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No Apparent Influence of Reward
upon Visual Statistical Learning
Leeland L. Rogers*, Kyle G. Friedman and Timothy J. Vickery

Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA

Humans are capable of detecting and exploiting a variety of environmental
regularities, including stimulus−stimulus contingencies (e.g., visual statistical learning)
and stimulus−reward contingencies. However, the relationship between these two types
of learning is poorly understood. In two experiments, we sought evidence that the
occurrence of rewarding events enhances or impairs visual statistical learning. Across
all of our attempts to find such evidence, we employed a training stage during which
we grouped shapes into triplets and presented triplets one shape at a time in an
undifferentiated stream. Participants subsequently performed a surprise recognition
task in which they were tested on their knowledge of the underlying structure of the
triplets. Unbeknownst to participants, triplets were also assigned no-, low-, or high-
reward status. In Experiments 1A and 1B, participants viewed shape streams while low
and high rewards were “randomly” given, presented as low- and high-pitched tones
played through headphones. Rewards were always given on the third shape of a triplet
(Experiment 1A) or the first shape of a triplet (Experiment 1B), and high- and low-reward
sounds were always consistently paired with the same triplets. Experiment 2 was similar
to Experiment 1, except that participants were required to learn value associations
of a subset of shapes before viewing the shape stream. Across all experiments, we
observed significant visual statistical learning effects, but the strength of learning did
not differ amongst no-, low-, or high-reward conditions for any of the experiments.
Thus, our experiments failed to find any influence of rewards on statistical learning,
implying that visual statistical learning may be unaffected by the occurrence of reward.
The system that detects basic stimulus−stimulus regularities may operate independently
of the system that detects reward contingencies.

Keywords: statistical learning, reward processing, reward learning, visual attention, associative learning, implicit
learning

INTRODUCTION

At every moment, human cognition faces the complex task of interpreting and responding to an
overwhelming amount of stimulation. One important means by which humans may cope with this
constant stream of information in the world is by learning and exploiting statistical regularities
ubiquitous in natural environments. Many laboratory studies have demonstrated the potential for
human learning to pick up such regularities in an unsupervised fashion. For example, repeatedly
experiencing one phoneme that reliably predicts another (Saffran et al., 1996), or particular
visual items that reliably co-occur in time or space with others (Fiser and Aslin, 2001, 2002),
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can lead to above-chance recognition rates of those regularities.
This kind of statistical learning is available to us from a
time shortly after birth and throughout adulthood (Saffran
et al., 1996; Saffran et al., 1999), and such learning spans
perceptual systems (Glicksohn and Cohen, 2013), allowing
humans to automatically detect and learn rich probabilistic
relationships common within real-world environments.
Although statistical learning can be more complex, simple
stimulus−stimulus associative relationships are an important
(and most commonly studied) component of statistical learning,
and these relationships can apparently be detected and learned
without observers’ intentions or awareness (Turk-Browne et al.,
2005).

There is no shortage of evidence that visual statistical learning
is a powerful and ubiquitous ability in humans (Turk-Browne
and Scholl, 2009; Turk-Browne et al., 2009; Glicksohn and
Cohen, 2011) as measured by recognition or familiarity with
contingent stimuli. However, the consequences of experiencing
statistical regularities in our environment is not limited to
simply making sense of streams of information by segmenting
and chunking stimuli. For instance, performance is improved
for target items that are predicted by preceding elements in
a visual statistical learning stream (Turk-Browne et al., 2010).
Evidence also suggests that statistical regularities bias attention,
with attention being drawn to regions in which statistical
regularities occur (Zhao et al., 2013). Attention can also be
guided to locations based upon implicitly learned associations
between distractor and target positions (Chun and Jiang, 1998).
Thus, visual statistical learning is considered useful in new
environments for both recognition and for the guidance of
attention.

Another type of associative learning that also possesses
the capacity to guide attention is stimulus−reward learning.
Reliable associations between stimuli and rewards have been
shown to influence performance in many different contexts,
and there is a rich history of animal studies showing strong
influences of primary reward associations (Schultz et al., 1997;
Berridge, 2007; Haber and Knutson, 2009) guiding behavior
and driving brain activity, where primary rewards are water,
juice, or food rewards that are directly registered as rewards by
brain circuits as a function of states such as thirst and hunger.
However, secondary rewards (e.g., money, or stimuli indicating
monetary value or simply “positive” outcomes) can also be highly
effective at driving performance and brain activity, and are
effective as stimuli which, when reliably paired with a previously
non-rewarding stimulus, imbue that previously non-rewarding
stimulus with value (Daw and Doya, 2006; Haber and Knutson,
2009).

A large and growing literature using human subjects has
employed such secondary cues in order to imbue previously
non-rewarding stimuli with value, leading to striking differences
in performance related to differences in stimulus−value
associations. Higher (explicitly learned) associative value,
based on secondary reward in terms of monetary value,
leads to better explicit recognition memory, and high value
associations can even lead to stimuli escaping the attentional
blink (Raymond and O’Brien, 2009), suggesting that such

associations drive low-level attentional biases. Even in cases
where participants are not consciously aware of the association
between stimulus characteristics and rewarding outcomes,
evidence suggests a clear attentional bias toward stimuli
that are consistently paired with higher secondary rewards
(Anderson et al., 2011; Sha and Jiang, 2015). Stimulus−reward
learning may allow for the optimization of behavior by
automatically orienting attention towards reward-predicting
elements of a scene, and thus help optimize choice behavior
to seek reward and avoid punishment (Engelmann et al.,
2009; Hickey et al., 2010; Theeuwes and Belopolsky, 2012;
Chelazzi et al., 2013; Sali et al., 2014; Pessoa, 2015). Mounting
evidence suggests that even secondary cues to value can serve
as associative markers that drive value-based differences in
low-level performance.

These two types of learning, statistical learning and
stimulus−reward learning based upon secondary reward
cues, bear some obvious similarities. Visual statistical and
reward learning mechanisms incorporate similar associative
mechanisms. Indeed, in many published cases in which
stimulus−reward learning plays a significant role, a visual
stimulus is typically repeatedly paired with another specific
sensory stimulus that indicates reward value – thus, both
statistical learning and reward-related learning could play a
role in such studies. As reviewed above, both types of learning
appear to play a role in biasing selective attention. Studies of
the neural bases of these mechanisms provide further reason
to suspect that they may be interrelated. Visual statistical
learning may be supported by some of the same neural
structures that support reward learning; correlates of both
reward learning and visual statistical learning have been noted
in striatum and medial temporal lobe structures (Delgado
et al., 2000; Aron, 2004; Wittmann et al., 2007), and there
is increasing evidence that the hippocampus plays a role in
reward learning as well as trial-and-error learning (Lansink
et al., 2009; Dickerson and Delgado, 2015). Thus, the visual
statistical learning system bears some resemblance to the value-
learning system, in terms of the importance of prediction and
deviations from predicted events in generating surprise signals,
but the relationship between the systems is currently not well
characterized.

Given the similar nature of these two types of learning
and how they appear to contribute to our ability to learn
about and navigate environments, an intuitive question
arises − how do these two mechanisms interact? To our
knowledge, potential relationships between reward and
visual statistical learning remain unexplored. Even if they
do not depend upon shared mechanisms, there is reason to
believe that they may interact. To wit, evidence suggests that
statistical learning is dependent upon selective attention to
the constituent, related items (Turk-Browne et al., 2005). If
rewarding events drive attention (Jiang et al., 2013), then
stimulus−stimulus learning might reasonably be expected to
show a dependence upon co-occurrence of constituent stimuli
with rewarding events, with more-rewarding events drawing
greater attention and leading to stronger memory traces.
On the other hand, rewarding events and contingencies
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might draw attention away from stimulus−stimulus
relationships, or occupy resources otherwise required for
stimulus−stimulus associative learning, thus impairing such
learning.

The current set of experiments seeks to identify whether
statistical learning operates independently or not from
reward. Specifically, by introducing rewarding events and
stimulus−reward associations while simultaneously establishing
stimulus−stimulus statistical associations (Experiment 1), or by
establishing reward associations immediately before establishing
statistical associations (Experiment 2), we sought evidence that
reward associations either enhance or impair the ability to detect
statistical regularities across time.

GENERAL MATERIALS AND METHODS

Ethics Statement
These studies were carried out with full review and approval by
the Institutional Review Board at the University of Delaware with
written informed consent from all participants.

Participants
A total of 136 University of Delaware students took part in
the study in partial fulfillment of course credit. Experiment
1A included 32 participants and Experiment 1B included 43
participants. Experiment 3 included a total of 61 participants
divided into three groups: a first position, second position, and
third position reward-associate groups. The first position group
contained 22 participants, the second position group contained
18 participants, and the third position group contained 21
participants.

Stimulus Materials
Visual stimuli were 27 symbols that were novel and unfamiliar
to our sample. These symbols, derived from the African Ndjuká
syllabary and unfamiliar to our Western subjects, were adopted
based upon recent research that successfully utilized them to
explore visual statistical learning (Turk-Browne et al., 2009; Zhao
et al., 2013; Yu and Zhao, 2015). For every participant, all
27 symbols were randomly assigned to 9 different triplet sets
(see Figure 1 for an example). Triplet sets were then randomly
assigned to high-value, low-value, and no-value association
conditions (i.e., three triplet sets were assigned to each condition).

Apparatus
All experiments were run using a computer running Ubuntu
Linux and attached to a 17-inch CRT monitor. Experiment 1
was written in Python, using the PsychoPy package (Peirce,
2007) while Experiment 2 was written in MATLAB using the
Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al.,
2007).

Procedure
Participants were given written and oral instructions before
each experiment. Critically, participants were only given explicit

instructions related to the familiarization phase of the experiment
prior to beginning. We intentionally avoided providing any
information about the underlying structure (i.e., triplets) within
the familiarization phase. Participants were not informed that
there would be a test phase following the familiarization phase.
After an explanation of the familiarization phase cover task,
participants were seated in front of a computer within an isolated
and dimly lit testing space. All stages of the experiment were
accompanied by a full set of instructions for the participant
to read on-screen. Participants were also told to ask the
experimenter for clarification on any set of instructions while
completing the experiment, as needed.

Familiarization Phase
Figure 2A provides an example of the familiarization phase.
Participants viewed a stream of symbol triplets on the computer
screen. The presentation of the triplets were randomized. Stimuli
sequentially appeared at the center of the screen for 800 ms
each, with a 200 ms blank screen inter-trial interval. Each
triplet appeared 24 times throughout the familiarization phase,
for a total of 648 symbol presentations (not counting 24 1-
back repetitions that occurred in Experiment 1). Additionally,
participants were required to make responses by pressing the
spacebar whenever there was a 1-back repetition (Experiment
1) or if a shape quickly moved back and forth (“jiggle”
in Experiment 2). These events occurred 24 times for each
individual. Despite the fact that the stream was composed of
repetitions of structured triplets containing three symbols, there
was no explicit indication that this structure was present. Rather,
participants viewed a steady stream of characters throughout the
experiment and were expected to implicitly learn the statistical
regularities hidden within the stream over the course of the
experiment.

In Experiment 1, tones indicating reward status (low-value or
high-value), were played through headphones, and occurred on
75% of trials in which a low-value or high-value triplet appeared.
In Experiment 1A, the tone always co-occurred with the third
item of the triplet sequence, while in Experiment 1B, the tone
always co-occurred with the first item of the triplet sequence. In
Experiment 2, reward status was established through an explicit
reward-learning phase that preceded the familiarization phase
(described in section “Experiment 2”).

Test Phase
Figure 2B provides an example of the test phase. After the
familiarization phase and before the test phase, participants
were informed that the stream of characters they had just
viewed contained structured triplets. The instructions continued
on to explain the test phase. On each trial of the test phase,
participants were shown two sequences (i.e., triplets) and had
to choose the sequence that appeared more familiar to them.
At the beginning of the trial, participants viewed the words
“Sequence 1” on the screen for 1000 ms, followed by a central
fixation cross presented for 500 ms. Three stimuli then appeared
on screen with identical timing to the familiarization phase.
After the first sequence had completed, a second sequence
with the preceding label “Sequence 2” appeared on screen.
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FIGURE 1 | Sample base triplets of Ndjuká symbols with random assignment to high-value, low-value, and no-value association conditions.

FIGURE 2 | (A) Example of the familiarization phase of Experiment 1. Stimuli were presented for 800 ms with a 200 ms blank ITI. (B) Example of the test phase.
Participants were shown, sequentially, a characters comprised of a target triplet and characters comprised of a foil triplet. Each triplet was preceded by either
“Sequence 1” or “Sequence 2”. Participants were then required to select the triplet they viewed during the familiarization phase by pressing “1” or “2” on the
keyboard.

Participants chose the sequence that appeared more familiar
to them by pressing “1” or “2” on the keyboard in front of
them.

Test phase trials employed one of the nine original triplets
and one of nine foil triplets. Foil triplets were constructed using
the same symbols exposed during training, recombined into new
triplets such that each shape appeared in the same position within
both the original and foil triplet (e.g., first, second, or third item
in the triplet), but in novel combinations. For example, given
the assignment shown in Figure 1, a foil triplet could contain
the first character from Triplet 1, the second character from
Triplet 2, and the third character from Triplet 3. Foil triplets
were constructed exclusively from the same “value” triplets (i.e.,
we did not intermingle low-reward, high-reward, and neutral
triplet constituents in foil triplets). Each trial in the test phase
included one original triplet paired with one foil triplet. The
order by which an original triplet or a foil triplet appeared
was randomized, and participants were again required to choose

the triplet that they had observed during the familiarization
phase. Experiments 1A and 1B each contained 162 test trials
(each triplet was matched with each possible foil exactly twice)
while Experiment 2 contained 54 test trials (each triplet was
paired against each same-value triplet exactly once). In order
to determine if visual statistical learning occurred and reward
associations had an impact, proportion correct scores were
calculated for each triplet value (e.g., low, high, and neutral),
which were compared to chance performance.

EXPERIMENT 1A

Participants were instructed that they would be earning points
during the familiarization phase, with the total number of points
they earned converted into a cash reward at the conclusion
of the experiment. While participants were viewing the stream
of symbols, they were told to listen for an occasional “beep”.
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Every time they heard the high-pitched tone, they would gain
10 points toward their total. Alternatively, if they heard a low-
pitched tone, they would not gain any points at all. Critically,
and unbeknownst to the participants, these tones could only
occur simultaneously with the third item in a triplet (i.e., reward
was paired with the triplet a participant had just viewed) 75%
of the time. Out of our nine original triplets, we associated a
high-value reward with three triplets (+10 each time the high-
pitch tone plays), a low-value reward with another three triplets
(+0 each time the low-pitch tone plays, and no association with
the remaining three triplets. With each triplet being presented
24 times and the high-pitched tone played on 75% of high-
value triplet occurrences, each participant earned 540 points
(3∗(0.75∗24)∗10 = 540). Points were converted into cents at
the end of the experiment, and all participants won a total of
$5.40.

Participants were also given an attention-check task to ensure
they were paying attention during the familiarization phase of
Experiments 1A and 1B. Specifically, whenever a symbol was
repeated, participants had to press the spacebar. The third item
of each triplet was randomly selected to occasionally repeat
throughout the familiarization phase. While reward tones may
have occurred with the third item in the triplet, it never occurred
with this fourth “repeat” item.

Should the high-pitched tone carrying the high-value
association enhance visual statistical learning, then we may
expect enhanced recognition of those triplets it had been paired
with during the test phase. Alternatively, interference between
reward learning and visual statistical learning may be evident
if participants are more successful at selecting the low-value
or value-absent triplets during the test phase. Finally, results
may indicate that reward associations have no impact on visual
statistical learning. In other words, despite the co-occurrence of
these two powerful types of learning, participants may correctly
identify triplets from the familiarization phase evenly across
reward conditions.

Results
Figure 3A displays mean accuracies in selecting target triplets
over foil triplets for Experiment 1A, as a function of both target
and foil triplet value. Employing a 3× 3 (triplet value× foil value)
repeated-measures ANOVA, we found no significant interaction
of target triplet value and foil triplet value, F(4,124) = 0.65,
p = 0.63, η2

p = 0.02, and no main effect of target value
association, F(2,62) = 0.36, p = 0.70, η2

p = 0.012, or foil value
association, F(2,62)= 0.38, p= 0.69, η2

p = 0.012. Visual statistical
learning, however, was robust as measured by a one-sample
t-test comparing performance to chance (50% correct), with
participants correctly identifying more target triplets overall than
foil triplets for high-value triplets, t(31) = 3.08, p = 0.004,
Cohen’s d = 0.55, low-value triplets, t(31) = 2.25, p = 0.032,
d = 0.39, and value-absent triplets, t(31) = 2.74, p = 0.01,
d = 0.48.

To examine strength of evidence favoring the null hypothesis,
we applied a Bayesian repeated-measures ANOVA these data
using the JASP software project (Love et al., 2015), with default

priors (Rouder et al., 2012). This analysis compares models
that include versus do not include each factor and interaction,
producing a Bayes Factor (BF) ratio that indicates the evidence
in favor of the null model compared with evidence favoring a
model that includes the factor or interaction in question. This
analysis was used to produce a BF01 statistic for each main effect
and the interaction. BF01 is an inverted Bayes Factor, with values
greater than 1 indicating that the null model is favored, and with
higher BF01 values indicating stronger evidence for a model that
does not include the factor or interaction than one which does
include the factor/interaction. In the base of both main effects and
the interaction, evidence strongly favored the null model (target
value main effect, BF01 = 17.4; foil value main effect, BF01 = 16.9;
interaction, BF01 = 294.4), indicating strong evidence against
the possibility that value meaningfully altered performance in
the context of this experiment, either in terms of triplet or foil
value.

EXPERIMENT 1B

While we had chosen to pair the reward tone with the third
item in every triplet with the intention of establishing a
retroactive association to the triplet, it could be the case that
the reward association enhances visual statistical learning for
subsequent characters in the stream. In this case, any effect
of reward would be washed out across randomized triplet
orderings. We examined this possibility in Experiment 1B by
instead providing a reward association with the first item in
some triplets rather than the third. Other than this change, all
other aspects of Experiment 1B were identical to Experiment
1A.

Results
Figure 3 displays mean accuracies in selecting target triplets over
foil triplets for Experiment 1B. 3× 3 repeated measures ANOVA,
we found no significant interaction of target triplet value and
foil triplet value, F(4,168) = 0.39, p = 0.82, η2

p = 0.009. No
significant main effect of target value association was observed,
F(2,84) = 0.57, p = 0.57, η2

p = 0.013, and no significant main
effect of foil value association was observed, F(2,84) = 0.95,
p = 0.39, η2

p = 0.022. Visual statistical learning, was again
robust with participants correctly identifying more target triplets
overall than foil triplets, t(42) = 4.97, p < 0.001, d = 0.76.
We again applied a Bayesian repeated-measures ANOVA to
assess strength of evidence favoring the null hypothesis, BF01.
In the base of both main effects and the interaction, evidence
continued to strongly favor the null model (target value main
effect, BF01 = 16.8; foil value main effect, BF01 = 9.7; interaction,
BF01 = 169.4.

EXPERIMENT 2

Experiments 1A and 1B demonstrated no evidence that
visual statistical learning processes are influenced by on-
going reward signals paired consistently with constituent
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FIGURE 3 | Mean accuracies in identifying target triplets over foil triplets in Experiment 1A (A) and Experiment 1B (B). High-value triplets (+10 points)
consists of shapes which were associated with the high-pitched tone, low value triplets (+0 points) were associated with a low-pitched tone, and value-absent
triplets did not possess any association. During Familiarization, only one shape was consistently paired with the tone – the last shape in the triplet for Experiment 1A
and the first shape for 1B, but all shapes in the triplet were considered no-, low-, or high-value for purposes of determining foil composition.

items, with no significant differences observed in identification
accuracy according to value association. Experiment 2 was
designed to explicitly introduce stimulus−reward learning
prior to stimulus−stimulus associative learning, rather than
including both on-going reward signals and stimulus−stimulus
contingencies simultaneously. Participants were first required
to learn the values of six specific symbols (half low-value, half
high-value) at the start of the experiment. Instead of pairing
a reward-tone with the symbols during the familiarization
phase, participants in Experiment 2 were simply required to

commit value associations of specific symbols to memory before
beginning the familiarization phase.

In Experiment 2, stimulus−reward learning was induced
by first showing participants all six symbols alongside their
corresponding value (e.g., +1 or +9). This initial presentation
occurred twice. Participants were then shown all six symbols
sequentially, in a random order, and were required to press the
“1” or the “9” key on the keyboard to indicate its value. Shuffled
presentation of all six symbols comprised a single block, and
before moving on to the familiarization phase participants were
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required to complete five consecutive blocks of the value-learning
phase with 100% accuracy. At the beginning of this value-learning
phase, participants were told that they would have to identify
the value of a symbol at the conclusion of the experiment, and
that they would be awarded the full value of that symbol if they
are correct. Therefore, the value associations of these symbols
was real, and participants’ ability to memorize their value would
dictate whether or not they could win $1 or $9 at the conclusion
of the study.

An attention-check task was also implemented in Experiment
2. However, instead of having participants press a spacebar
whenever an item repeated, they were required to press the
spacebar whenever an item “jiggled” from left to right during
the familiarization phase. Additionally, because participants had
already learned the value associations, the presentation of a value-
associated tone was obviated. Instead, the three high-value (+9)
and low-value (+1) symbols were placed as the first, second, or
third item in six of the nine triplets, with position manipulated
between groups. The remaining three triplets did not possess a
symbol with a learned value association (i.e., none of the three
neutral triplets’ shapes had been observed prior to the training
phase).

During the test phase, the original triplet and the foil
triplet were always matched by value. For example, a low-
value original triplet was never paired with a high-value or
a value-absent triplet. This logical restriction left us with a
total of 54 test trials. Following the test phase, and congruent
with what participants had been told in the initial value-
learning phase, participants were required to recall the value
of a symbol they had learned during the initial value-learning
phase. One of the six value-associated symbols was presented
on screen for people to explicit recall the value of. If a
participant was correct in recalling the value of this symbol,
they were rewarded with a corresponding dollar amount of
either $1 or $9. Accuracy at this stage was 100% − all subjects
responded correctly, verifying success of the reward-training
regimen.

Results and Discussion
Figure 4 displays mean accuracies in selecting target triplets over
foil triplets for Experiment 2. With regard to where the value-
associated symbols were placed, there was no difference in recall
between value in the first, F(2,42) = 0.66, p = 0.52, η2

p = 0.03,
second, F(2,34) = 0.45, p = 0.64, η2

p = 0.026, or third positions,
F(2,40) = 0.48, p = 0.62, η2

p = 0.02. Nonetheless, participants
continued to display visual statistical learning selecting learned
triplets at above-chance levels, regardless of whether the learned
symbol appeared in either the first, t(21) = 4.04, p = 0.001,
d = 0.86, second, t(17) = 4.10, p = 0.001, d = 0.97 or third
position t(20) = 7.02, p < 0.001, d = 1.53. Applying a Bayesian
repeated-measures ANOVA for each value-associated placement
again produced moderate evidence favoring the null model (first
position, BF01 = 4.2; second position, BF01 = 4.8; and third
position, BF01= 5.0. Viewed as a mixed repeated-measures (value
condition) and between-subjects (position) Bayesian ANOVA,
the omnibus BF01 for the effect of target triplet value was 9.2.

GENERAL DISCUSSION

Based upon similar associative characteristics and impacts
upon performance, we argued that stimulus−stimulus and
stimulus−reward learning might interact. The shared neural
basis of these two systems (Delgado et al., 2000; Aron, 2004;
Wittmann et al., 2007; Lansink et al., 2009; Dickerson and
Delgado, 2015) further bolstered our motivation to explore this
possibility. Finally, the dependence of visual statistical learning
on attention (Turk-Browne et al., 2005) in conjunction with the
attention-modulating effects of reward (Engelmann et al., 2009;
Hickey et al., 2010; Theeuwes and Belopolsky, 2012; Chelazzi
et al., 2013; Sali et al., 2014; Pessoa, 2015), further suggest that
reward learning may have the potential to enhance or disrupt
statistical learning. However, results from the present study were
unable to identify any influence of reward learning on visual
statistical learning.

Despite reliable evidence that visual statistical learning
successfully occurred throughout our experiments, we failed
to find a reliable influence of reward. This may be most
surprising in Experiment 1, where presentation of a sound
stimulus probabilistically paired with either the first or third
item provided additional subtle information about the presence
of structure, as well as serving as a reward cue. Even in this
case, where an additional cue to structure was present in value-
associated triplets but absent from no-value triplets, participants
performed comparably in identifying no-, low-, and high-value
reward triplets. Thus, in an environment where reward learning
and visual statistical learning are concurrently active, our results
suggest that visual statistical learning is unaffected by the
occurrence of rewarding events.

While visual statistical learning appears to be unaffected by
concurrently active learning mechanisms, it also appears to
be unaffected by previously learned reward. In Experiment 2,
participants first learn to strongly associate values with symbols
before engaging in the familiarization phase. Similar to our
findings from the first experiment, visual statistical learning was
generally evident across all conditions, but there appeared to be
no clear effect of the value association upon learning, nor was
there any effect of pre-exposure of some constituent shapes from
the reward-learning phase of the experiment.

These results suggest that concurrently presented rewards
and previously learned stimulus−reward associations have
no impact on visual statistical learning. That is, whether
stimulus−reward associations were introduced at the same time
as stimulus−stimulus associations, or whether stimulus−reward
associations were established before stimulus−stimulus
associations were learned, participants’ ability to accurately
identify familiar structured triplets of symbols remained
unaffected. However, it is important to acknowledge the
potential shortcomings of the present work.

It is possible that our attempt to create strong stimulus–
reward contingencies was not powerful enough to influence
visual statistical learning. In other words, it is feasible that
one could have participants engage in a more rigorous reward-
learning tasks before or during visual statistical learning. Some
evidence suggests that the impact of reward on attention
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FIGURE 4 | Mean accuracy in identifying target triplets over foil triplets in Experiment 2, separated by position of value associate within the triplet.

scales as rewards increase (Anderson et al., 2013). Given our
understanding that visual statistical learning is dependent upon
attention (Turk-Browne et al., 2005), one could argue that
larger rewards may have produced a larger effect of reward
learning by amplifying attention during high-reward experiences.
However, potent and well-documented effects of reward on
various cognitive processes have been demonstrated using similar
reward values and reward delivery strategies (Cohen et al., 2007;
Hickey et al., 2010; Chelazzi et al., 2013; Marx and Einhauser,
2015); thus, it seems unlikely that an interaction between reward
learning and visual statistical learning was missed due to our
choice of reward quantity, which is within the reasonable range
of incentives provided in efforts that demonstrate clear effects of
rewards.

In terms of reward’s effects on attention, one possible
explanation for our null result is that attention actually has
limited effect on visual statistical learning. Although earlier work
suggested that statistical learning is “gated” by selective attention
(Turk-Browne et al., 2005), recent work has challenged the
robustness of this finding (Musz et al., 2015). Thus, it is possible
that statistical learning is non-existent, context-dependent, or
immune to variations in selective attention, or at least those
variations likely evoked by the kinds of cues to reward used in
our studies.

Regardless of the degree of attentional variation induced by
the value manipulations used here, and of the role of attention
in visual statistical learning, the well-established, strong role of
value associations in driving variations in performance (possibly
without necessitating a role of attention as a mediating variable)
suggests potential for value associations to influence statistical
learning. Two important considerations are the possibility
of distinctions between primary and secondary reinforcers,
and between transient- and state-based effects. Regarding the
former, here we only tested secondary reinforcements (signals
to monetary value). Primary rewards might be more powerful
and effective at inducing changes to visual statistical learning.

Regarding the latter, we have demonstrated cases in which
reward-related stimuli selectively paired with constituent visual
images does not impact visual statistical learning, but the random
interleaving of low- and high-reward events leaves open the
possibility that reward may influence statistical learning in a
manner that depends upon cognitive or emotional state. An
example of a well-known effect of emotional states on learning
and memory are contextual effects of mood, in which better recall
is experienced in a mood state congruent to encoding (Bower,
1981). Effects of reward on associative learning between stimuli
could be state-based, require longer and more powerful periods of
induction by repeated or otherwise more potent reward, and/or
such effects may act over longer learning timescales.

The present works provides insight into the integrity of visual
statistical learning, with evidence suggesting isolation from the
effects of rewarding events. Additionally, while these two systems
share similar neural correlates, the functional role of these neural
structures in each type of learning may differ. However, we did
not test the opposite relationship here – that statistical learning
may impact reward learning, even if rewarding associations do
not impact statistical learning. Statistical learning may precede
reward learning and influence inferences about reward value (e.g.,
by supporting transitive inference of reward from one item to its
statistical associates), or facilitate or impair reward learning in
other ways. Further work is needed to explore these possibilities.

CONCLUSION

Interjecting events that vary in reward significance appears
to leave visual statistical learning unchanged. While this
finding depends upon a lack of statistical significance, we saw
no clear trend of any effect, implying limits to any such
interference or facilitation. In environments that feature both
statistical regularity amongst stimuli, as well as contingencies
between those stimuli and rewarding events or history, our
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evidence suggests that statistical learning is unaffected and
possibly independent of reward.
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