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INTRODUCTION

Collective capability of producing patterned collective behaviors is one important field of research
in work psychology (e.g., shared cognition approach, Fiore and Salas, 2004; interactive team
cognition approach, Cooke et al., 2013), neurosciences (e.g., social neuromarkers, Tognoli et al.,
in press; neurological mirroring, Waldman et al., 2015), sociology (Miller, 2013), or human
movement science (e.g., joint movement, Schmidt and Richardson, 2008; team behavior, Araujo
and Bourbousson, 2016). Within this stream of research, one neglected topic has been to
conceptualize how interactors regulate online their dynamic involvement in collective activity,
which is the individual skillful activity of adjusting online to the needs of the collective behavior.
Grounded in of the hypothesis that collective behavior emerges from a self-organized complex
system, the present opinion discusses the nature of the active regulation of the interactions
performed by the co-agents. A deeper grasp of this regulation process is needed to understand how
and why interpersonal co-ordination forms, stabilizes and/or is destroyed, leading to the emergence
of high order phenomena at the team scale that are not fully predictable from the individual
activities that compose the social system under study.

Collective behavior is deemed here to constitute the property of a social system composed of
living entities. In research that has considered collective behavior as emerging from a self-organized
complex system, an important focus has been on the between-agents’ interactions, supported by
an informational flow that binds agents (e.g., Schmidt et al., 1990). In this stream of research,
information is defined as an ambient energy that disturbs the agent, depending on his current
activity (Varela et al., 1991). From the (interpersonal) informational flow, individual activities can
be entrained, mutually affected by others’ movements, so that the emerging collective behavior
cannot be conceived out of either the nature or the content (i.e., being non-representational) of
such a flow (e.g., Kelso, 1994; Lagarde and Kelso, 2006; Richardson et al., 2007). However, while
between-agents informational flow has been considered the main binding mechanism that makes
collective behavior emerge, we aim at pointing out that the way individualsmanage their interaction
in the real-timemainly has been theoretically presupposed rather than empirically investigated.We
will use empirical and logical evidence to highlight shortcomings in the actual theorizations of the
way individual movements merge into a collective unit. In our opinion, current research should
restrict the importance of the co-regulation and the local couplings hypotheses. Both hypotheses
appear unsatisfactory to us, and might probably be refined through a further consideration of the
social system’s size effects as a main topic.

HYPOTHESIS 1: A COLLECTIVE BEHAVIOR EMERGES FROM

INDIVIDUAL ACTIVITIES BEING LOCALLY COUPLED

According to the unifying principle of non-linear dynamical systems (see Jirsa and Kelso, 2013
for further detail on the co-ordination dynamics approach,), the collective behavior of a complex
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system emerges as the result of self-organization among the
interacting individual parts that comprise the system, such
as humans in a social system (see Schmidt and Richardson,
2008, for details on interpersonal co-ordination research). Thus,
considering social systems as the place where collective behaviors
emerge leads to the assumption that global collective patterns
observable at the social system level of organization come from
indivisible interpersonal dynamical couplings at a lower level of
organization, also called local couplings. In this light, the rhythm
of the collective behavior is supposed to change intermittently
between periods of stable and unstable behaviors, depending on
the capability of interacting parts to maintain or change their
local coupling with respect to the evolving environment in which
the social system is embedded (Glassman, 1973).

In such a conceptualization, interplays between the high
(i.e., global) and low (i.e., local) levels of organization have
been of particular interest (Rio and Warren, 2016). The
emergence principle accounts for the process by which local
couplings give rise to a higher order identifiable pattern,
the so-called collective behavior. The global pattern that
emerges thus cannot be reduced to the sum of its individual
components, and cannot be predicted by the sole properties
of these components. Conversely, the downward causation
principle accounts for the process by which the global
patterned behavior constrains the way in which individual agents
behave and interact at the local level of organization, without
these agents necessarily being aware of such a descending
causality. According to the principle of parsimony of scientific
explanations, and largely inspired by swarming intelligence
theorizations, this local couplings hypothesis has been very
successful in explaining from simple mechanisms how complex
social systems behaviors can emerge from simple local rules of
interaction.

HYPOTHESIS 2: EMERGENT COLLECTIVE

BEHAVIORS ARE SUPPORTED BY A

PROCESS OF ≪ CO-REGULATION ≫ AT

THE LEVEL OF THE LOCAL COUPLINGS

At a local level of organization, what allows a social system to
exhibit the signatures of complex systems and thus let emerge
a dynamical collective behavior? One important contribution
that synthetized theoretical answers to this question came
from the enactivist theory of interpersonal couplings (e.g.,
De Jaegher and Di Paolo, 2007). As the starting point, a
collective behavior is captured through the identification of
non-accidental patterns of individual behaviors, as observed at
the global scale. These patterns can be captured by various
tools, such as those well-developed for spatiotemporal pattern
identification (Gudmundsson and Horton, 2016). However, an
identifiable patterned behavioral co-ordination is not enough
to consider that a collective behavior has emerged from
interaction of its constituent individual parts; it also is required
that the given interactors actively regulate the interpersonal
co-ordination dynamics at the level of their local couplings. In
other words, an informational flow must have occurred between

them, and this flow must be dynamically managed. In a more
fundamental way, De Jaegher and Di Paolo (2007) stated that
complex phenomena of emergence are facilitated when both
interactors simultaneously regulate their ongoing interpersonal
co-ordination (i.e., a bi-directional flow of interplay), making
the collective behavior achieved escape from any individual
perspective of the interactors implied. In this specific case, the
collective behavior can express all the marks of complexity
and meta-stability needed to consider the social system as
exhibiting self-sustained dynamical behaviors. The need for
such a mutuality in the interaction fit under the theme of co-
regulation requirement, also discussed as a mutual awareness
requirement in other research traditions (Fiore and Salas,
2004).

Some studies revealed the crucial function of this
co-regulation requirement in interpersonal interactions,
especially in those that used the perceptual crossing paradigm
(Auvray et al., 2009). This device puts two actors in situations
where they have to move an avatar in a virtual environment
populated by different entities (avatars of humans and various
lures), visually empty but providing tactile stimulation at
each encounter through the mouse used by the participants.
Interestingly, what helps participants to succeed in finding each
other, and subsequently to experience social connectedness,
is the occurring co-regulation process they both perceived
simultaneously at some instances (Froese et al., 2014a,b),
regardless of the extent to which each actor was satisfied by
the unfolding interaction, since they were not informed of
their current effectiveness in the task. In agreement with the
co-regulation requirement for interpersonal co-ordination
emergence, most of the studies testing this regulation process
have been experimental and have focused on the co-ordination
within dyads, providing reiterated evidence of the interpersonal
benefits related to co-regulation processes (Schmidt and
Richardson, 2008).

PERPLEXING EMPIRICAL EVIDENCE 1:

SOCIAL SYSTEMS DO NOT NEED

CO-REGULATION TO PERFORM

While the hypothesis of a co-regulation requirement has
been pervasive in interpersonal co-ordination research, some
empirical studies have found it hard to observe in naturalistic
empirical data, especially in goal-directed collective behaviors.
For instance, Bourbousson and colleagues investigated how
agents heeded their co-agents in the study of basketball
teams performing in their natural social competitive context
(Bourbousson et al., 2015). The authors examined mutual
adjustments at the level of the activity that was meaningful
for the interactors, and compared novice and expert teams.
Teams were considered dynamic social networks, with team
members as nodes and members’ awareness of other members
during ongoing performance as relations. Networks, and changes
to them across games, were analyzed at different levels of
organization, using social network analysis to identify patterns
of co-regulation within the teams. Notably, the results showed
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that the reciprocity index, accounting for the instantaneous
co-regulation occurring within all the considered dyads within
the teams, was significantly lower than expected by chance
when considering expert team co-ordination, but was not the
case in novice team co-ordination. Moreover, the observed
low co-regulation was very stable over time, so that the
proposed intra-team patterns of regulation had all the marks
of expertise. Other studies have reported similar observations
in various field of team co-ordination, as in civilian command,
control, and communication settings (Wellens and Ergener,
1988), socio-technical collaborative systems (Salmon et al., 2008),
or various settings of cognitive engineering research (Cooke
et al., 2009). Together, these studies suggested an enhanced
capability of expert social systems to achieve and maintain
an optimal level of awareness during the unfolding activity,
with this level of awareness being lower than in novice social
systems.

In this light, it appeared reasonable to the authors to
consider that interactors’ activities of regulation directed
toward co-agents become parsimonious through practice
and expertise enhancement, possibly enabled by a gradual
establishment of implicit co-ordination processes (Bourbousson
et al., 2015). Implicit co-ordination processes mean that
interactors co-ordinate by drawing on accurate expectations
of future intra-team events. These expectations are developed
and shared by interactors through extensive shared practice
prior to their current activity (Eccles, 2010; Gorman, 2014).
It appears that whatever the nature of the process involved,
expert interactors probably do not need to pay as much
attention to their co-agents during ongoing task performance,
as a result of their shared experiences. The co-regulation
hypothesis is thus quite unsatisfactory, at least as a strong
interaction requirement in goal-directed social systems that
are composed of many inter-related dyads, and in which
the shared experience of interactors allows them to adopt
a parsimonious but effective structure of regulation of the
intra-team co-ordination.

PERPLEXING EMPIRICAL EVIDENCE 2:

HUMAN AGENTS CAN GRASP THE

GLOBAL PICTURE THEY HELP TO MAKE

EMERGE

As introduced above, a main inspiration to collective behavior
understanding has come from swarm intelligence, as observed
in social insects (Theraulaz, 2014). Collective behaviors of social
insects are powerful forms of collective intelligence because
local couplings have been shown to be sufficient to give rise to
very patterned and adaptive collective behaviors. Most of the
time, agents do not even need to be strictly coupled together,
as long as each of them maintains its coupling to the shared
environment. Most complex-systems-inspired frameworks of
interpersonal co-ordination have thus subsequently considered
that local couplings were enough to conceptualize collective
behaviors, that these local couplings signed a parsimonious
way of structuring informational flows within the social

system, and that such a process was a perfect example of
the emergence phenomenon. However, unlike the research on
social insects, that on interpersonal co-ordination has neglected
to consider that human co-agents are capable of grasping
the global picture they help to make emerge, especially in
cases in which collective behavior is goal-directed and actively
regulated by co-agents. In this way, the collective behavior
in which individuals are involved may directly support their
adaptive activity and thus be considered as a non-negligible
informational constraint that supports humans’ goal-directed
behavior. This capability has been called holoptism, that is the
ability for any interacting co-agent to perceive the dynamics
of the whole interactive system (Noubel, 2004; Bauwens,
2005).

For instance, sport coaches are well aware of such a
capability for holoptism in humans: When players are called
to perceive the rhythm of the game, free spaces, or team
fluidity of movements, the given agents thus couple to high-
order spatiotemporal information that probably helps them to
better couple locally1, but this information does not rely per
se at the local coupling level itself (see Bourbousson et al.,
2014 for an empirical research). Out of the sports domain,
similar observations have also been discussed in the field of
designing collaborative digital tools. For instance, Bauwens
(2005) suggested looking with caution at swarming intelligence
systems, and proposed that the peer-to-peer process might
be re-considered in light of the quality of holoptism that
is offered to user experience through digital collaborative
practice.

While the local couplings hypothesis is very useful in
swarming behaviors theories, our opinion is that current
interpersonal co-ordination theories in humans run the risk of
not being cautious enough when introducing the local couplings
hypothesis as a starting point of the research (e.g., Silva et al.,
2014). One can note that most of the experimental study
designs have invited participants to adjust to a single co-agent,
but this individual dyad level of investigation does not clearly
distinguish local and global scales of the collective behavior (e.g.,
Schmidt and Richardson, 2008): When participants are asked
to co-ordinate their arms in a dyad, by locally coupling with
the movement of the co-agent, they also directly regulate the
global co-ordination dynamics to which both are contributing,
so that local and global perceptual capabilities coincide in the
task goal. Thus, our opinion is that one approach to further
investigate what holoptism may bring to interpersonal co-
ordination theories might be to extend the number of co-
agents implied in the collective behavior under study to better
allow for the distinction between the levels of organization
that shape the social system’s dynamics. For instance, such an
extension of the number of participants involved in the study
design would allow for discussing human capability of switching
their attention from local couplings to the global interpersonal
pattern.

1The question remains open whether holoptism only apply to goal-directed

collective behavior, or may also be implied in spontaneous motor entrainment (i.e.,

unintentional interpersonal coordination patterns emergence).
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BREAKING THE DEADLOCK:

CONSIDERING THAT THE NUMBER OF

CO-AGENTS MATTERS IN THEORIZING

SOCIAL SYSTEMS FUNCTIONING

Where does the problem probably lie? First, we have to remember
that very few studies investigated how people actively are
involved in regulating their interpersonal co-ordination states in
the real-time. When this active regulation was discussed in the
research, it was often considered a theoretical assumption related
to the nature of the informational flow binding actors, rather
than being empirically investigated and described. From this
starting point, we have challenged two theoretical hypotheses, the
co-regulation and the local couplings hypotheses, respectively.
Our opinion is that both have been overlooked, probably due to
a common property of the existing study designs: The number
of co-agents implied in the experimental paradigms was quite
small (i.e., two interacting agents; Alderisio et al., 2016). Studying
dyads may have limited our fundamental understanding of
how collective behaviors emerge from interacting individual
activities. Empirical and theoretical benefits should thus come
from studying operating social system larger than a dyad,
especially by revising the co-regulation and the local couplings
hypotheses.

What does it change to consider the number of co-agents
implied in the study design as a variable? In the literature, few
studies show how the number of agents involved in a given
collective behavior really matter and can change the processes
needed to make a collective behavior effective and adaptive.
For instance, the effect of the co-agents’ number has been
studied abundantly in social insects’ science, and is known
as the effect of size colony on the adjustment processes. To
illustrate, Perna et al. (2012) investigated termite colonies and
identified two main adjustment processes that may explain the
emergence of collective behaviors. The first process is a purely
local mechanism that accounts for an arrangement of agents’
behaviors based on only local information. The second process
is a local estimation of global properties, and accounts for agents
being sensitive to the efficiency of the current collective behavior
(i.e., through rudimentary sensory sensitivity) and of improving
on it based on information about some global parameters of
the existing social system (Perna et al., 2012). Interestingly, the
given insects were shown to be probably capable of switching
from the first to the second process when the social system
exceeded a threshold in term of colony size–the first process
being less resilient to environmental changes or unpredictable
events.

Obviously, the topic of co-agents’ number was not discussed
enough in human behavior science, but a few examples may
be found in numerical science, especially in human crowd
modeling, that explain how human collective systems can exhibit
adjustment mechanisms that change, and are very dependent on
the number of co-agents (Mehran et al., 2009). Some examples
can also be found in the study of financial market fluctuations
where interactions between agents are considered a variable (e.g.,
Lux andMarchesi, 1999), but these interactions are not expressed

as a linear function of the investors’ number but rather as
subjected to a threshold effect that makes social contagion more
or less pronounced (e.g., Orléan, 1990). Specificity of human
collective behaviors often relies on interpersonal co-ordination
being itself the goal to achieve, implying that co-agents interact
to actively create/maintain/disrupt global interpersonal states
of behavior, and, in some instances, these states are probably
managed through holoptism capability. Empirical studies that
investigate effects of the social system’s size on the collective
behavior of humans who are actively regulating their online
states of co-ordination will contribute to an opened avenue of
research on the topic of interpersonal co-ordination dynamics.
Unanswered questions thus would need to be addressed, like
knowing how many members implied in the social system might
require or prevent occurrences of holoptism or one-sided co-
ordination processes.

PERSPECTIVES

How can informational flows be patterned in goal-directed social
systems larger than dyads? For instance, in the case of co-agents
reciprocally co-regulating their activities in a 5-member social
system, each interactor must regulate four co-ordination links
at once, which makes the attentional requirement of the task
very hard to manage, and even harder in a 10-member social
system in which 45 co-ordination links have to be simultaneously
co-regulated, and so on. To counter-balance the co-regulation
hypothesis, it is probable that co-regulation can occur only
between certain co-agents, and the overall social system functions
through few co-ordination links (i.e., low density within the
network of informational flows). It is also likely that the coupling
linkages do not necessarily need to be reciprocal between
the co-agents, so that one-sided co-ordination should provide
benefits to the global efficiency and parsimony of the system.
It is even more likely that co-agents can face the difficulty of
regulating each local coupling by grasping the overall picture at
some point in their activity (i.e., global matching capabilities),
thus counter-balancing the local couplings hypothesis. Related
questions should then be addressed: does structural congruence
between members, as achieved through recurrent interactions in
team training (Maturana and Varela, 1987), help them to pay
less (reciprocal) attention to the regulation of their couplings?
Do some properties of interpersonal networks allow for a
lessened need of agents’ co-regulation, due to a somewhat
‘less effort for more effects’ phenomenon, such as might be
hypothesized in wide networks? To which extent does holoptism
capability help to better explain the emergence of non-goal-
directed (i.e., unintentional) patterns of collective behavior?
These proposals need to be challenged through empirical data
analysis in future research, which should allow better theorization
of how co-agents couple through skillful dynamic individual
adjustments.
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