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Recently, a lot of studies in the domain of numerical cognition have been published
demonstrating a robust association between numerical symbol processing and
individual differences in mathematics achievement. Because numerical symbols are
so important for mathematics achievement, many researchers want to provide an
answer on the ‘symbol grounding problem,” i.e., how does a symbol acquires its
numerical meaning? The most popular account, the approximate number system (ANS)
mapping account, assumes that a symbol acquires its numerical meaning by being
mapped on a non-verbal and ANS. Here, we critically evaluate four arguments that
are supposed to support this account, i.e., (1) there is an evolutionary system for
approximate number processing, (2) non-symbolic and symbolic number processing
show the same behavioral effects, (3) non-symbolic and symbolic numbers activate
the same brain regions which are also involved in more advanced calculation and
(4) non-symbolic comparison is related to the performance on symbolic mathematics
achievement tasks. Based on this evaluation, we conclude that all of these arguments
and consequently also the mapping account are questionable. Next we explored less
popular alternative, where small numerical symbols are initially mapped on a precise
representation and then, in combination with increasing knowledge of the counting
list result in an independent and exact symbolic system based on order relations
between symbols. We evaluate this account by reviewing evidence on order judgment
tasks following the same four arguments. Although further research is necessary, the
available evidence so far suggests that this symbol-symbol association account should
be considered as a worthy alternative of how symbols acquire their meaning.

Keywords: numerical cognition, symbol grounding, symbol associations, approximate number system,
mathematics achievement

If we want to estimate how much time we lose on average in daily traffic or know how many
days we have left until the next deadline, we rely on calculation and insight in mathematical
relations, i.e., skills that determine individual differences in mathematics achievement. It has been
demonstrated that many different factors can contribute to mathematics achievement, ranging
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from environmental influences such as the frequency a
child is confronted with numerically related activities (e.g.,
playing board games, shop play, etc., see Lefevre et al,
2009) over domain-general cognitive skills, i.e., skills that
are also important outside the domain of mathematics
achievement like for instance working memory (e.g,
Friso-van den Bos et al, 2013) to domain-specific skills
unique for number processing, like efficient processing
of numerical symbols (e.g., Holloway and Ansari, 2009;
De Smedt and Gilmore, 2011; Noél and Rousselle, 2011;
Sasanguie and Reynvoet, 2014). This review will focus on the
domain-specific skills. Many empirical studies investigating
domain-specific aspects have shown that in particular
semantic decisions on numerical symbols such as ‘deciding
which digit is numerically larger; are positively related to
mathematics achievement (for reviews see, De Smedt et al.,
2013; Gebuis and Reynvoet, 2015; for a meta-analysis see
Schneider et al, 2016). As a consequence, a lot of interest
has been devoted to the question how such a symbol is
given a numerical meaning, ie., the so-called ‘symbol-
grounding problem’ (Harnad, 1990; Leibovich and Ansari,
2016) because this is a crucial step for later mathematics
achievement.

Previously, Feigenson et al. (2004) suggested that numerical
symbols may be grounded in two core systems that are present
in children from birth. First, numerical symbols (e.g., digits
or number words) may be mapped onto a non-verbal and
analog representation of numbers, typically referred to as
the approximate number system (ANS). Second, numerical
symbols may also be linked to a system that represents
numbers in a precise way, but with a limited capacity up
to 3-4. This system is sometimes referred to as the object
tracking system (OTS) or parallel individuation system (e.g.,
Piazza, 2010). Although Feigenson et al. (2004) left open
both possibilities, the past 10 years, a gradual shift toward
the ANS as a solution for the symbol-grounding question has
emerged. We will refer to this proposal as the ANS mapping
account from now onwards (e.g., Piazza, 2010; Feigenson
et al., 2013). Dehaene (2001) provided four arguments in favor
of this ANS mapping account: First, approximate number
processing abilities can be found in different species, ranging
from bees, over fish to monkeys. Second, these approximate
abilities are also present in infants. Third, similar behavioral
patterns can be found in animals and infants on the one
hand, and children and adults on the other hand, even when
children and adults process symbolic numbers. Finally, there
exist one dedicated brain region that is involved in non-
symbolic and symbolic processing and calculation (an important
subdomain of more complex mathematics achievement).
When Halberda et al. (2008) for the first time observed
that the performance in a non-symbolic number (arrays of
dots) discrimination task - an ability relying on the ANS -
was related to (symbolic) mathematics achievement, a fifth
argument was added by the proponents of the ANS mapping
account: The ANS serves as the foundational basis for more
complex (symbolic) mathematical abilities, like for instance
calculation.

In this paper, we will first critically evaluate these arguments
on the basis of recent findings. Next, we will consider an
alternative solution for the symbol-grounding problem, where
the limited but precise number system (cf. the OTS, parallel
individuation system or core system 2 of Feigenson et al.,
2004) serves as a hub toward a representation of symbolic
numbers where a numerical symbol derives its meaning through
associations (e.g., order associations) with other symbols, an
account we will refer to as the symbol-symbol association
account. We will hereby review the same arguments that were
raised in favor of the ANS mapping account, now applied to
the alternative solution based on symbol-symbol associations:
Evolutionary precursor of order, behavioral effects in ordering
performance, dedicated brain area for ordering and calculation
and the relation between ordering ability and mathematics
achievement). Finally, we will sum up some conclusions and
suggestions for further research to help unravel the symbol-
grounding problem and consequently mathematics achievement.

A CRITICAL EVALUATION OF THE ANS
MAPPING ACCOUNT

As mentioned in the previous section, the ANS mapping
account has traditionally been supported by five arguments. In
our critical evaluation of these arguments, we group the first
two of Dehaene (2001), i.e., approximate number processing
can be found in animals and approximate number processing
is present in infants. In this way, we critically evaluate the
following four arguments in terms of their significance for
the symbol grounding problem: (1) There is an evolutionary
system underlying approximate number processing (evidenced
by findings in animals and infants); (2) the same behavioral
pattern is found in non-symbolic and symbolic processing; (3)
there is a dedicated brain area that is activated by non-symbolic
number, symbolic number and calculation and (4) non-symbolic
processing is (predictively) related to mathematics achievement.

Approximate Number Discrimination Is

Present in Animals and in Infants

First, several studies have indeed shown that both animals (e.g.,
Cantlon and Brannon, 2006; Agrillo et al., 2011; Pahl et al., 2013)
and infants (e.g., Xu and Spelke, 2000; Libertus and Brannon,
2010; Starr et al., 2013) can discriminate number. Crucially,
the performance on these number discrimination tasks was
suggested to rely on an imprecise representation of number.
For instance, Cantlon and Brannon (2006) demonstrated that
monkeys showed ratio dependent behavior: numerically closer
numbers were more difficult to discriminate. Similarly, in
a study with 6-month old infants, Libertus and Brannon
(2010) demonstrated that the preference for the numerically
changing stream (compared with the non-changing stream)
increased when the ratio between the numbers increased. Such
performance is supported by the idea of an ANS that represents
number in an approximate and compressed way on a mental
number line, resulting in the observation that numbers can only
be correctly discriminated if they differ by a given numerical ratio
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(e.g., Dehaene, 2001). This idea has received further support by
a series of single cell recording studies in monkeys by Nieder
and Dehaene (2009) and Nieder (2016). They demonstrated
the existence of ‘number neurons’ that encode number. More
specifically, these number neurons showed maximum activity
for a particular number (i.e., the preferred numerosity) and a
gradual decrease of activity was observed in these neurons that
was dependent on the ratio between the presented numerosity
and the preferred numerosity.

Although the presence of basic numerical abilities in
animals and infants is fascinating, most of these results are
not informative regarding the question how symbols acquire
their numerical meaning, i.e., the so-called ‘symbol grounding
problem.” However, the acquisition of the numerical meaning of
symbols was the object of investigation in two studies by Diester
and Nieder (2007, 2010). In both studies, monkeys were trained
to associate numerical symbols with varying non-symbolic
numbers. After the learning process, association neurons were
found in the prefrontal cortex that responded similarly to the
associated symbolic and non-symbolic number. Such association
neurons, however, were not found in the parietal cortex, the
subsumed dedicated brain area for number processing as we
will describe later (Diester and Nieder, 2007). In another study,
Diester and Nieder (2010) found that the monkeys’ behavioral
performance with learned numerical symbols was similar to their
performance with non-symbolic numbers. At first sight, these
findings suggest that symbols acquire their numerical meaning
by associating them with approximate magnitudes (i.e., the ANS
mapping account). However, there is of course a crucial difference
between training studies with monkeys and how children actually
learn symbols during development. Before children grasp the
numerical meaning of the symbols (i.e., the verbal number
words), they have already acquired the numerical sequence of
these verbal number words through recitation of the counting list
(Wynn, 1990; Le Corre et al., 2006; Le Corre and Carey, 2007).
This means that the meaning of numerical symbols can not only
be inferred from their corresponding number of objects they are
mapped on, but also from their relation with other numerical
symbols (e.g., seven is larger than six because it comes later in the
sequence). Because this language facility is absent in monkeys, it
remains questionable whether the findings from training studies
with monkeys can be generalized to how children acquire the
numerical meaning of symbols.

Non-symbolic and Symbolic Number
Discrimination Show the Same

Behavioral Effects

A second argument that is typically made to support the ANS
mapping account is that children’s and adults’ performance in
non-symbolic (i.e., deciding which of two presented dot arrays
contains more dots), but crucially also in symbolic number
comparison (i.e., deciding which of two digits is numerically
larger) highly mirrors the behavioral patterns observed in infants
and animals. Indeed, as in infants and animals, non-symbolic
number comparison in children (e.g., Halberda et al., 2008;
Holloway and Ansari, 2008; Sasanguie et al., 2013a) and adults

(e.g., Buckley and Gillman, 1974; Halberda et al., 2012; Smets
etal.,, 2016) is also characterized by a ratio effect (RE): participants
are less accurate and respond slower when the numerical ratio
between those numbers approaches 1 (comparingl2 and 16 dots
is for instance more difficult than comparing 8 and 16 dots).
Also in symbolic comparison tasks similar effects can be found
in children (e.g., Holloway and Ansari, 2008; Sasanguie et al.,
2012) and adults (e.g., Moyer and Landauer, 1967; Dehaene
et al., 1990): First, a distance effect (DE) is observed: deciding
whether 7 is larger than 6 (i.e., small distance of 1) takes longer
and is more difficult than deciding whether 7 is larger than 4
(large distance of 3). Second, a size effect (SE) is typically found
(e.g., Dehaene and Mehler, 1992; Verguts et al., 2005): deciding
whether 7 is larger than 6 (i.e., large numbers) is more difficult
than deciding whether 3 is larger than 2 (i.e., small numbers). The
combination of the distance and size effect mirrors the ratio effect
in non-symbolic comparison tasks and is typically interpreted as
evidence in favor of the ANS mapping account, i.e., the idea that
symbols such as number words and digits acquire their numerical
meaning by being mapped on the ANS, resulting in similar effects
in non-symbolic and symbolic comparison.

However, already during a decade, Verguts et al. (2005),
Van Opstal and Verguts (2011) and Verguts and Van Opstal
(2014) showed by computational modeling work that overlapping
approximate representations are not required to obtain a DE and
a size effect and that these effects can be the result of simple
network properties. Verguts et al. (2005) demonstrated that the
DE in comparison can be caused by the connection weights
between the input layer and the decision layer. This finding
has been confirmed by the presence of a DE in non-numerical
order processing where there is no approximate representational
overlap between adjacent elements, such as navy ranks or
academic positions (Chiao et al., 2004) or letters of the alphabet
(Van Opstal and Verguts, 2011). In a more recent paper, Verguts
and Van Opstal (2014) showed that the size effect in symbolic
comparison is the result of the skewed frequency distribution
of numbers, with smaller numbers being more frequent than
larger numbers (Dehaene and Mehler, 1992): model simulations
with equal frequencies for all elements did not lead to a size
effect, whereas in contrast simulations with skewed frequencies
did. The fact that the distance and size effect in symbolic
comparison are not necessarily evidence in favor of overlapping
representations and can be the result of decisional aspects
and frequency distributions, respectively, clearly undermines the
argument that similar behavioral effects such as the DE and
SE in non-symbolic comparison tasks are evidence for ANS
mapping account. Therefore, ideally, alternative tasks should
be used to assess similarities in the behavioral performance
with non-symbolic and symbolic numbers. One such task is the
numerical matching task in which participants have to indicate
whether two magnitudes are numerically similar or not (Cohen
Kadosh et al., 2008; Van Opstal and Verguts, 2011). For instance,
Sasanguie et al. (2015) presented participants with audio-visual
number pairs that had to be numerically matched (i.e., are the
number that you hear and the number that you see numerically
equivalent or not?). When participants had to match a symbolic
pair (i.e., a visual presented digit with an auditory presented
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number word), no DE was observed. In contrast, when a non-
symbolic pair (i.e., an array of dots and auditory presented
series of tones) or a mixed pair (ie., an array of dots and an
auditory presented number word) had to be matched, a DE
was observed. Crucially, the performance on non-symbolic and
mixed conditions was correlated, whereas no such correlation
was observed with the symbolic condition. This finding is difficult
to reconcile with the existence of one shared representation for
number (i.e., the ANS on which numerical symbols are mapped).
Rather, it suggests the existence of two different systems for
processing non-symbolic and symbolic magnitudes. A similar
conclusion was proposed by Lyons et al. (2012) on the basis of
a different experimental manipulation. In this study, participants
again had to discriminate pure symbolic, pure non-symbolic,
and mixed pairs. It was hypothesized that if non-symbolic and
symbolic numbers share the same representation, then mixed
trials should be compared as efficiently as pure trials. Contrary to
this hypothesis, comparing mixed trials occurred much slower.
According to the authors, this additional cost reflects the time
needed to connect two distinct magnitude representations for
symbolic and non-symbolic number in order to solve the task. In
sum, the modeling work and behavioral studies showed that we
need to be cautious with the assumption that similar behavioral
patterns for non-symbolic and symbolic number processing is
evidence for the ANS account because (1) behavioral patterns
observed for symbolic number processing can be explained
alternatively and (2) when other measures than comparison are
used, results contradicting the ANS mapping account have been
obtained.

Non-symbolic and Symbolic Number
Discrimination Rely on the Same Brain
Area

A third argument in favor of the ANS mapping account comes
from neuroimaging studies. Several fMRI studies have shown that
the parietal cortex and in particular the Intraparietal Sulcus (IPS),
is activated during both non-symbolic and symbolic comparison
suggesting that the IPS houses an abstract representation for both
non-symbolic and symbolic number (for a review, see Nieder
and Dehaene, 2009). Because the joint activation in IPS for non-
symbolic and symbolic number processing can alternatively be
explained by response processing activation, which also relies
on parietal cortex (Gobel et al., 2004), more recent studies
started to use more sensitive fMRI techniques with passive
viewing conditions, like fMRI adaptation (e.g., Piazza et al., 2007;
Notebaert et al., 2011; Vogel et al., 2014). For example, Piazza
et al. (2007) habituated participants to either small or large, non-
symbolic or symbolic numbers. After a period of habituation to
the same stimulus, deviants could be presented that differed in
number and/or notation. The authors observed a cross-notation
adaptation in the IPS, reflected by a sustained decrease of the
fMRI signal when a deviant was presented that was numerically
close to the adapted number, irrespective of notation change.
In contrast, no adaptation was found when the deviant was
far away from the adapted number. This finding suggests that
the IPS houses a representation of magnitude that is shared by

non-symbolic and symbolic numbers. Another recent approach
in fMRI research is the use of multivariate analytic techniques,
a set of methods typically referred to as multi-voxel pattern
analysis (MVPA). In contrast to more classic techniques in
which activation is averaged across voxels, these new techniques
analyze the pattern of activation of multiple voxels as a result
of the presentation of a stimulus (e.g., a dot array of four) and
relate it with the pattern of activation resulting from another
stimulus (e.g., the symbol ‘4’) (for a review, see Eger, 2016).
Using this approach, Eger et al. (2009) demonstrated that patterns
of activation in the parietal cortex from digits could be used
to predict the activation of the corresponding non-symbolic
numbers. These results favor the idea that non-symbolic and
symbolic number are represented by the same neurons located
in the parietal cortex. Interestingly, this brain area is also one of
the most consistently activated brain areas during arithmetic (for
a meta-analysis, see Arsalidou and Taylor, 2011), confirming the
idea that this abstract representation is crucial for mathematics
achievement.

Although this might seem like a consistent story, several
recent studies showed, however, results that do not easily fit
into this account. For instance, Cohen Kadosh et al. (2011)
reported the absence of cross-notation adaptation from non-
symbolic to symbolic number, in contrast to Piazza et al.
(2007). Contrary to what would be predicted on the basis
of the ANS mapping account, Cohen Kadosh et al. (2011)
found that parietal brain areas did not respond to changes
in number and were only sensitive to changes in stimulus
notation. Also studies using MVPA resulted in inconsistent
findings and accordingly, provided counterevidence for a shared
representation. In contrast to Eger et al. (2009) and Bulthé
et al. (2014) were not able to find evidence for a shared
distributed representation of number. Similarly, on the basis of
a representational similarity analysis, Lyons et al. (2015) also
observed no relation between the activity for a symbolic number
and the activity evoked by the corresponding non-symbolic
number, suggesting different representations for non-symbolic
and symbolic numbers. However, these sophisticated fMRI
techniques failing to find evidence for a shared representation for
non-symbolic and symbolic numbers, cannot provide a strong
test against the ANS mapping account. In their computational
model, Verguts and Fias (2004) simulated numerical symbol
learning by simultaneously presenting a symbolic and non-
symbolic number. They demonstrated that the same neuronal
layer that already represented non-symbolic numbers, also
represented the newly learned symbolic numbers. However, the
numerical symbols only partially recycled the representations
of non-symbolic numbers and are more precisely represented
than the non-symbolic numbers. As a result, this computational
model showed that, although symbolic numbers are mapped on
non-symbolic numbers, they don’t have identical representations.
Therefore, the ANS mapping account should be evaluated
further with other neuroimaging techniques as well. For example,
using transcranial magnetic stimulation (TMS) - a neuroscience
technique that can address causality - Sasanguie et al. (2013b)
observed effects that are not consistent with the ANS mapping
account. More specifically, they showed that the magnitude
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processing of symbolic numbers is not impaired after left and
right parietal stimulation. In contrast, when a numerical symbol
had to be associated with a non-symbolic stimulus, left parietal
stimulation interferes with processing. Based on these results, the
authors argued that symbolic numbers possibly can be processed
outside the parietal cortex but that the parietal cortex remains
important as an interface between non-symbolic and symbolic
stimuli. In other words, symbolic numbers can be mapped or
associated with non-symbolic numbers when appropriate for the
task, but this mapping is not per se a prerequisite for all symbolic
number processing tasks. In line with the idea that symbolic
number processing can occur outside the IPS, Price and Ansari
(2011) observed that the left angular gyrus was more activated
during the presentation of Arabic numerals compared to both
letters and scrambled stimuli. Because the left angular gyrus
is also active during retrieval of arithmetic facts (e.g., Grabner
et al., 2007), Price and Ansari (2011) suggested that this brain
region is doing more than visual processing alone and is possibly
involved in the initial mapping of symbols to their numerical
meaning (Ansari, 2015). In sum, based on the studies reviewed
above, there is clearly no consensus on (1) whether non-symbolic
and symbolic numbers activate the same representation and (2)
what exactly is the role of the IPS in case of symbolic number
processing.

Approximate Number Discrimination Is

Related to Math Achievement

Fourth, and starting with the study of Halberda et al. (2008)
demonstrating that the performance of 14-year old children in
a non-symbolic comparison task was related to these children’s
past scores on a (symbolic) mathematics achievement test,
the argument was made that the observation that ‘individual
differences in mathematics achievement are related to differences
in the ANS supports the idea that ‘numerical symbols -
which form in turn the basis of more complex mathematics
achievement — are mapped onto an evolutionary ancient non-
symbolic number representation.” In the years to follow, this
relation between non-symbolic number comparison and math
achievement has been replicated several times in cross-sectional
and longitudinal studies in children (e.g., Mundy and Gilmore,
2009; Libertus et al.,, 2011; Starr et al,, 2013) and adults (e.g.,
Lyons and Beilock, 2011; Lourenco et al., 2012). In line with this,
Piazza etal. (2010) observed that 10-year old children with a math
learning disorder (i.e., developmental dyscalculia) have a less
precise ANS compared to typically developing controls (see also
Mazzocco et al., 2011 for similar findings in 14-15 year olds with
dyscalculia). Recently, training studies in children (Hyde et al.,
2014; Kuhn and Holling, 2014) and in adults (Park and Brannon,
2013, 2014) have confirmed the causal relation between the ANS
and mathematics achievement by demonstrating that training on
a non-symbolic comparison task resulted in improvement on a
symbolic math achievement test.

However, again, the relationship between non-symbolic
comparison and mathematics achievement was not consistently
found (for reviews, see De Smedt et al, 2013 and Gebuis
and Reynvoet, 2015). Several studies with typically developing

children (e.g., Holloway and Ansari, 2009; Soltesz et al., 2010;
Sasanguie et al, 2013a), adults (e.g., Inglis et al., 2011) and
children with dyscalculia (e.g., Rousselle and Noél, 2007; De
Smedt and Gilmore, 2011) reported no relation between non-
symbolic number comparison and mathematics achievement.
To address these inconsistencies, several groups conducted
a meta-analysis (Chen and Li, 2014; Fazio et al, 2014
Schneider et al., 2016). These studies showed that the average
association between non-symbolic processing and mathematics
achievement is statistically robust, but relatively small (r between
0.20 and 0.24) and as a consequence, only can explain a
small proportion of the explained variance in mathematics
achievement. Moreover, recently, several studies have proposed
that the observed association between non-symbolic number
processing and mathematics achievement might be due to
inhibitory processes (e.g., Fuhs and McNeil, 2013; Gilmore
et al., 2013; Szlics et al., 2013; Bugden and Ansari, 2016; for
an overview see Leibovich and Ansari, 2016). Without any
control for continuous magnitude features (total occupied area,
individual dot size, density, ...), number and these continuous
features of a dot array are always highly correlated, just like
number processing in daily life. For instance, the number of
students in a class and the total area occupied by them are
correlated: the more students, the more space that is occupied.
To ensure that participants perform on the basis of number and
do not use these continuous magnitude features, researchers have
tried to control these continuous dimensions, by creating in half
of the trials congruent stimulus pairs (i.e., continuous dimensions
co-vary with number) and in the other half, incongruent stimulus
pairs (i.e., continuous dimensions do not co-vary with number)
(e.g., Piazza et al, 2007; Halberda et al, 2008; Gebuis and
Reynvoet, 2011). Despite this control, several studies showed
that continuous features still affect performance resulting in a
congruency effect in a non-symbolic number processing task
(e.g., Gebuis and Reynvoet, 2012; Leibovich and Henik, 2013,
2014; Szfics et al., 2013; Leibovich et al., 2016b; Smets et al,
2016). Continuous magnitude features provide an additional
cue for the correct response on congruent trials, but need
to be inhibited on incongruent trials to arrive to a correct
response. This inhibitory process results in slower and more
erroneous responses on incongruent trials. More importantly,
recent studies have now shown that this inhibitory process is
responsible for the association between non-symbolic number
comparison and mathematics achievement. Fuhs and McNeil
(2013) for instance observed as the first that the relationship
between the performance on a non-symbolic comparison task
and arithmetic was mediated by inhibitory control. In line with
this, Gilmore et al. (2013) demonstrated that the relation between
the performance on non-symbolic comparison and arithmetic
is purely driven by the performance on the incongruent trials
on which inhibition is required to provide the correct response.
Also more recently, Bugden and Ansari (2016) observed that
the difference in performance between dyscalculic children and
typically developing controls on a non-symbolic comparison task
was mainly driven by performance differences in the incongruent
trials, again indicating that not so much number processing
but inhibitory processes are responsible for previously observed
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differences between both groups. However, inhibitory processes
did not always accounted for the observed association between
non-symbolic comparison and mathematics achievement (Keller
and Libertus, 2015; Bellon et al., 2016). For instance, Keller and
Libertus (2015) found that after controlling for the performance
on a inhibitory control task, the relation between non-symbolic
comparison and mathematics achievement persisted. Possibly,
these inconsistent findings are due to different types of inhibitory
tasks that were used because inhibition is not a unitary concept
(Diamond, 2013) and to different protocols for creating the non-
symbolic stimuli. It may be that some methods for creating
non-symbolic stimuli may need more inhibition than others
(see Clayton et al, 2015; Smets et al., 2016; DeWind and
Brannon, 2016 for crucial differences between stimulus sets).
These outstanding issues should be investigated further. To sum
up, with regards to the fourth argument, we can conclude that
the association between non-symbolic number processing and
mathematics achievement is small (accounting for about 4-
5% of the variance in mathematics achievement) and may be
(partially) explained by inhibition. When also other domain-
general processes — that tend to be understudied (e.g., Fias
et al., 2013 for a similar claim) - should be controlled for, the
association between non-symbolic processing and mathematics
achievement may be vanished completely.

AN ALTERNATIVE FOR THE ANS
MAPPING ACCOUNT:
SYMBOL-SYMBOL ASSOCIATIONS

After critically reviewing the main arguments in favor of the
ANS mapping account, it is clear that this account cannot fully
explain the symbol grounding problem, and consequently also
does not provide us with a satisfying answer to the question what
is so important/foundational for (future) math achievement?
Therefore, in the next section, we argue that an alternative
account based on symbol-symbol associations might bring solace
in this regard. Crucially, our arguments to do so are very similar
to the ones that have been put forward in favor of the ANS
mapping account.

Before starting to review these arguments, it is crucial to
pinpoint what exactly we refer to with the alternative account
based on symbol-symbol associations. For this, it is necessary
to go back in time, as we do not claim to propose something
new here, but want to draw researchers’ attention to our remix
of some old ideas. In contrast to the idea that children learn the
numerical meaning of symbolic numbers by mapping them onto
the ANS, the alternative account suggests that symbolic and non-
symbolic numbers activate distinct representations (see e.g., Noél
and Rousselle, 2011; Sasanguie et al., 2014). Concrete, symbolic
numbers do not acquire their numerical meaning through a
mapping process onto the ANS, but through the development
of a new, more precise representation (Sasanguie et al., 2015).
Whereas proponents of this account do not reject the existence
of the ANS per se (although it can indeed be questioned whether
this system should be kept referred to as the ANS or rather
as some type of approximate magnitude system - AMS - see

Leibovich et al., 2016a), they simply do not focus on it, because
according to the alternative account, not the ANS but the other
core system (cf. core system 2 as described by Feigenson et al.,
2004 or the OTS or parallel individuation system as described
by Piazza et al, 2010) is the hub for the emergence of an
exact, separate symbolic system. Indeed, already 15 years ago,
Carey (2001) proposed that the understanding of our initial
exact numerical symbols (i.e., the verbal number words) relies
on their association/mapping with the OTS, a system that allows
us to keep track of up to four objects. Instead of being mapped
onto the ANS, this account thus argues that initial numerical
symbols (number words) are mapped onto the OTS (see also
Benoit et al., 2004; Sarnecka and Lee, 2009; Slusser et al., 2013).
According to Carey’s (2001, 2004, 2009) developmental model,
next, the combination of these associations between the small
symbolic numbers and the OTS and the increasing knowledge of
the counting list (e.g., learned by means of songs, . . .. at home or
in preschool) are used to infer critical principles of the numerical
system, such as ‘order’ (i.e., numbers form sequences) and ‘the
successor function’ (i.e., the next number is exactly one more than
the previous one). Gradually, these principles are then applied to
larger symbolic numbers, resulting in a complete understanding
of the symbolic numerical system. As a result, (larger) symbolic
numbers are primarily represented through order associations
with other symbolic numbers (see also Nieder, 2009) instead of by
their relations with their non-symbolic counterparts as proposed
by the ANS mapping account. Recently, direct evidence for these
symbol-symbol associations (without a link to the ANS) was
provided by Davidson et al. (2012) who showed that 3-5 years old
children could compare verbal number words larger than four,
even they only knew the order between the verbal number words,
but not their cardinal value, i.e., as measured with an estimation
task in which the children had to produce the number word
corresponding to a set of dots they had to estimate. Although
there is quite some work on how young children map verbal
number words to non-symbolic number, there is currently not
much known about how other numerical symbols, like Arabic
digits acquire their meaning. One possibility could be that digits
are directly associated to the already known corresponding verbal
numbers, resulting in similar associations between digits as the
ones between the verbal numbers. Another possibility is that
digits are, just like verbal numbers, first mapped onto the OTS
and follow a similar trajectory as that of verbal numbers. To
our knowledge, there is currently only one study that addressed
the ability to map non-symbolic numbers, verbal numbers and
digits in young children (3-5 years old). In this study, Benoit
et al. (2013) observed that verbal numbers first are mapped
on the OTS, followed by the mapping of digits onto the OTS.
Only in a later phase a mapping between verbal numbers and
digits occurs. Certainly, further research is necessary to examine
the early development of digits, but the findings of Benoit
et al. (2013) may suggest a delayed but similar developmental
pattern for digits than for verbal numbers. Initially, they are
mapped on the OTS and later, associations between the digits
emerge when these digits are being connected to their verbal
numbers that are part of the counting sequence. In sum, ‘the
alternative account for the symbol grounding problem’ thus
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refers to the fact that over development, the ‘numerical meaning’
which a symbol must acquire, is reinterpreted: Whereas referring
to the underlying non-symbolic and precise representation of
small numbers (OTS) very early in development, with age, this
numerical meaning gradually changes toward referring to its
ordinal relation with other numerical symbols. Evidently, this
alternative account based on symbol-symbol associations for the
symbol-grounding problem has serious implications for studies
investigating math learning and math performance because it
seems very plausible that not the relation between symbols
and their magnitudes (i.e., the ANS), but the relation between
culturally acquired and language-facilitated symbolic numbers is
foundational for future math achievement and thus responsible
for individual differences in this regard.

To date, the domain of numerical cognition has been largely
dominated by the ANS mapping account, resulting in a lack
of studies seriously investigating the alternative account of an
independent symbolic number system based on symbol-symbol
associations. Moreover, also with regards to research focusing on
the basis of individual differences in mathematics achievement,
the insufficient exploration of this alternative may have led to an
incomplete understanding of the contribution of domain-specific
skills underlying math learning and performance. Recently,
however, more and more studies started to use order judgment
tasks instead of comparison (for a review, see Lyons et al,
2016). In a typical order judgment task, participants have to
decide whether a pair or a triplet of (symbolic or non-symbolic)
numbers is presented in the correct order (e.g., ascending from
left-to-right) or not. Clearly, such a task addresses symbol-
symbol associations instead of symbol-magnitude relations
(which is the case in comparison, cf. the ANS mapping account).
Reviewing these recent studies, we argue that the symbol-symbol
associations (instead of the symbol-magnitude relations, cf. the
ANS mapping account) are crucial for (future) mathematics
achievement. We will support this idea with four arguments
which are very similar to those that have been put forward in
favor of the ANS mapping account.

Order Processing Is Present in Animals

and Infants

First, studies with animals (e.g., Brannon and Terrace, 1998)
and infants (e.g., Suanda et al., 2008; Picozzi et al., 2010; for a
review, see Sury and Rubinsten, 2012) have shown that, when dot
arrays are presented, not only the quantity of the arrays (i.e., how
many) but also the order between the quantities (i.e., increasing
or decreasing) can be processed. For instance, Brannon and
Terrace (1998) demonstrated that monkeys can learn the order
of quantities, even when extended to new quantities. Suanda et al.
(2008) showed that 11-month old infants were sensitive to order
relations between three quantities. More specifically, when the
infants were habituated to three quantities in an increasing order,
they looked longer at test trials when the order was reversed
(i.e., descending order). In contrast 9-month old infants were
only sensitive to order relations when other variables like area
and size co-varied with number, which seem to suggest that
the number dimension cannot be processed in isolation from

other continuous variables in 9-month old children. In sum,
there seems to be an evolutionary precursor for order processing.
However, as we already indicated before, the ability to understand
order relations between non-symbolic quantities (next to cardinal
aspects) in animals and infants is not a guarantee that to be
acquired symbolic orders built upon these innate abilities. For
learning symbolic orders, like the counting list or the alphabet,
language plays an important role. Children learn for instance
order relations between numbers and between letters through
games and songs and as a consequence, form order relations
between these stimuli based on associations without being aware
of the exact meaning of the stimuli (Wynn, 1990; Le Corre et al.,
2006). Therefore the absence of language abilities in animals and
infants, limits these studies in their generalizability to how older
children acquire the meaning of symbolic numbers.

Non-symbolic and Symbolic Order
Processing Show Different Behavioral
Effects

Second, as explained above, this alternative proposal for the
symbol grounding problem assumes the development of an exact
separate symbolic system. As a consequence, different behavioral
patterns can be expected in non-symbolic and symbolic number
processing tasks (see for instance Sasanguie et al., 2015). Also in
numerical ordering tasks, different effects have been observed for
non-symbolic and symbolic number. When participants have to
decide whether three non-symbolic dot arrays are in increasing or
decreasing order, a classic DE appears: Slower reaction times are
observed when the numerical distance between the dot patterns
is small, suggesting the same mechanisms play a role as in a
comparison task (Lyons and Beilock, 2013; Rubinsten et al,
2013). By contrast, when the same decision has to be made on
triplets of digits, a reversed DE is found: Reaction times are
faster when the numerical distance between the digits is small
(e.g., Franklin et al., 2009; Rubinsten and Sury, 2011; Lyons and
Beilock, 2013; Lyons et al., 2014). In sum, although the theories
about which exact (cognitive) mechanisms underlie this reversed
DE remain relatively speculative so far (Franklin et al., 2009),
the different behavioral effects (i.e., canonical/standard DE vs.
reversed DE)clearly show that order is processed differently in
non-symbolic and symbolic numbers.

Non-symbolic and Symbolic Order
Processing Rely on Different Brain Areas

A third argument for this alternative account about how symbols
are grounded is that symbolic order processing activates different
brain areas than non-symbolic order processing, suggesting
that the processing of symbolic number relies on (partially)
different circuits. In a neuroimaging study by Lyons and Beilock
(2013) contrasting directly non-symbolic and symbolic order
processing of numbers, it was demonstrated that the parietal
cortex was important for non-symbolic order processing, but
not for symbolic order processing. In contrast, symbolic order
processing resulted in activation of the left premotor cortex. This
finding suggests that different mechanisms might be responsible
for non-symbolic and symbolic order processing. The authors
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suggested the parietal activation in the non-symbolic condition
was a consequence of multiple comparisons based on quantity.
To decide whether three dot patterns are in increasing order,
one has to compare the quantity of first two dot arrays, followed
by a comparison of the quantity of the last two dot arrays. The
premotor activation in the symbolic order condition is according
to the authors due to the result of retrieval of a highly rehearsed
list of stimuli, like the count-list. Interestingly, activation in
premotor cortex has also been observed during simple additions
(Pesenti et al., 2000; Knops and Willmes, 2014) indicating
that the brain area that possibly houses order associations
between numbers, is also active during more complex calculation.
However, the majority of studies focused exclusively on symbolic
ordering and hereby observed IPS activation suggesting that
also order and not just quantity is processed by the IPS (Fias
et al., 2007; Franklin and Jonides, 2008; Kaufmann et al.,
2009; Zorzi et al, 2010; Attout et al, 2014). At present, it
is therefore still unclear what exactly the functional role of
the parietal and premotor cortex is and how they interact in
symbolic order processing (Ansari, 2015; Lyons et al., 2016).
One possible explanation to account for these inconsistencies
is the divergence in tasks to address order processing. Some
studies ask participants to decide which of two items comes
before or after in a sequence and as a consequence, can possibly
be resolved through comparison: to decide whether 7 comes
after 4, participants can rely on quantity (e.g., Fias et al., 2007).
Other studies presented triplets of digits (e.g., Lyons and Beilock,
2013). Because of the presence of a robust reversed DE in the
ordering task with triplets, this task more reliably suggests the
activation of ordinal processing (Franklin et al., 2009; Lyons
and Beilock, 2011, 2013). In sum, although the only study
that contrasted non-symbolic and symbolic order processing
so far (Lyons and Beilock, 2013) does suggest involvement of
different brain areas, the limited number of imaging studies
addressing order processing makes clear that the functions of
the different brain areas underlying order processing need to
fine-tuned.

Symbolic Order Processing Is Related to

Math Achievement

A fourth argument we want to make is that the performance in
an order judgment task is related to mathematics achievement:
Efficient processing of order is associated with higher
mathematics achievement. This relation has been observed
in typically developing children (e.g., Lyons et al, 2014;
Lyons and Ansari, 2015), in studies with dyscalculic children
(Rubinsten and Sury, 2011; Attout and Majerus, 2015) and
in adults (Lyons and Beilock, 2011; Goffin and Ansari,
2016). For instance, in a large scale study by Lyons et al.
(2014), it was shown that order processing was the best
predictor of mathematics achievement from third grade
onwards. In younger children, symbolic comparison was
the best predictor. Although this need to be confirmed with
additional studies, such a finding is perfectly in line with the
alternative account we propose here for numerical symbol
grounding where symbols are first mapped onto (a precise)

representation of quantity and then, through development are
being more and more associated with one another. Crucially,
and inconsistent with a classic ANS mapping account, the
unique contribution of the non-symbolic comparison task
was never statistically reliable. In line with this, Attout
and Majerus (2015) compared the performance of a group
of children with developmental dyscalculia with typically
developing controls matched for age, language abilities and
IQ. These authors found that dyscalculic children were
slower on non-symbolic and symbolic ordering tasks. In
contrast, no slowing was observed on non-symbolic and
symbolic comparison tasks, indicating that order (and not
quantity) may be responsible for the mathematical problems
observed in dyscalculia. To summarize, the growing amount of
studies investigating order processing have now clearly shown
that symbolic order performance is related to mathematics
achievement. More importantly, the observed associations are
much larger than the associations that are typically observed
between non-symbolic number processing and mathematics
achievement. This may be the result of the fact that (symbolic)
mathematics achievement is building more upon symbol-symbol
associations, that are addressed in judgements about order, than
symbol-magnitude associations as has been traditionally
assumed.

CONCLUSION

In this review we addressed the highly important symbol
grounding question for numerical symbols. Feigenson et al.
(2004) suggested that our understanding of symbols might be
rooted into two independent core systems: an imprecise ANS and
a precise system for a small number of objects. The past decade,
the idea that symbols derive their meaning by being associated
to the ANS, i.e., the ANS mapping account, became far more
popular than its alternative. In this review, we critically evaluated
four arguments for the dominant ANS mapping account that
were raised on the basis of previous findings (Dehaene, 2001;
Halberda et al.,, 2008). This evaluation made clear that the
arguments are less strong than sometimes believed. Therefore,
we argued for an alternative account (based on a remix of
old ideas of e.g., Carey, 2001 and Nieder, 2009, see further),
where the initial (small) symbols (i.e., number words) might
be first mapped onto a precise representation (i.e., the OTS)
and in combination with inferring principles about relations
(e.g., the successor function) and language (e.g., counting
routines) result in a separate system for symbolic number
where numerical symbols are represented through associations
which each other. In fact, the developmental trajectory based
on Carey (2001) we proposed here, is also not very different
from other proposals, like the one from Nieder (2009). He
describes the human development of symbol processing as going
from an indexical (i.e., associations between symbols and the
corresponding number of objects) to a symbolic stage (ie.,
associations between symbols or the syntax of symbols). The
main point we want to make here is that the latter stage
did not receive as much attention as the first stage, but on
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the other hand, is probably the most important one for
(future) mathematics achievement. We evaluated this alternative
account on the basis of four arguments, parallel to the ones
used in favor of the ANS mapping account. By means of
this review, we want to convince the reader that symbol-
symbol associations should be considered as a worthy alternative
for the ANS mapping account, which has been dominating
the numerical cognition research to date. Of course more
evidence from future studies is needed, but the available
evidence for this very plausible alternative account and for its
implications with regard to math achievement so far already seem
promising.
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