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The approximate number system (ANS) is thought to support non-symbolic
representations of numerical magnitudes in humans. Recently much debate has focused
on the causal direction for an observed relation between ANS acuity and arithmetic
fluency. Here we investigate if arithmetic training can improve ANS acuity. We show with
an experimental training study consisting of six 45-min training sessions that although
feedback during arithmetic training improves arithmetic performance substantially, it
does not influence ANS acuity. Hence, we find no support for a causal link where
symbolic arithmetic training influences ANS acuity. Further, although short-term number
memory is likely involved in arithmetic tasks we did not find that short-term memory
capacity for numbers, measured by a digit-span test, was effected by arithmetic
training. This suggests that the improvement in arithmetic fluency may have occurred
independent of short-term memory efficiency, but rather due to long-term memory
processes and/or mental calculation strategy development. The theoretical implications
of these findings are discussed.
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INTRODUCTION

The approximate number system (ANS) is a mechanism believed to mediate our ability to make fast
approximate judgments of non-symbolic number in tasks such as deciding without counting which
apple tree contain more apples. Large inter-individual differences have been found in ANS acuity
(efficiency) and several studies have documented a relation between individual ANS acuity and
achievement in symbolic arithmetic (Halberda et al., 2008; Price et al., 2012; Lindskog et al., 2013b;
Chen and Li, 2014; Schneider et al., 2016). The causal direction between the ANS and math ability
is, however, still under investigation and lively debated (Halberda and Feigenson, 2008; Halberda
et al., 2008; Lindskog et al., 2013a; Park and Brannon, 2013; Hyde et al., 2014). Although there is a
possibility of a third variable mediating the relation, the dominant views involve a direct causal link.
It is, however, not clear if the ANS is a prerequisite for math performance or if math performance
influences ANS acuity, or if the relation is bi-directional.

It has been proposed that the ANS lays the foundation for the development of symbolic math
(e.g., Dehaene, 1997; Wynn, 1998; Gelman and Gallistel, 2004; Gilmore et al., 2007), which could
be the theoretical basis for a relation. Research showing that ANS abilities can be found in several
non-human species and in children before familiarization with formal math (Feigenson et al.,
2004), and that developmental dyscalculia is associated with ANS impairment (Piazza et al., 2010;
Mazzocco et al., 2011), supports this causal direction. Also, in experimental studies training with
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non-symbolic addition and subtraction has been claimed to
enhance math performance (Park and Brannon, 2013, 2014)
of adults. For children, however, similar studies have shown
mixed results (Obersteiner et al., 2013; Hyde et al., 2014) when
investigating the same question. A further finding in line with this
position is that pre-verbal number sense in 6-month old infants
has been found to predict math ability 3 years later (Starr et al.,
2013).

There is also a possibility of a causal link in the reversed
direction, that math education or familiarization with symbolic
numbers modifies and sharpens the ANS. It is well-known
that ANS acuity improves with age (e.g., Halberda et al.,
2012). This improvement is generally interpreted in terms of
maturational processes. However, it has also been suggested that
the improvement may be associated with formal math education,
counting, and exposure to arithmetic (Nys et al., 2013). In
the majority of studies, this possibility cannot be ruled out
because maturational processes and math education are highly
confounded in most developed countries. To further investigate
this, Nys et al. (2013) studied participants growing up in a
Western cultural context, but lacking formal math education.
Schooled adults with formal math education in this study had
better ANS acuity than unschooled adults. The authors concluded
that the acquisition of culturally determined skills, such as math
could modify core cognitive competencies in the domain of
numeracy. Furthermore, in support of this view Piazza et al.
(2013) studied the Mundurucú in the Amazon among who only
some had received schooling at adulthood. A significant positive
effect of education (specific to numeracy instruction) on ANS
acuity was demonstrated after controlling for chronological age.
This result suggests that ANS acuity is not fixed by genetic
predispositions, but can be altered even in adulthood. It was also
observed in this study that in Mundurucú, those not exposed to
education stay at the same level as western children of age 6, about
the age when they start to receive formal arithmetic education.
At higher levels of education the results are mixed. Castronovo
and Göbel (2012), for example, found a difference in arithmetic
ability between university psychology and mathematics students.
However, there was no difference in ANS acuity between these
groups, and there was no correlation between mathematical
ability and ANS acuity. This study, however, used a paradigm to
measure ANS acuity where the stimuli are presented sequentially
and separated by a short time interval. Previous research has
indicated that such stimulus presentation may not be optimal
for measuring relations between ANS acuity and math ability
(Lindskog et al., 2013b). Lindskog et al. (2013b) showed that
ANS acuity obtained with simultaneous presentations of the two
non-symbolic stimuli correlated with arithmetic fluency whereas
ANS acuity obtained with the sequential presentation method
did not. One possibility is that the sequential method involves
memory resources that overshadow the relation between ANS
acuity and math performance. Lindskog et al. (2014) therefore
used a simultaneous stimulus presentation and examined three
university student groups, with varying degree of math content in
their university education. These were humanities students with
virtually no math content in their education, business students
with math related applied content in their education, but without

mathematical education per se, and math students with explicit
formal math education. In their study, Lindskog et al. (2014)
found a trend where students taking more mathematics had
better ANS acuity. More importantly, a significant improvement
in ANS acuity was found in business students as a function
of the number of years of higher education in that third year
business students outperformed first year students. Because this
was a cross-sectional study the difference could possibly be
attributed to other group differences or attrition due to student
drop out. Nevertheless, the difference remained significant after
controlling for general cognitive ability. The results suggest that
mere exposure to applied math problems and numbers for
business students may have contributed to a refinement of their
approximate number system. A mechanism for this refinement
could be an increased efficiency with which they process number
by an increased distinctiveness in the underlying magnitude
representations.

To summarize, previous research has indicated a relation
between non-symbolic magnitude discrimination (ANS acuity)
and math ability. This relation has been hypothesized to indicate
a causal link. The direction of this link has, however, been
debated, and it has even been suggested that a bi-directional
causal association exits. By and large the research has been
correlational in nature, except for a few studies training people
on non-symbolic number tasks, and does therefore not allow
causal conclusions. To our knowledge, no study has tried to
experimentally, with random assignment and control group,
investigate the effect of manipulating people’s familiarity with
mental manipulation of numbers in terms of basic arithmetic
calculation on ANS acuity. Accordingly, the aim of this study
was to investigate the possible effect on ANS acuity of sustained
exposure to mental arithmetic training with feedback. A transfer
effect on arithmetic fluency following an improvement in ANS
acuity would have significant theoretical implications for the
interpretation of the association between math performance and
non-symbolic magnitude processing efficiency.

Approximate number system acuity is, of course, not the
only factor related to arithmetic performance. Research shows
that short-term memory performance is also such a factor,
although the relation is complex and likely depends on several
auxiliary factors (Raghubar et al., 2010). Short-term memory,
or working memory, also plays an important role in general
cognition. Because of this there has been an increased interest
in studies with the purpose of investigating effects of training on
working memory tasks on broad cognitive changes, purportedly
extending to general fluid intelligence, attentional control,
reductions in symptoms of ADHD, and decreasing cognitive
decline in old age (see e.g., Shipstead et al., 2012; Karbach
and Verhaeghen, 2014; Au et al., 2015; but see, Melby-Lervåg
and Hulme, 2016). Accordingly, as a secondary aim here we
investigated if symbolic arithmetic training (arithmetic fluency)
would transfer to short-term memory efficiency for numbers
(digit span). Because of the high involvement of short-term
memory processes in manipulating and holding numbers in
memory during arithmetic calculation it is fully possible that
at least part of an improvement in mental arithmetic efficiency
by training is due to an accompanied improvement in working
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memory. If an effect on ANS acuity is found, it is also of interest
to determine whether this improvement is dependent on an
improved working memory or not.

MATERIALS AND METHODS

Participants
Forty-six participants (10 males, 36 females, Mage = 22.5) were
randomly assigned to the training or control condition. All
participants were undergraduates from the humanities (e.g.,
history, anthropology, religion) from Uppsala University with
very limited exposure to higher formal math training. They
received movie vouchers or course credits for their participation.
All participants received an information sheet on the study
and provided informed consent before undertaking the study.
The regional ethics committee of Uppsala University (Regionala
etikprövningsnämnden i Uppsala) approved the study according
to the 1964 Declaration of Helsinki.

Procedure
All participants carried out two tasks during pre- and post-test; a
task measuring ANS acuity with an adaptive testing method and
a task measuring short-term memory for numbers. Both tasks are
described in detail below. Between pre- and post-test participants
in the experimental condition carried out six 45-min sessions
of targeted arithmetic fluency training. The training sessions
were conducted on separate days and are described in detail
below. Previous research has shown that it is possible that merely
engaging in a non-symbolic numeric discrimination task is
sufficient to induce an improvement in arithmetic fluency (Hyde
et al., 2014). Accordingly it is possible that merely engaging in an
arithmetic fluency task, without any feedback, might be sufficient
to induce a change in ANS acuity. We designed our control
condition to address this possibility. Participants in the control
group therefore, similar to the experimental group, carried out
a session of solving arithmetic problems in conjunction with
taking part in the pre- and post-test. However, in contrast to
the experimental condition, participants in the control group did
not receive any feedback. The time between pre- and post-test
sessions for the control group was approximately the same as the
time interval between these sessions for the experimental group.

Adaptive Non-symbolic Number Comparison
An adaptive test based on the ZEST algorithm was used to
measure ANS acuity (King-Smith et al., 1994) in pre- and post-
test. This method requires fewer trials to achieve an acceptable
reliability than the method of constant stimuli often used in this
area of research (Lindskog et al., 2013b).

Approximate number system acuity thresholds were measured
using non-symbolic representations of numerosity in the form of
clusters of spatially intermixed yellow and blue dots presented
on an intermediate gray background in each trial (Figure 1).
Exposure time (300 ms) was short to prevent serial counting
of the dots. Dot sizes varied individually in size with a mean
radius of 0.35 (range = [0.26, 0.44]) visual degrees at 60 cm
viewing distance. Previous research has often used various

FIGURE 1 | An example of the numerosity stimuli. Are there more blue or
yellow dots? Participants’ task was to determine there were more blue or
yellow dots in the display.

controls for perceptual variables (e.g., dot size, cumulative area,
or convex hull) to minimize the possibility that participants rely
on such information rather than numerosity when discriminating
between the two sets of dots. Here we used no such controls. The
reason for this is a core assumption for the adaptive procedure
(outlined below) that the parameters of the psychometric
function do not vary from trial to trial. Accordingly, the present
algorithm selected difficulty solely on basis of numerosity ratio
without controlling for continuous visual cues such as convex
hull or cumulative area.

The response was indicated by a press on a yellow or blue
marked key on the computer keyboard to indicate what dots were
in majority. In both pre- and post-tests participants carried out
240 trials, which has been shown to provide a reliability of 0.80
using this adaptive procedure (Lindskog et al., 2013b). Half of the
trials had blue and half had yellow as the more numerous color.
No feedback was provided.

Approximate number system threshold for obtaining 80%
correct discriminations was estimated by the ZEST algorithm
(a modification of the Bayesian QUEST algorithm, King-Smith
et al., 1994). The algorithm calculates the stimulus difference for
each new stimulus pair (numbers of yellow and blue dots) based
on the performance on all earlier trials in the discrimination
task. Classical Weber fractions w— 1S/S, where S is a stimulus
parameter and 1S is the inter stimulus difference—was used to
quantify the difference between stimulus pairs at each trial. The
ZEST algorithm uses all responses in previous trials for optimal
Bayesian estimation of the difference between stimuli presented
in the next trial to converge on the threshold estimate, w, for
achieving the desired percentage of correct responses. In short,
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after each trial the algorithm multiplies a prior probability density
function (a prior PDF) of possible w’s with a posterior likelihood
function of obtaining the response (correct or incorrect) given the
prior PDF. The result from this Bayesian integration of likelihood
and the prior PDF is an updated density function (a posterior
PDF). The mean of the updated PDF is used to determine the
stimulus difference of the next trial. The stimulus difference in
terms of w from the last trial was used as the final estimate. The
algorithm simultaneously produced two w estimates based on
randomly ordered intermixed trials (120 trials each), which were
averaged for each participant. The initial prior PDF was a normal
distribution of possible Weber fractions with an average of 0.23
and standard deviation 0.58. This initial estimate was derived
from previous testing of approximately 200 participants in our
lab. A loop was used that searched for the nearest w ratio with
integer composition of dots with the constraint of an upper total
numerosity limit of 33 dots and a minimum number of six dots
for the lower numerosity.

Short-term Memory
Short-term memory was measured with a digit span test. On each
trial, a sequence of digits appeared on a computer screen for 10 s
before disappearing. Participants were instructed to memorize
and recalled the sequence in the presented order. Starting
sequence length was four digits. Sequence length increased with
one digit provided that the participant gave the correct answer
in three out of four sequences of a particular length. When this
criterion was not met, the test was interrupted. The maximum
number of digits successfully recalled was used as a measure of
the participant’s digit span/working memory capacity.

Arithmetic Fluency Training
Participants in the experimental condition received six 45-
min sessions of targeted arithmetic fluency training. The first
session was conducted directly after the pre-test and the
last session was conducted directly prior to the post-test.
The other four sessions were conducted on separate days
between pre- and post-test. The approximate time between
pre- and post-test was 6 days. In each training session
participants solved as many arithmetic problems (whole number
addition, subtraction, multiplication, and division) as possible.
All problems were generated randomly with the constraints
described below. The algorithm generating the problems also
made sure that an approximately equal number of problems
for addition, subtraction, multiplication, and division were
generated. Addition and subtraction problems consisted of
addends, minuends, and subtrahends of 1–3 digits. For
subtraction problems, all differences were positive. Multiplication
and division consisted of problems with one single digit
factor/divisor and one factor/dividend with 1–3 digits. For
division problems, the quotient was always an integer. Directly
after answering a problem, participants were shown their own
answer together with the correct solution and color-coded
feedback (Green = Correct, Red = Wrong).

It is possible that merely engaging in the arithmetic fluency
training is sufficient to induce an improvement in arithmetic
fluency. We designed the protocol for the control condition to

control for this possibility and thereby separate a possible effect of
targeted arithmetic fluency training on ANS acuity from an effect
introduced by engaging in a task including numerical content.
Accordingly, in the control condition participants carried out
the same pre- and post-test as in the experimental condition. In
addition, participants in the control condition carried out two
45-min session of solving arithmetic problems, one directly after
the pre-test and one directly prior to the post-test. These sessions
were the same as the corresponding sessions in the experimental
condition with the exception that no feedback was given when
participants had answered a problem.

RESULTS

Weber fractions for two participants in the experimental
condition (both pre- and post-test) and for two participants in
the control condition (post-test only) were lost due to apparatus
failure. Data were scanned for outliers (|z| > 3), which resulted
in one weber fraction in the post session of the control condition
being excluded. The data is avilable at https://osf.io/enrr7.

Each of the two ANS tests was composed of 240 trials. In
a study with the aim of assessing psychometric properties, we
have previously estimated a reliability approaching 0.80, using
this adaptive procedure and amount of trials (Lindskog et al.,
2013b). Estimates of the reliability with the present sample
suggest a lower reliability of 0.55. Reliability estimates are affected
by characteristics such as sample variability. It is realistic to
assume that the actual reliability lies somewhere in between these
estimates.

Training Effects on Arithmetic
Performance
Comparing performance on the first and last session of arithmetic
fluency training demonstrated a large improvement by training
from an average of 185 to 303 correctly solved tasks, a difference
of 118 tasks (Figure 2A). A one way repeated measure ANOVA
on the total number of correctly solved tasks per session found
a significant effect of training, F(5, 110) = 57.1, p < 0.001, η2

p
= 0.72. A two-way repeated measures ANOVA with training
session and operation (addition, subtraction, multiplication,
division) as independent variables and percent increase over
baseline (Session 1) as dependent variable indicated that learning
occurred to a similar degree for all operations [main effect of
operation F(3, 66) = 1.4, p = 0.25] The training session by
operation interaction was not significant, F(12, 264) < 1. The
average percentage increase in problems solved from the first to
the last training session was 73%.

The time spent on each problem decreased from 13.6 to
8.3 s/problem, a 40% increase in speed (Figure 2B). A one
way repeated measure ANOVA on all training sessions found a
significant improvement in speed, F(5, 110) = 48.79, p < 0.001,
η2

p = 0.69. The proportion of attempted problems actually solved
correctly increased from 0.86 in the first session to 0.89 in the
last session (Figure 2C). A one way repeated measure ANOVA
on all training sessions found a significant improvement in the
proportion correctly solved tasks, F(5, 110) = 5.96, p < 0.001, η2

p
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FIGURE 2 | (A) The total number of correctly solved tasks during the arithmetic training from sessions one to six. (B) The time for solving the tasks. (C) The
proportion correctly solved tasks. Error bars show 95% CI.

= 0.21. Thus, there were large effects in the experimental group
in terms of number of problems solved correctly, on time spent
at each problem and on the accuracy with which problems were
solved correctly.

To verify that these performance increases were due to
training effects three two-way ANOVAs were calculated with
session (first/last) and experimental condition (experimental
group/control group) as independent variables and each of
the above performance indices as dependent variables. For the
number of problems solved correctly there was no main effect of
experimental condition, F(1, 44) = 1.15, p = 0.29, η2

p = 0.03,
but a significant condition by session interaction, F(1, 44) = 49.8,
p < 0.001, η2

p = 0.53. The latter effect was due to the larger
increase in the experimental condition as compared to the control
condition (the control group showed a 9% increase due to a mere
practice effect). The main effect of session was also statistically
significant, F(1, 44) = 94.3, p < 0.001, η2

p = 0.68. Tukey’s post
hoc tests showed that the experimental groups were statistically
different at the last session but not at the first, and that the
increase in the control condition was not statistically significant
(p = 0.25).

For the time spent at each problem, there was no main effect
of experimental condition, F(1, 44) = 1.09, p = 0.30, η2

p = 0.02,
but a significant condition by session interaction, F(1, 44) = 13.6,

p < 0.001, η2
p = 0.24, driven by the larger speed increase in

the experimental condition as compared to the control condition
(the control group showed a 13% increase due to mere practice).
The main effect of session was also statistically significant,
F(1, 44) = 55.12, p < 0.001, η2

p = 0.57. Tukey’s post hoc tests
showed that the experimental groups were statistically different
at the last session but not at the first, and that the speed increase
in the control condition was close to statistical significance
(p = 0.053).

For the proportion of attempted problems solved correctly,
there was no main effect of experimental condition, F(1, 44) < 1,
but a significant condition by session interaction, F(1, 44) = 10.2,
p = 0.003, η2

p = 0.19, evidenced by an increase only in the
experimental condition (the control group showed a marginal
decrease of 1 percentage units). The main effect of session was
not statistically significant, F(1, 44) = 2.7, p = 0.11, η2

p = 0.06.
The above analyses show that the performance increase effects
in the experimental condition were indeed due to training with
feedback.

Effects on ANS Acuity and Short-term
Memory
To investigate effects of arithmetic fluency training on ANS
acuity, a two-way ANOVA with experimental condition and
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pre-/post-test as independent variables, and weber-fraction as
dependent variable was calculated. As can be seen in Figure 3,
weber fractions were marginally lower (better) in the post-test.
There was, however, no main effect of experimental condition,
F(1, 40) < 1, no interaction between condition and pre-/post-test,
F(1, 40) < 1, and no main effect of pre-/post-test, F(1, 40) = 2.8,
p = 0.10, η2

p = 0.07.
To investigate effects of arithmetic training on short-term

memory (Digit span) a two-way ANOVA with experimental
condition and pre-/post-test as independent variables, and digit
span as dependent variable was calculated. As can be seen in
Figure 4, digit span slightly increase in the post-test. The main
effect of pre-/post-test was close to significance, F(1, 44) = 3.3,
p = 0.08, η2

p = 0.07, indicating a small practice effect.
There was, however, no main effect of experimental condition,
F(1, 44) < 1, and no significant interaction between condition
and pre-/post-test, F(1, 44) < 1.

DISCUSSION

Recent studies have indicated that non-symbolic arithmetic
training transfers to an improvement in math performance
(Park and Brannon, 2013, 2014, but see, Lindskog and Winman,
2016). Others have found results that suggest the reverse causal
direction (e.g., Piazza et al., 2010; Nys et al., 2013). These
results have been inconclusive, being based on correlational
data or quasi-experimental designs. Because results (Lindskog
et al., 2014) have indicated that math students’ ANS acuity
is better than business students and with students from
the humanities showing poorer performance we hypothesized
that targeted arithmetic fluency training might improve ANS
acuity.

FIGURE 3 | Weber fractions before and after arithmetic training in the
experimental and control conditions, respectively. Error bars show
95% CI.

FIGURE 4 | Performance on the digit span test before and after
arithmetic training in the experimental and control condition,
respectively. Error bars show 95% CI.

We thus investigated if ANS acuity would improve with
symbolic arithmetic training. Our results indicated that
arithmetic training over six 45 min sessions lead to a large
improvement in the number of correctly solved tasks and
operation speed. Further, the proportion correctly solved tasks
also improved showing that the training effect is not just due
to a speed increase, but results in a genuine better precision
in arithmetic operations. Also, the lack of improvement in the
control condition makes it unlikely that the training results in
better performance due to an increased task familiarity. This
improvement in arithmetic fluency is noteworthy by itself.
Because mental arithmetic ability is highly useful in a society
increasingly dependent on numeric information, more exposure
to direct mental arithmetic and immediate feedback during
math education could contribute to a large performance gain
that would be worthwhile with respect to people’s everyday
undertakings.

In contrast to previous research showing that non-
symbolic arithmetic training transfers to enhancement in
math performance (e.g., Park and Brannon, 2013), we found no
evidence that arithmetic training per se influences ANS acuity.
This suggests that there is no causal link from arithmetic fluency
to ANS acuity, at least not for adults. A caveat to this conclusion
is that previous research (Park and Brannon, 2013, 2014; Hyde
et al., 2014) has primarily shown transfer from non-symbolic
arithmetic training, rather than non-symbolic comparison
training1, to math performance. It is thus still possible that the
type of training used in the present study might have an effect

1With a “non-symbolic comparison” task participants decide which of two sets
of objects that is the more numerous. With a “non-symbolic arithmetic” task,
participants view two sets of objects, and decide whether a third set of objects is
more or less numerous than either the sum or difference between these two sets.
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on non-symbolic arithmetic. Future research should investigate
this possibility. As with any training study it could be the case
that more extensive training would have resulted in training
effects. Our participants, however, received a similar amount of
training as participants in previous studies that have indicated
training effects in the opposite causal direction (e.g., DeWind and
Brannon, 2012; Park and Brannon, 2013, 2014). It is also possible
that other kinds of training, for example higher education of
conceptual math, involving understanding rather than mental
arithmetic practice could bring about effects. Further, it could
be argued that a null finding like the present one may be due to
an insufficient power. Although a larger sample size is of course
desirable it should be noted that our sample size is slightly larger
than previous training studies (e.g., Park et al., 2014) showing
training effects and that we with the present design have a power
of more than 0.75 to detect a large (cohen’s d = 0.8) effect size.
It should also be noted that the observed means go in a direction
contrary to training effects (with a larger reduction of w in the
control group than in the experimental group), which further
suggest that our results are not due merely to insufficient power.
Future studies should examine these possibilities.

A possible limitation to our study is that we did not use
a measure of ANS acuity with control for visual cues. Indeed,
recent research using a procedure to create stimuli developed
by Gebuis and Reynvoet (2011, 2012) (e.g., Gilmore et al.,
2013; Szucs et al., 2013) in which not only the more numerous
stimuli are larger, but also occupy a larger convex hull on fully
congruent trials and vice versa for incongruent stimuli show
extreme effects of these variables on difficulty/performance. In
some studies, participants do not even perform above chance
for incongruent stimuli. Our choice of stimuli was motivated
by constraints of the adaptive algorithm, as mentioned above.
Thus, a control for visual variables may have interfered with
stimulus difficulty, and it is not clear how we would have
defined this difficulty in the adaptive algorithm, had we used
a control for visual cues. Admittedly, with this procedure, we
cannot, exclude the possibility that participants were influenced
by, or entirely relied on visual cues in making their judgments.
It should be noted, however, that we have in previous work
2 Note however, that there is an ongoing debate about choice of methods to
control for visual cues, and that more elaborate methods that control over several
dimensions including convex hull result in measures that are apparently not related
to measures obtained with more basic controls (see Clayton et al., 2015; Smets et al.,
2015).

(Lindskog et al., 2013b) established a high converging validity
(r = 0.88) between the measure of ANS used here and a measure
that relies on a more standard way of controlling for visual
cues (e. g., Halberda et al., 2008). This makes it likely that our
adaptive measure taps the same construct as measures with tasks
controlled for cumulative area2. It will be an important topic for
future research to address to what extent visual cues influences
training paradigms of the type used here.

There was no effect of arithmetic training on short-term
memory. This is in line with results showing that training
on short-term memory resulting in improvement is often tied
to strategy and is highly context dependent. What is learnt,
then, when arithmetic fluency is improved? A possibility is that
learning is a mere strengthening of long-term memory math facts
(e. g., 12 + 9 = 21) that are retrieved from memory more rapidly
and with less error. Another possibility is that more general
“rules” for efficient mental calculation are learned. An interesting
venue for future research is to develop ways to measure the
exact nature of how human number manipulation is improved
by training, which may also have important implications for
educational settings.
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