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In this article we consider the possibility that plants exhibit anticipatory behavior, a

mark of intelligence. If plants are able to anticipate and respond accordingly to varying

states of their surroundings, as opposed to merely responding online to environmental

contingencies, then such capacity may be in principle testable, and subject to empirical

scrutiny. Our main thesis is that adaptive behavior can only take place by way of

a mechanism that predicts the environmental sources of sensory stimulation. We

propose to test for anticipation in plants experimentally by contrasting two empirical

hypotheses: “feature detection” and “predictive coding.” We spell out what these

contrasting hypotheses consist of by way of illustration from the animal literature, and

consider how to transfer the rationale involved to the plant literature.
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INTRODUCTION

Sculpted by evolution, plants allegedly react to environmental inputs only in an instinctual
manner, with their behavioral repertoire reducing to invariant tropistic (directional) or nastic (non-
directional) responses implemented in the form of sets of fixed reflexes (Silvertown and Gordon,
1989; Trewavas, 2009, 2014). This behavior is usually accounted for in hard-wired terms, and being
hard-wired undermines the ascription of intelligence to plants. That is because behavioral flexibility
is one marker of cognitive sophistication, and hard-wired behavior does not admit of behavioral
flexibility; it is “hard-wired” to particular stimuli or cues. This mechanistic and non-cognitive view
of plant behavior goes back to Julius von Sachs and Jacques Loeb (Greenspan and Baars, 2005)—
incidentally, Loeb introduced this concept to animal behavior from his earlier studies on plants,
proposing similar hard-wired explanations of both animal and plant behavior (Loeb, 1918).

This reductionist approach is likely to fail in animal biology (Greenspan and Baars, 2005;
Greenspan, 2012) and, we contend, is equally likely to fail in plant biology (Trewavas, 2005,
2009, 2014; Karban, 2008; Baluška and Mancuso, 2009a,b, 2013; Calvo Garzón and Keijzer,
2011; Trewavas and Baluška, 2011; Marder, 2012, 2013; Gagliano et al., 2014; Cvrčková et al.,
2016). For one thing, plants are motile, and their behavioral repertoire is richer than commonly
acknowledged. Virtually no growing part of any single plant fails to exhibit a movement of
nutation (Mugnai et al., 2007). Shoots of climbing plants guide their movements to reach a
support; roots navigate belowground, guiding their movements to secure nutrients intake; young
and terminal leaves display helical and rotational oscillatory movements, etc. (Darwin, 1875;
Darwin and Darwin, 1880). In fact, sophisticated forms of plant behavior abound. Plants and
their roots are sensitive to a variety of signals other than water, light, minerals, or gravity. Plants
can sample more than 20 different biotic and abiotic parameters from their environment and
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integrate this complex sensory information tomount appropriate
behavioral responses (Knight et al., 1998; Karban, 2008; Hodge,
2009; Trewavas, 2009; Baluška, 2012; Baluška and Mancuso,
2013). Roots grow by assessing the future acquisition of minerals
and water, a process that requires the integration of gravity,
moisture and mechanical perturbations, among other vectors
(Takahashi et al., 2002). Likewise, roots can, for instance, sense
available space and discriminate self-roots from alien roots. Less
familiar examples include salt-avoidance behavior (Li and Zhang,
2008; Sun et al., 2008; Yokawa et al., 2014). Here salinity interacts
with the gravitropic response and an overall integrated signal
assessment appears to be needed in order to optimize growth
under abnormal saline conditions.

Unveiling why plant behavior is so flexible (Trewavas, 2009,
2014) may cast a new light on intelligence without recourse
to anthropo- or zoomorphisms. In this context, our theoretical
motivation in this article is to consider the possibility that plants
exhibit anticipatory behavior, a mark of intelligence. If plants
are able to anticipate and respond accordingly to varying states
of their surroundings in a context-sensitive way, as opposed to
merely responding online to environmental contingencies, then
that capacitymay be in principle testable, and subject to empirical
scrutiny. Our main thesis is that adaptive behavior can only take
place by way of a mechanism that predicts the organism’s own
states of sensory stimulation (Egner et al., 2010; Chennu et al.,
2013).

More broadly, we regard (minimal) cognition to be a
biological phenomenon. What seems to be involved is having
a sensorimotor organization, and free-moving with the purpose
of manipulating the environment (allowing for metabolic forms
of adaptation and anticipatory functioning) (Calvo Garzón
and Keijzer, 2011). This holds for all forms of life. It is the
ability to act upon environmental contingencies that defines
biological systems. Only those biological systems can survive
which perceive the world veridically via successfully predicting
it, and not merely reacting to it (Clark, 2016). Of course, the
falsification of a reactive model would not imply that a particular
anticipatory countermodel is correct. The notion of anticipation
may come in a variety of forms, with weaker and stronger
readings being possible. Anticipatory behavior may rely upon
the capacity of the system to model internally the environmental
sources themselves. But forms of anticipation according to which
predictive success is a function of actual past behavior—stronger
forms of anticipation that do not depend on modeling the future
internally (Stepp and Turvey, 2010; Stepp et al., 2011)—cannot
be discarded beforehand1. However, for present purposes we
are proposing a test for anticipation in plants experimentally
by contrasting two empirical hypotheses exclusively: “feature
detection” and “predictive coding (processing).”

According to the feature detection hypothesis, plants perceive
their surroundings, but the detection of and adaptive responses

1Thanks to an anonymous referee for Frontiers for pressing on the lack of an
experimentum crucis, and to Tony Chemero for bringing this third possibility to
our attention. See our point about model-free vs. model-based modes of prediction
in Section Expectation and Surprise in the Ventral Visual Pathway, and somemore
specific empirical suggestions in Section Applying the Experimental Paradigm to
Plants.

to environmental features are consistent with a reactive
interpretation of plant behavior. By contrast, the capacity to
perform predictive processing would point toward a basic form
of agency: plant perception may be seen as an active process
of probabilistic inference akin to that found in animals (Kok
et al., 2013). Plants under this interpretation are pro-active;
they actively sample their environment to generate information,
estimating the likelihood that one external state of affairs, and
not another, is the source of energy impinging upon its sensory
periphery.

Now, there is a preliminary question that might be raised as to
whether anticipatory behavior entails intelligence. Our position is
not that such behavior is sufficient for intelligence; the existence
of basic predictive abilities in artificial neural networks would
seem to rule that out. But we do contend that such behavior is
necessary for the existence of minimal intelligence, which is to
say that it is a general feature of it. Therefore, our proposed study
contributes to the question of minimal intelligence in eukaryotes
in the following way: if the feature detection model of plant
behavior is confirmed by the study, then we can claim to have
falsified the minimal intelligence hypothesis. But if it is not then
we can provisionally retain the conjecture.

In the following sections we spell out what these contrasting
hypotheses consist of by way of illustration from the animal
literature, and consider how to transfer the rationale involved to
the plant literature. Discussion and directions for future research
will follow.

EXPECTATION AND SURPRISE IN THE
VENTRAL VISUAL PATHWAY

The canonical domain for feature detection is visual cognition.
The origin of the feature detection hypothesis dates back to
Barlow’s (1953) work on the frog’s retina, according to which
single ganglion cells could release particular motor acts triggering
specific behaviors. Barlow’s insight was elaborated further by
Lettvin et al. (1959), who showed how different ganglion cells
responded to different patterns of excitation, and subsequently
by Hubel and Wiesel (1965) who extended the paradigm
to mammalian research2. According to the feature detection
model, neurons are seen as specialized bottom-up feature
detectors that respond selectively to, for example, angles, lines,
movement, or edges. Information flows upwards into deeper
visual cortical layers (V2, V4, IT), allowing for the receptive field
of neurons within those layers to respond to stimuli of increasing
complexity.

By contrast, information in the “predictive coding” model
(Rao and Ballard, 1999; Friston, 2005; Egner et al., 2010; Chennu
et al., 2013) flows simultaneously in both directions as well as
laterally within individual levels of processing. The nature of
these two “flows” is as follows. Firstly, predictions (conditional
probabilities of particular features being the cause of stimulation)
are propagated top-down. Secondly, mismatches between those
predictions and the incoming input signals (prediction errors)

2The fact that events being coded for by detectors are hard-wired does not entail
that no learning can possibly take place (see end of this section).
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are propagated bottom-up. At each level in the hierarchy,
predicted inputs are compared with actual inputs and the latter
are only propagated upwards if there is a mismatch, i.e., a
prediction error. The aim is to minimize prediction error (the
difference between the top-down prediction of what the sensory
signal is and the actual signal traveling bottom-up). In this way,
perception is interpreted as the end result of a process whereby
top-down predictions match the environmental input, based on
a hierarchical generative model of the causes of that input.

It is possible to test between “feature detection” and
“predictive coding” in animal visual cognition. The two models
generate different predictions and thus are subject to empirical
contrast. In particular, Egner et al. (2010) designed an experiment
to check for interaction between expectations and error (degree
of surprise), as opposed to simple feature detection. In their
study, they considered the fusiform face area (FFA), a visual area
located in the ventral system known to be involved in facial
recognition. Were “feature detection” to be correct, the FFA
area would respond to stimulus facial features per se. On the
other hand, if “predictive coding” is correct, the FFA area should
respond to the weighted sum of expectation and surprise: the sum
of top-down predictions (say, the expectation to see a face) and
bottom-up surprise (the degree of expectation violation as a face
is fed to the system, or not).

Egner et al. (2010) tested these hypotheses with fMRI
measurements by varying both the stimulus features (pictures of
faces vs. pictures of houses) and the expectations generated by
experimental subjects as the material is being presented to them.
They did so by pairing the stimulus features (faces and houses)
with colored frames (green, yellow, blue), in such a way that the
frames provided the low, medium or high cue (25, 50, 75%) that
the incoming stimulus would be a face). The prediction entailed
by the predictive processing model is that whereas faces and non-
faces will elicit equivalent FFA responses when subjects have a
high face expectation (since in both cases there is no association
with activity related to face surprise), faces and non-faces will
elicit maximally differing FFA responses when subjects have a
low face expectation (only one condition, faces, is associated
with face surprise)3. By contrast, the prediction entailed by the
feature detection model would be different FFA responses under
both conditions since subjects are exposed in a strict bottom-up
fashion to face features or non-face features, regardless of the
expectations involved. These results are plotted, respectively, in
Figures 1A,B.

Would plants also be able to generate expectancies in line with
the interpretation that obtains in Figure 1A? In the following
sections we argue that this is an open empirical possibility.

There is an additional motivation for applying a seemingly
zoo-centric theory to the understanding of plant behavior. That
is the nature of predictive processing in cognitive neuroscience
as a specific application of a more general theory of biological
functioning. This more general theory is called the free energy
principle (Friston, 2010, 2013; Hohwy, 2015; Seth, 2015). The free

3Note that Egner et al. (2010) “assume FFA prediction error units to be activated
by positive prediction error (the occurrence of an unexpected face), but not by
negative prediction error (the unexpected omission of a face, corresponding to an
unexpected house stimulus” Egner et al., 2010, p. 16604).

FIGURE 1 | (A) Expected FFA population response on the predictive

processing hypothesis. The diagram on the left shows that the summed

FFA population response should reflect both prediction (P) and prediction error

(PE), unless there is no prediction error present due to the prediction being

correct. The graph on the right demonstrates the prediction of FFA response if

the hypothesis is true. Because there the cues elicit the expectation in the

subject that a face will be displayed, the FFA is active in trials for which the

house is displayed. (B) Expected FFA population response on the

feature-detection hypothesis. The diagram on the left shows that the summed

FFA population response should only reflect actual stimuli (S). The graph on

the right demonstrates the prediction of FFA response if the hypothesis is true.

energy principle applies to all biological self-organizing systems,
and it is a hypothesis about how it is that such systems manage
to keep within the state-space that constitutes homeostasis for
that system. On the free energy principle, it is the ability to
act upon its environment to avoid damaging phase changes—to
keep within this state-space—which defines specifically biological
systems.

An example used to illustrate this idea is given by Friston
and Stephan (2007, p. 423). Their example of a living/non-
living pair is that of a bird and a snowflake. Each of these
systems is comprised by a physical structure which entails a
set of states within which that system must remain in order
to maintain homeostasis. The snowflake, for example, will melt
if it encounters temperatures above a certain point. The same
applies to the bird phenotype, though the complexity and
resilience of that phenotype implies a much wider range of
possible states which it can occupy. The difference between the
bird and the snowflake is that the bird interacts with its local
environment in order to stay within its optimal state-space: it
seeks nutrition, avoids predators, and moves around within its
ecological niche.
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Another way of putting this difference is that the biological
agent must avoid states that are surprising. These states are not
surprising in the phenomenological sense of the word, but are
rather improbable given some implicit set of expectations. That is
to say that they are surprising in an information-theoretic sense.
In our example above, the implicit expectations in question are
constituted by the phenotype of the organism. Surprising states
for a snowflake are those in which it melts; surprising states for
a fish include those in which it is too dry to survive (cf., Hohwy,
2015, pp. 3–4).

The free energy principle states that biological agents can
perform this task by way of free energy minimization, which is
an upper bound on surprise; more specifically, that “biological
systems on average and over time act to minimize free energy”
(Hohwy, 2015, p. 2). That is a process that is mathematically
analogous to prediction error minimization as it is construed in
predictive processing (free energy is equal to the long-term sum
of prediction error). That means that the free energy principle
implies that the organism maintains a generative model (it
generates predictions of future states) of the causes of its sensory
states, and works at minimizing prediction error with respect to
this model.

There are two ways in which prediction error minimization
can proceed. The first of these could be called perceptual
inference. In perceptual inference, prediction error is minimized
by updating expectations in order to bring them into line with
actual states, rather than those that were falsely predicted by the
expectations before updating. This is the process that is thought
to explain performance in the visual perception tasks discussed
above (Egner et al., 2010). The other possible way of minimizing
prediction errors is known as active inference. In active inference,
prediction error isminimized by the selective sampling of sensory
states such that those states are brought into line with what is
predicted by prior expectations. It is this process that is thought
to explain the function of visual saccading, in which the eye
moves rapidly and to take in different parts of the visual field.
The active-inferential theory of visual saccading states that these
saccades constitute the sampling of sensory states in such a
way that evidence is gathered for predictions about visual input
(Friston et al., 2012a)4.

We can cash out this quasi-cognitive distinction between
perceptual and active inference in a biological context by
referring to the example of a fresh-water fish. These fish cannot
survive in salt water. That means that the cascade of sensory
input that immersion in salt water elicits is highly surprising
to that biological agent. Such immersion will generate a great
deal of prediction error, or free energy. In order to minimize
that free energy the fish can do one of two things. The first is
to re-sample the environment such that future input is brought
back into line with expectations. That means active inference;
it means that the fish follows the salt-water gradient back into

4There is an objection against the idea of active inference which states that the
idea entails that a surprise minimizing organism can best do this by retreating
from all sensory stimuli; that is, by cutting themselves off from the world inside
a “dark room.” The appropriate reply to this objection is that the dark room is only
unsurprising under the assumption that the organism has no expectations about
its future states (cf., Friston et al., 2012b).

fresh water. The second is to update its expectations such that it
expects to be in salt-water. This is perceptual inference; that likely
happens initially and at some level in the predictive hierarchy;
though given the relatively unlikely state that immersion in salt
water represents, it is not to be ultimately chosen as an adaptive
strategy.

This entails a link between homeostasis and anticipative
behavior. That is to say, the free energy principle entails the
hypothesis that the mechanism by which biological systems
maintain homeostasis is a kind of anticipation; namely, by
minimizing the difference over time between the implicit model
of the world that its morphology constitutes and the sensory
states that it finds itself in. That means the minimization
of surprise, and this is done through perceptual inference
(morphological change in response to sensory states, ranging
from different patterns of activation across the visual cortices in
mammals all the way down to hardening responses to abiotic
stresses in plants) as well as active inference (selective sampling
of sensory states through movement in the environment, such
as visual saccading in animals and nutations in plants). For this
reason the predictive processing theory is a prime candidate for
the explanation of plant behaviors of the kind we label “minimally
intelligent” in this article. The analogous and wider-scoped free
energy principle provides one rationale for spreading wider the
scope of explanatory concepts that have heretofore been confined
to application in animal biology.

Lastly, there is an important distinction in the predictive
coding literature between two kinds of learning architecture:
model-based and model-free (Daw et al., 2005). Model-based
architecture follows predictive coding as it has already been
described; prediction error is minimized relative to a hierarchical
generative model of the causes of sensory states. So it is
representation-heavy mode of predictive coding that implies a
relatively sophisticated model of the environment; the responses
of the organism to the environment are mediated through
the model. Model-free architecture lacks any such model; the
responses of the organism to the environment are direct and
unmediated. A model-free architecture will produce learning
responses that proceed through trial and error, like classical
reinforcement learning. Whether plant learning is model-based
or model-free (or both) would have interesting consequences for
our hypothesis. If plant learning includes model-based strategies,
then it is much more sophisticated than formerly assumed, and
capable of making deeper and more discriminative distinctions
between different kinds of stimuli. We may therefore further
massage our hypothesis into two distinct commitments: a weaker,
on which plant cognition is entirely model-free; and a stronger,
on which it also includes model-based learning.We consider how
we might empirically distinguish between these later on in the
paper.

By way of a caveat, it must nonetheless be noted that not
all the details of the free energy principle are worked out here,
and it is indeed not uncontroversial as a whole (e.g., Gershmann
and Daw, 2012). On the other hand, and before we consider
further the predictive processing/free-energetic vs. the feature-
detection interpretation of plant behavior, it must be borne in
mind that despite features themselves being hard-wired, there
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is room for learning under the feature detection paradigm. In
effect, the release of specific motor acts/behavioral patterns via,
for example, single retinal ganglion cells in Barlow’s (1953)
original model is consistent with the possibility that learning
takes place: the events being coded for by detectors could well
be hard-wired, and yet the mapping between the features that
are being detected and subsequent actions be learned5. As a
result, we would be confronted with two different models of how
a system successfully anticipates environmental contingencies,
both sculpted via learning. For present purposes, we shall thus
restrict our attention to the Barlow (1953), Lettvin et al. (1959)
and Hubel and Wiesel (1965) original learning-free formulation,
for the sake of contrasting it with predictive processing; a model
that connects anticipation with learning courtesy of an internal
model subsequently exploited for the purpose of generating
predictions. As to the free energy principle, it is sufficiently
plausible, and its closeness to predictive processing gives us cause
to think that the empirical tests that we describe are worth
carrying out in the context of plant movements. Indeed, those
prospective studies could be construed as a contribution to the
wider project of putting the free energy principle to the test in an
experimental setting.

APPLYING THE EXPERIMENTAL
PARADIGM TO PLANTS

If the predictive processing/free-energetic interpretation of plant
behavior is on the right track (Figure 1A), then we should be
able to observe plant excitable cells responding to the summation
of activity related to expectation. Or, at the plant organ/root
level, the actual context of the environmental situation should
determine the behavioral outcome as roots explore their
surroundings. By contrast, should feature detection be correct,
then we should expect no interaction with expectations or
context. In principle, we should observe plant cells and organs
responding exclusively to the physical vector of stimulation.

In order to make these two hypotheses testable, a number
of options are available with regard to (i) the type of gradient
potentially being sensed (gravity, light, moisture, oxygen, touch,
etc.), and (ii) the experimental method by which to generate
the required expectations. Finally, (iii) different measurement
techniques may be considered when testing our working
hypotheses.

(i) As to the type of stimuli, we may consider either the
perception of a single modality (for example, gravisensing) or the
integrated response to several vectors, such as the weakening or
inhibition of the response to gravity when stimulated by touch
(Fasano et al., 2002), light (Liscum, 2002; Wan et al., 2012),
water (Takahashi et al., 2002), or sound waves (Gagliano et al.,
2012). As well, such stimulations may be continuous or transient.
Continuous touch stimulation may obtain by placing a barrier
that prevents root gravitropism. Or we may consider continuous
bioacoustic stimulation (Gagliano et al., 2012). By contrast, in the
case of transient touch stimulation, wemay consider, for instance,

5We thank an anonymous reviewer for bringing this point to our consideration.

the stimulation of root cap peripheral cells (Massa and Gilroy,
2003), or transient bioacoustic stimulation.

(ii) With respect to the manipulation of the degree of
expectation, there are different options. In the aforementioned
case of visual cognition and FFA, they achieved it by pairing
the stimulus features (faces and houses) with colored frames
(green, yellow, blue) in such a way that the frames provided the
cue (low, medium or high) that the incoming stimulus would
be a face (Egner et al., 2010). Likewise, both stimulus features
for the experimental setting in plants, and the expectation of
encountering those stimulus features, would need to be varied
independently.

In order to generate expectations we can either use the
same or a different network. That is, the cues that precede the
presentation of the stimuli can belong to the same type of system
or to a different one, such as happens in the integration of
electrical network with chemical network systems when electrical
activity is elicited by chemical means. Expectations may also be
generated by mechanical stimuli, elicitation of electric spikes,
firing with transient stimulation, and repetition (e.g., transient
acoustic stimulation).

(iii) Finally, with regard to the available measurement
techniques, we may use the measurement of behavioral events
(for instance, root bending, and tropism), single-cell recordings,
or non-invasive neuroimaging techniques.

To take a particular example for the sake of illustration,
consider the phenomenon of “repetition suppression,” where it
is found that the repeated presentation of a stimulus results in
the attenuation of neural activity (Todorovic et al., 2011). In an
MEG study, Todorovic et al. (2011) presented human subjects
with auditory stimuli whose repetition were manipulated so that
they were subject to different levels of expectation. They reported
that a larger suppression is registered when subjects expect the
repetition to take place. This is observed in auditory cortex
activity and synchrony. In their view, repetition suppression is to
be interpreted in predictive coding terms: top-down expectations
underlie suppression. What that means is that as the stimulus
in question comes to be expected, it becomes part of the model
that is being used to predict the flow of sensory information. This
means that presentation of that stimulus generates less prediction
error, less stress penalty, and therefore less activity, since it is
already integrated into the top-down signal which will not be
contradicted by mismatch.

Considering that repetition suppression is a robust
phenomenon that has been observed at different time scales
in a number of different sensory modalities, and in response
to a variety of stimulus properties (Grill-Spector et al., 2006),
it is a possibility that the phenomenon also exists in plants. In
support of this scenario, osmo-sensory potentiation has been
reported recently. Stephan et al. (2016) have found rapid onset
and reversibility of sensory potentiation via plastid-mediated
calcium spikes primarily in root apices.

In line with Todorovic et al. (2011), we could test for the
possibility that the response in terms of activity and synchrony
of transition zone (TZ) cells is attenuated under conditions
of expected stimulus repetition (TZ is a root apex region
interpolated between the apical meristem and sub-apical cell
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elongation region that is specialized in processing and integrating
sensory information, and instructing the motoric regions driving
goal-directed avoidance and exploratory root tropisms—see
Baluška et al., 2009, 2010; Baluška and Mancuso, 2013). If
repetition is unexpected, by contrast, then we should expect that
TZ cell responses would undergo less attenuation. The predictive
coding explanation would be that there is less prediction error
under expected experimental conditions. Likewise, unexpected
omissions may result in a rise in synchronous activity (Baluška
and Mancuso, 2013) over TZ cells.

If we were to draw an analogy between transition zone
cell response in a study like this and the activity of the
FFA in Egner et al. (2010), then we might be construing
transition zone cell response as correlated with the levels of
prediction error that are generated in response to the presented
stimulus—i.e., the mismatch between expected states and sensory
states. Alternatively, we might be construing the discrepancy
in attenuation as a function both of prediction and prediction
error (see Egner et al., 2010). But in either case, we need the
mismatch between expectation and sensory states in order to give
the explanation.

Behaviorally relevant measurements in bioacoustics may
involve the angle of root bending induced by auditory
cues that have different probabilistic relationships with the
distribution of the sources of stimulation (low frequencies of
200 Hz corresponding to water stream, as opposed to higher
frequencies—Gagliano et al., 2012). Or consider water and
nutrient availability at the root level. One could use a simple
binary maze system, allowing maize roots to take decisions
in their growth direction that are stimulated or inhibited
by well-defined chemicals, plant growth regulators, and plant
nutrients (Yokawa et al., 2014). Growing maize roots make
robust decisions on the basis of the available chemicals, and
an experimental set-up would allow further analysis of root
decisions and learning/memorization phenomena in plants. It is
technically possible to increase the number of possible choices by
increasing the number of available paths containing stimulants
or repellents for root growth. Besides chemical stimuli, one could
also load some paths using physical stimuli such as light or sound
(mechanical vibrations). In our previous study, we reported
that maize roots grow vigorously inside of glass capillaries even
when these are inversed and root grow up against the gravity
vector (Burbach et al., 2012). However, as soon as they are
exposed to light, roots accomplish promptly U-turn movements
via complicated thinning of their apices (maize roots are too thick
for turning in these thin capilaries), and grow down the gravity
vector (Burbach et al., 2012). Similarly, maize roots growing on
hard substrate via their characteristic “crawling” movements in
darkness stop this and try to grow down the gravity vector if
exposed to light. This photophobic root behavior, similar to the
root “crawling” movements, requires intact root caps. Decapped
roots grow vigorously but are unable to behave (Burbach et al.,
2012). Since light acts as stressor to plant roots, we proposed that
this is not just a negative phototropism but rather an active escape
tropisms (Yokawa et al., 2011, 2013; Burbach et al., 2012; Xu et al.,
2013). This fast root response to sudden illumination implies that
maize roots are well prepared to this stress situation and respond

very fast to escape back into the darkness. Similarly, placing
roots horizontally induces very rapid (within a few seconds)
gravistimulated root bending, again implying that roots are well
prepared for such a situation (Baluška and Volkmann, 2011).

The next well-studied phenomenon, related to memory-based
plant behavior, is stress memory in plants (Bruce et al., 2007).
As discussed below, repetitive exposure of plants to particular
stress situations is well known to be memorized by plants as these
“expect” the next stress challenge and are already prepared to
cope better with these stress challenges (Knight et al., 1998; Goh
et al., 2003; Bruce et al., 2007; Harb et al., 2010).

Particularly instructive might be measurements of
synchronous oscillations at the root apex transition TZ
zone (Baluška and Mancuso, 2013). The idea is that synchrony
patterns determine impacts of the top–down feedback flows.
Such analysis will allow us to test whether plant nutrients and
relevant stimuli differ from non-nutrients and non-relevant
stimuli in their elicitation of similar TZ cell responses when roots
have a high nutrient (or specific stimuli) expectations. The idea
is to adjudicate between our working hypotheses by registering
data from transition zone action potentials while independently
varying both stimulus features (e.g., 200Hz vs. 1000Hz) and
plant expectations regarding those features (low, medium vs.
high water 200Hz expectation). If the responses elicited are
similar, then that would serve as support for the predictive
coding hypothesis. In contrast, should different transition zone
responses be obtained, this would support the feature detection
hypothesis (based on the strict bottom-up responses to nutrient
features or non-nutrient features).

Taking into account the distinction between model-based and
model-free modes of predictive coding as it was defined at the
end of Section Expectation and Surprise in the Ventral Visual
Pathway, we should note at this point that the empirical tests
that we suggest here would not distinguish sufficiently between
these. That is because the “anticipation” that is assayed is of a
kind analogous to the Egner et al. (2010) study. The paradigm
of Egner and his collaborators is not sensitive to a distinction
between model-free and model-based learning, since either of
these could produce the relevant sensitivity to context (though
given antecedent commitments about human vision, a model is
assumed). How, then, would experimenters working with plant
models be able to claim support for the weak (entirely model-
free) or strong (model-based, or mixed) hypothesis?

Daw et al. (2011) have designed a paradigm for human
subjects which can distinguish between model-based and model-
free learning processes. The experimental participant performs
a sequential two-alternative forced-choice task that has two
stages. What is presented in the second stage depends on the
participant’s choice in the first: each option has a 70% chance
of leading to one of two alternative choices in the second
stage. The choice in the second task may or may not yield
varying levels of reward. Model-based and model-free learning
processes will assign value differently in this task, allowing one
to distinguish between them. A model-free process will infer a
direct linear relation between any reward from the second choice
and whatever option in the first choice led to the second, while
a model-based learning process will also learn the frequencies
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with which the first task leads to one or the other second-stage
choice, and this will bear on how value is assigned in the case
of reward. So if the choice made in the first task leads to that
of the two subsequent choices which is less likely given the first
choice, and the second choice yields reward, then a model-based
learning process will assign value to the first option that was
not chosen (on the basis that this is more likely to lead to the
choice that has just been rewarded), while thatmodel-free process
will assign value to the first option that was actually chosen.
This is because the model-based process is able to recognize the
statistical relations between the first and second stages.

Although this paradigm is highly human-centric, we see no
principled reason why the basic abstract principle at work in
it could not be applied in the case of plant-based paradigms—
especially seeing as that the Egner paradigm is just as human-
centric. The abstract point is that model-based learning processes
can learn probabilistic relations between items in a sequence
while model-free learning cannot. We believe that an analogous
model could be implemented in plant models. This requires (i)
two statistically related items; (ii) a reward associated with the
second item; and (iii) an appropriate measuring technique for
the assignment of value. This would be a fruitful area for future
research.

DISCUSSION AND OUTSTANDING
QUESTIONS

Can plants be astonished by the unexpected? Our working
hypothesis, backed by recent studies, is that plants have the
capacity to make good predictions regarding forthcoming
sources of stimulation, whose perception involves the continuous
match of expectations against the impinging environmental
signals. We propose here to empirically test plant intelligence
by contrasting two alternative hypotheses. According to the
feature detection hypothesis, plants are passive, hard-wired, and
stimulus-driven organisms. They simply react to environmental
stimuli in an online, bottom-up fashion. In that case, there
seems to be little need to call such form of reactive behavior
“intelligent.” According to the second hypothesis, predictive
coding, plants rely upon their own expectations in a top-down
fashion, and the system stabilizes only once those expectations
face the incoming signals which provide the system with a
measure of error.

What are the implications for our understanding of the way
plants perceive the world? If the predictive coding hypothesis
finds empirical support, plant perception is an active process,
where the organism/plant constructs its own plant-specific
world-view (courtesy of previous ontogenetic exposures coupled
with phylogenetic endowment) via the sensory vectors impinging
upon the system. Whenever such predictive sensory vectors
(the most likely sources of perturbation in a particular context:
nutrients, water, etc.) match the incoming environmental signals
(the fidelity of generated world-view is high), we may say that
active plant perception takes place.

Plant root navigation is based on sensory signal integration
allowing roots to search for water and nutrients, as well

as avoiding/escaping dangerous root patches, in complex
and heterogeneous soil environment. As we have discussed
previously, the root apex TZ is specialized for such sensory
signal integration and also allows effective sensorimotor coupling
as the basal cells of this zone control root bendings during
root tropisms (Baluška et al., 2009; Baluška and Mancuso,
2013). As cells in this special root apex zone are unique with
respect of their high demand of oxygen, which is linked to the
endocytic vesicle recycling sensitive to brefeldin A (Baluška and
Mancuso, 2013), one can expect that this zone represents some
sort of command center responsible for sensorimotor circuits
akin to the Darwinian brain of lower animals (Baluška et al.,
2009).

Now, if we were able to tell apart our two working hypotheses
experimentally, then we envisage that a number of outstanding
questions would be forthcoming:

First, the experiment from the animal literature reported
here suggests that neurons respond to a mixture of expectation
and surprise, which is consistent with predictive processing
insofar as bidirectionality and functional asymmetry (top-down
expectations matching bottom-up signals) are needed (Friston,
2005). If the predictive processing hypothesis is correct, then
the plant anticipatory system it should be reflected in some
form of functional asymmetry. Such an asymmetric functional
composition, however, need not imply any anatomically marked
difference in between types of cells (for instance, deeper excitable
cells sending out their expectation values, with error signals
being forwarded in turn). When we talk about deeper and
less deep populations, we have in mind cortical layers. But the
integration of top-down and bottom-up informational flows
need not reside in anatomically marked distinctions as in
the hierarchically layered structure of the mammalian cortex.
The hypothesis is that anticipation might be embodied in the
temporal structure of the synchronous oscillatory activity of
the TZ cells. But first we need to characterize TZ oscillations
under control and sensory-loaded situations. Next, one can
apply repeated trains of well-defined coupled stimuli, e.g.,
cold stress following particular light stimulation, or cold stress
not preceded with such “light warning.” In animals, Engel
et al. (2001) argue that cognition is explanatorily grounded
in the dynamic bounding of cell populations from the same
and from different neural systems. Sensorimotor coordination
requires the soft and functional assembling of many different
subsystems, and this is achieved courtesy of the synchronous
oscillatory nature of populations of neurons (for another option,
see Damasio’s “convergence-zone” model; Damasio, 1990). In
plants, top-down influences can be couched in dynamical
terms. In the same way that “large-scale dynamics can have a
predominant influence on local neuronal behavior by “enslaving”
local processing elements” (Engel et al., 2001), we may interpret
synced populations of neurons as entraining those out of sync
in order to assemble together and enhance their firing saliency.
The capacity of plants to anticipate stress situations might be
implemented in the temporal structuring of transition zone
activity patterns. Sensorimotor integration might therefore be
accounted for by transition zone oscillations (Baluška and
Mancuso, 2013).
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Second, predictive processing in the mammalian brain is
thought to take place hierarchically, as top-down and bottom-
up sources of information interact at different spatiotemporal
scales throughout the network. For the system to successfully
anticipate environmental contingencies, an internal model is
sculpted via learning; a model that is subsequently exploited
for the purpose of generating predictions. What forms of
learning might then play a functionally equivalent role in plants?
Here, forms of learning such as habituation (Gagliano et al.,
2014) look promising. Plants are well known to “learn” from
previous stress challenges via modifying their metabolism, cell
structures, anatomy and physiology known in plant sciences
as hardening or acclimation (Knight et al., 1998; Goh et al.,
2003; Bruce et al., 2007; Harb et al., 2010; Dietz, 2014; Ding
et al., 2014; Kleinmanns and Schubert, 2014; Shi et al., 2015).
Well accepted mechanisms for these plant memory phenomena
are linked to epigenetics which is based on heritable chromatin
modifications via histone markings (Ha, 2013; Iwasaki and
Paszkowski, 2014; Kleinmanns and Schubert, 2014). Similar
memory models are well characterized also for animals (Campos
et al., 2014). Importantly, epigenetics is relevant not just
for cellular levels, but also controls behavior in animals and
humans (Impey, 2007; Graff and Mansuy, 2008; Peixoto and
Abel, 2013). Besides epigenetic-based memories, however, plants
might also use synaptic-like supracellular memories. This is
suggested by the fact of immunological memories, which have
already been reported to exist in plants since 1986 (Baldwin
and Schmelz, 1986; Ruuhola et al., 2007), as well as the
existence in plants of plant-specific immunological synapses
(Baluška et al., 2005; Kwon et al., 2008; Sup Yun et al., 2008).
Memories of gravity- and photo-stimulations (Nick et al., 1990;
Nick and Schafer, 1998) should also be included in future
studies.

CONCLUSIONS AND OUTLOOK

Plants live in complex environments and their survival is
dependent on the reliable sampling of critical biotic and abiotic
parameters. To this end, plants and their roots use their
sensory systems to sample and integrate the complex sensory
information from their environment for the sake of responding
adaptively. Similarly, as in higher animals and humans (Laughlin,
2014; Picard and Friston, 2014), faithful representation of their
outside world into their metabolic, physiological and behavioral
adaptations are essential for their survival. To achieve this
goal via optimization of their Darwinian fitness, plants use
their own plant-specific intelligence, cognition, and behavior
(Trewavas, 2005, 2014; Karban, 2008; Baluška and Mancuso,
2009a,b; Baluška et al., 2009; Karpiński and Szechyńska-Hebda,
2010; Calvo Garzón and Keijzer, 2011; Trewavas and Baluška,
2011; Marder, 2012, 2013; Gagliano et al., 2014; Cvrčková et al.,
2016).

Although it might be tempting, on first glance, to relate plant
cognition (Trewavas, 2002) to fitness, or as the slogan goes, to the
“the survival of the fittest,” we need something other than natural
selection per se to grasp plant intelligence. Evolving an adaptation

and, say, learning, are different things, but the inheritance-
variation-selection view of the evolution of intelligence leaves
out of the picture the very learning that takes place in ontogeny.
Different individual plants, despite sharing their genotype (those
that belong to the same species), can still develop markedly
different phenotypes as a function of diverging environmental
demands and organismal epigenetic control. Signal integration
encompasses phylogenetic endowment coupled with ontogenetic
exposures. Individual plants do learn particularities of their local
environment (Silvertown and Gordon, 1989; Gagliano et al.,
2014; Gagliano, 2015) that could not possibly be predicted on an
evolutionary timescale.

The predictive coding model hypothesizes that cascades of
sensory input can be surprising to both animals and plants,
generating free energy (prediction error). As a result, plants like
animals may perform active inference. Recall the example of the
fresh-water fish that might minimize free energy by re-sampling
the environment in order to bring future input into line with
expectations. Our hypothesis is that this may well be the case
with salt-avoidance behavior in plants. Integrated environmental
assessment (salinity, gravitropic, etc.) appears to be needed at the
root level in order to optimize growth under abnormal saline
conditions. This means that the plant root, like the fish, would
follow the salt-water gradient back into fresh water. If roots enjoy
salt-avoidance behavior then this implies an intelligent adaptive
strategy that calls for the active, salt-induced, modification of
root growth (Li and Zhang, 2008; Sun et al., 2008; Yokawa
et al., 2014). Future studies will illuminate how the plant-specific
sensory systems feed first into the bioelectrical phenomena at
the plasma membrane, and into cellular processes underlying
adaptive responses, and behavior at the subcellular, cellular and
supracellular organ levels. Plant roots will serve well in these
studies as the root apex is an exploratory plant organ, endowed
with the sensory root cap, optimized for the search of plant
nutrients and the avoidance of toxic and dangerous soil patches.

Once anthropocentric preconceptions are superseded, we
may label plant behavior as cognitive insofar as it is flexible
and adaptive. With that being said, it goes without saying
that predictive coding is not the one and only alternative to
feature detection. Unlike predictive coding-based strategies, an
ecological, non-model-based approach (Calvo et al., 2014) may
exploit information available at the level of the coupling itself
between organism and environment, telling against top-down
flows of representational predictions that operate in predictive-
coding. For the sake of direct comparison, we have only
considered “feature detection” vs. “predictive coding” models of
plant behavior. Whether a continuous coupling of perception-
action that may account for forms of anticipation in non-
representational terms is plausible remains an open question for
future research6.
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