently for various numbers of participants (‘N’ on the vertical axis). The black line indicates the proportion of statistically significant findings when testing the
original N number of participants. The other lines indicate the proportion of statistically significant findings when removing 1, 2, or 3 participants with the most
negative data points from the sample. (B) Illustrates how the mean of sample means changes when removing 1, 2, or 3 participants with the most negative data
points from the samples.

HACKING THE NUMBER OF
INDEPENDENT (GROUPING) VARIABLES

Subgroup Testing Using Weakly
Correlated Grouping Variable
It may happen that researchers’ main hypothesis does not work
out, or that study objectives were only very fuzzily defined to
start with. However, to the rescue, researchers may have several
potential grouping variables for their data. Groups can then be
formed after the study was run and groups can be compared
to see whether there are statistically significant differences
between groups along the ad hoc defined grouping variables.
This process is a fairly refined form of data dredging (splitting
N into two; e.g., schizophrenic and non-schizophrenic) and can
easily be camouflaged as testing an a priori hypothesis if group
membership can be justified with post hoc arguments. In fact, it
is easy for researchers to rationalize post hoc that the study could
have been planned in the way as it was ultimately written up for
publication.

In the above situation many more than 5% of tests can
be expected to reach statistically significant levels even when
the grouping variable is only very weakly correlated with the

dependent variable. Figure 6A shows two very weakly correlated
variables (V1 and V2) with a correlation coefficient of r = 0.05
(N = 1000). For comparison, Figure 6B shows two strongly
correlated variables with r= 0.6. We can consider V2 as grouping
variable and form two groups. Group 1 is defined by V2 ≤ 0
and Group 2 is defined by V2 > 0 (For example, Group 1 may
have low IQ scores and Group 2 may have high IQ scores).
That is, the sample size in the two groups is N/2. We can
then run independent sample t-tests to compare the means of
V1 in Groups 1 and 2. The above procedure was simulated by
generating 10,000 samples for various Ns. Figure 6C shows the
proportion of statistically significant results for different values
of N (e.g., if N = 32 then the sample size in both groups is 16). It
can be seen that as N is increasing the proportion of statistically
significant results is slightly increasing above the expected 5%
level. However, when N is large (N = 1000), the proportion of
statistically significant results increases dramatically and exceeds
20%.

The explanation for the very high proportion of significant
findings when N is high has been known since a long while
(Meehl, 1967): NHST test statistics are typically computed as
the ratio of the relevant between condition differences and
associated variability of the data weighted by some function
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FIGURE 5 | Increase in statistically significant results when introducing very mild bias and re-testing. (A) The proportion of statistically significant findings
independently (green line) and cumulatively (red line) for various swaps. (B) The rate of increase in the proportion of statistically significant findings from one swap to
the next. (C) The change introduced into the sample mean by the biasing process is illustrated by plotting the 95% credible interval for the sample means (assessed
from the simulation).

of the sample size [difference/variability × f(sample size)]. The
p-value is smaller if the test statistic is larger. That is, the
larger the difference between conditions and/or the smaller is
variability and/or the larger is the sample size the larger is the
test statistic and the smaller is the p-value. Consequently, by
increasing sample size enough it is guaranteed that the null can
be rejected even when effect sizes are very small. The above
simulation exemplifies exactly this situation: forming subgroups
along the weakly correlated ad hoc grouping variables leads to
small group differences in the dependent variables. These small
group differences will then inevitably reach significant levels once
N is high enough.

Importantly, the simulation is also ecologically valid in
that it is practically inevitable to have at least some weak
correlation between any psychological variables. This is because
psychological phenomena are very complex reflecting the
contribution of several interacting (latent) factors (Meehl, 1967;
Lykken, 1968). Hence, if we select any two variables related
to these complex networks most probably there will be some
kind of at least remote connection between them. Second,
unlike in physical sciences it is near impossible to control for
the relationship of all irrelevant variables which are correlated
with the variable(s) of interest (Rozeboom, 1960; Lykken, 1968).
Hence, if we select any two variables at random it is likely that
their correlation will be different from zero. Now, if we also have

a large sample size this state of affairs will inevitably lead to the
situation exemplified in the simulation!

Subgroup Testing Using Multiple
Potential Weakly Correlated Grouping
Variables
The above section exemplified a situation where there was only
one potential grouping variable. However, researchers may have
more than one potential grouping variable, especially nowadays
when larger and larger databases are available as we are entering
the era of big data (Khoury and Ioannidis, 2014). Increasing
both the number of potential grouping variables and the number
of participants have tremendous potential for inflating Type I
error. Figure 6D shows the outcomes of simulations similar to
the one in section “Subgroup Testing Using Weakly Correlated
Grouping Variable” but which included 5 or 10, rather than only
one potential grouping variable. 10,000 samples were simulated
for each N. Each simulation generated a dependent variable (V1)
and 10 potential grouping variables (V2–V11). In the first series
of simulations V1 had correlation r = 0.05 with each of the other
individual variables (V2–V11). Groups were defined according to
each of V2–V11. That is, first Group 1 was defined by V2 ≤ 0
and Group 2 was defined by V2 > 0. Independent sample t-tests
compared the means of V1 in Groups 1 and 2. After this V3
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FIGURE 6 | Using ad hoc grouping variables along weakly or non-correlated variables. (A) Scatterplot for two variables (V1 and V2) with r = 0.05. Groups
are defined by V2. The group means on V2 and V1 are indicated by the arrows. (B) Scatterplot for two variables with r = 0.05. (C) The proportion of statistically
significant results in correlations and t-tests for various sample sizes. (D) The proportion of statistically significant results when using multiple independent (grouping)
variables. See explanation in text.

served as grouping variable, then V4 served as grouping variable,
and so on. The bottom lines (labeled ‘r= 0.05; one variable only’)
in Figure 6D show the proportion of statistically significant test
outcomes for each N for an individual grouping variable. These
proportions are the same as in Figure 6C. In addition, Figure 6D
also shows the cumulative proportion of statistically significant
results for all grouping variables for various situations (r = 0;
r = 0.02; r = 0.05; cumulative proportions for 5 and for 10
variables). This cumulative proportion is the family-wise Type
I error rate, the probability of getting at least one statistically
significant result when we test the samples on any of the grouping
variables. It can be seen that just with N = 32 this probability
is already larger than 0.4 for t-tests and if N = 1000 then it is
practically guaranteed that we can detect some significant group
differences along a potential grouping variable. In fact, even when
the grouping variable and the dependent variable are completely
uncorrelated (r = 0) the false positive Type I error rate is 22%
with five potential grouping variables (see line marked: ‘r= 0; any
of 5’ in Figure 6D) and 40% with 10 potential grouping variables
see line marked: ‘r = 0; any of 10’ in Figure 6D).

It is worth pointing out that knowing about a correlation of
r = 0.05 is typically irrelevant in practical terms. This is because
if we look at Figure 6A it is obvious that such a correlation means
that we cannot really predict anything about a variable (e.g., V1)
if we know the other, correlated one (V2).

While the above issues are known since at least the 1960s
(Rozeboom, 1960; Meehl, 1967; Lykken, 1968) they are very often
neglected perhaps because it is different to know about these
problems in principle and in practical terms.

DISCUSSION

Here, I have illustrated in detail two particular forms of data
dredging: the hidden manipulation of the number of cases
(participants) tested and the number of grouping variables
exploited in studies. If researchers judge sequential testing
necessary then in principle FWER multiple testing correction
methods (Shaffer, 1995 and Nichols and Hayasaka, 2003 for
review) and False Discovery Rate (FDR) control could be used
to deal with these problems and excellent reviews are available on
these (see Benjamini and Hochberg, 1995; Curran-Everett, 2000;
Benjamini and Yekutieli, 2001; Nichols and Hayasaka, 2003;
Bennett et al., 2009; Benjamini, 2010; Goeman and Solari, 2014).
There is also a large directly relevant literature of controlling
Type I error rates in repeated interim analyses in sequential
clinical trials through the study of ‘alpha spending functions’
(Anscombe, 1963; Demets and Gordon-Lan, 1994; Whitehead,
1999; for review see Whitehead, 1997; Shih and Aisner, 2016).
A more radical solution is to abandon the NHST paradigm and
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use Bayesian models if possible which can update the posterior
values for model parameters after new (sequential) data comes
in without encountering the multiple testing problem (MacKay,
2003; Sivia and Skilling, 2006; Gelman et al., 2014). Similarly,
Bayesian hierarchical models may also be able to cope with
situations where several multiple tests are inevitable (Gelman
et al., 2012).

However, most importantly, because of the hidden
(unpublished) nature of data dredging manipulations such
manipulations primarily need a ‘cultural solution’: researchers
have to take the problems reviewed here seriously, document
repeated testing steps whenever they may happen and treat
them somehow. Currently many researches may not even be
conscious of the very serious Type I error inflation caused by
repeated testing and regrouping variables and may consider these
processes as legitimate ways to ‘test whether power is adequate
to publish the results’ so that testing can be stopped as soon as
possible and research funding can be used for other experiments,
or achieving that a dataset can be used for publication even
when initial statistical tests do not produce statistically significant
results. However, it should be clear that interim analyses seriously
break the rules of NHST and need correction for multiple
testing (e.g., Wagenmakers, 2007; Simmons et al., 2011). Hence,
especially when multiple researchers work together, they should
encourage each other to correct for currently hidden multiple
testing. In particular, co-authors should be able to challenge any
indications of the techniques illustrated here: the responsibility
for following a proper scientific process is shared.

Further, using ad hoc grouping variables and then publishing
statistically significant results is clearly inadequate. Having
many potential grouping variables is especially a danger in
neuroimaging where a large number of brain activity measures
can be correlated with and grouped by a large number of
behavioral or other brain activity measures (see Kriegeskorte
et al., 2009; Vul et al., 2009). Another special area of danger is

the domain of ‘big data’ and very large databases in general which
may enable several spurious analyses (Meehl, 1967; Lykken,
1968; Khoury and Ioannidis, 2014). Overall, in any studies with
potentially very large number of variables and large volume of
data (i.e., large power to detect small but irrelevant effects and
the ability to select variables with occasionally appearing large but
random effects) it is extremely important to clearly justify study
objectives and optimally, to pre-register these objectives before
the study is run (Simmons et al., 2011).

Crucially, the contents of the whole database (all variables and
case numbers) a study is based on should be clarified even if
most parts of that database may not be related to the published
findings. Similarly, online supplementary material should present
significant and non-significant correlations and/or relevant
group differences along unpublished variables. These measures
can help to avoid cherry picking statistically significant
variables and/or group differences from large databases (see
Simmons et al., 2011; Ioannidis et al., 2014 for more detailed
recommendations).
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