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We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool

to analyze multidimensional time-series data. We show how MdRQA can be used to

capture the dynamics of high-dimensional signals, and how MdRQA can be used to

assess coupling between two or more variables. In particular, we describe applications

of the method in research on joint and collective action, as it provides a coherent

analysis framework to systematically investigate dynamics at different group levels—from

individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The

Appendix in Supplementary Material contains a software implementation in MATLAB to

calculate MdRQA measures.

Keywords: Multidimensional Recurrence Quantification Analysis, MdRQA, multidimensional time-series,

correlation, dynamics, joint action, MATLAB

INTRODUCTION

The interest in joint action research in the past 15 years has come with an increased interest in the
temporal dimension of action (Marsh et al., 2009; Knoblich et al., 2011), which offers additional
information about linguistic, motor, physiological, or neuro-physiological underpinnings of that
behavior (e.g., Shockley et al., 2003; Richardson and Dale, 2005; Richardson D. C. et al., 2007;
Richardson M. J. et al., 2007; Dumas et al., 2010; Konvalinka et al., 2011; Louwerse et al., 2012;
Fusaroli and Tylén, 2016).

Integrating information about the temporal dimension that characterizes the interaction of
multiple actors alwaysmeans to apply some kind of correlational analysis, with the terms “coupling”
or “synchrony” used to loosely refer to more specific patterns of correlation that can be quantified.
Many techniques are available to quantify patterns of correlation, such as cross-correlational
methods (e.g., Konvalinka et al., 2010), methods to detect phase-coupling (Richardson M. J. et al.,
2007), or methods to detect nonlinear patterns of coupling, such as techniques based on recurrence
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(e.g., Shockley et al., 2003) or cross mapping (Sugihara et al.,
2012). However, all of these methods primarily aim at data sets
with two dependent variables (i.e., measurements taken from two
participants performing a joint action task). The availability of
methods that are readily applicable to the analysis of dyadic data
may be one of several reasons why most joint action studies to
date have been performed on the level of the dyad.

Investigation of group-level behavior has been done as well,
but effectively resorting to bi-variate analyses, splitting the group
behavior into all possible pairings and investigating the behavior
as the average of all of its pairs. Apart from the fact that
it would be desirable to quantify group-level behavior more
properly (Fusaroli et al., 2014), as it might not always be the
same as the average behavior of the constituting dyads, there
are also practical implications on how to deal with pairwise
decompositions statistically: If we have a group of three people
(P1, P2, P3) that interact, and we quantify the group behavior as
the average of pairwise interactions, we have to somehow deal
with an insufficient number of independent degrees of freedom:
Say the behaviors of P1 and P2 are positively correlated, and
the behaviors of P2 and P3 are positively correlated, then the
behaviors of P1 and P3 are also likely positively correlated and
do not add independent information. So far, workarounds have
been to either ignore this over determination in pairwise group
analyses (Müller and Lindenberger, 2011), or try to work with a
number random sub-samples of pairwise data points that reflect
the number of actual independent degrees of freedom (e.g.,
Wallot et al., 2016).

The goal of the present paper is to introduce a
multidimensional correlation technique, Multidimensional
Recurrence Quantification Analysis (MdRQA), as a method to
analyze group-level behavior of groups bigger than a dyad. In the
following sections, we will describe MdRQA, explain its relation
to standard Recurrence Quantification Analysis of individual
time-series (RQA) and Cross-Recurrence Quantification
Analysis of pairs of time-series (CRQA)—both of which have
already been used to analyze dynamics of dyadic behavior
(Shockley et al., 2003; Richardson and Dale, 2005; Richardson
D. C. et al., 2007; Richardson M. J. et al., 2007; Konvalinka et al.,
2011; Louwerse et al., 2012; Lang et al., 2016; Mønster et al.,
2016a; Fusaroli and Tylén, 2016). We will also compare MdRQA
to Joint Recurrence Quantification Analysis (JRQA)—another
recurrence method that can be used to jointly analyze two or
more time series. Then, we will show the utility of MdRQA,
applying it to data from a joint action study featuring groups of
three participants working on a joint production task. We show
a correlation between group level dynamics of a physiological
marker of arousal and independent outcome measures of
the joint task. In accordance with previous analysis of the
experiment using different techniques, this could not be seen
at the level of aggregate individuals (Håkonsson et al., 2015) or
dyads (Mønster et al., 2016a). Finally, we will end the article by
discussing the interpretation of MdRQA results for group-level
analysis, and summarize the advantages, disadvantages, and
potential future developments of this technique. The Appendix
in Supplementary Material of this paper contains MATLAB code
to run the MdRQA analysis.

MULTIDIMENSIONAL RECURRENCE
QUANTIFICATION ANALYSIS (MdRQA)

MdRQA is a recurrence-based analysis technique to gauge the
coordination pattern of multiple variables over time. The key
concept of MdRQA, as the name suggests, is recurrence, meaning
how the variables of interest repeat their values over time.
MdRQA quantifies patterns of repetitions, which—depending on
the interpretation of the analysis—are related to the dynamic
characteristics of a multivariate system (see section “Comparison
to RQA”) or characterize the coordination of a group of variables
over time (see sections “Comparison to CRQA,” “Comparison to
JRQA,” and “Example: Origami production task”).

MdRQA is a multivariate extension of simple RQA, which
is an analysis technique that was developed to characterize
the behavior of time-series that are the result of multiple
interdependent variables, potentially exhibiting nonlinear
behavior over time (Webber and Zbilut, 1994; Marwan
et al., 2002). The basis of the RQA approach is phase-space
reconstruction through time-delayed embedding. A phase-space
is a space in which all possible states of a system under study
can be charted. If full determination of the state of the system
requires D independent variables, then the phase space has D
dimensions. The method of time-delayed embedding allows
the reconstruction of phase-space profiles from a single, one-
dimensional observable, following the logic of Takens’ theorem
(Takens, 1981). Takens showed that if a system of interest is
comprised of multiple interdependent variables that drive its
dynamics (i.e., its dynamics are multidimensional), and one
has access only to a single observable x from the system (i.e.,
measuring one of its dimensions), then the multidimensional
dynamics of that system can be reconstructed from the single
measured dimension by plotting the observable x against itself
a certain number of times at a certain time delay (see Figure 1).
The starting point for the method is the measured values of the
variable x:

x = (x1, x2, x3, . . . , xn) (1)

where x is a vector with values x1 to xn representing the time-
series of the variable x sampled at regular times t1, t1 + 1t,
t1 + 21t, ... t1 + (n − 1)1t. If we know (or can estimate) the
true dimension D of the dynamical system from which we have
sampled x then we can construct D-dimensional vectors of the
form:

V1 = (x1, x1+τ , x1+2τ , . . . , x1+(D−1)τ ) (2)

Note that the elements of V1 are all elements from x, starting
with x1 sampled at time t1 and then using values at later times,
such as x1+τ sampled at t1 + τ1t. Since the later times are all
delayed relative to t1 by an integer multiple of τ1t, the constant
τ is called the time-lag. We can construct a similar vector V2 by
starting with x2 sampled at t2 = t1 + 1t, and in fact we can
construct n − (D − 1)τ such vectors, that can be arranged in a
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FIGURE 1 | Illustration of phase-space reconstruction and resulting RP using a noisy sine-wave. A noisy sine-wave in the upper panel of (A) and its

time-shifted copy (surrogate) in the lower panel of (A). Reconstructed phase-space portrait (B), obtained by plotting the original sine-wave Ṽ1 against its time-delayed

copy Ṽ2. Resulting RP (C), where diagonal lines of recurrences (black dots on the plot) indicate that the sine-wave signal repeats itself at intervals of roughly 60 data

points. The speckled appearance of the diagonal lines indicates that repetitions are not perfect (i.e., the presence of noise).

matrix:

V =











V1

V2

...
Vn−(D−1)τ











=











x1 x1+τ . . . x1+(D−1)τ

x2 x2+τ . . . x2+(D−1)τ

...
...

...
xn−(D−1)τ xn−(D−2)τ . . . xn











(3)
Note that the rows are the D -dimensional phase-space vectors
that we set out to construct above, while the columns are time-
delayed versions of the first n− (D−1)τ elements of the vector x,
delayed by 0τ , 1τ , 2τ , etc. The row index is a measure of time
and each column index corresponds to a dimension in phase-
space. Thus, the row vectors Vi constitute points in the phase-
space portrait of the multidimensional dynamics of the system
from which the observable x was taken. The column vectors,
Ṽj, j = 1, 2, . . .D are time series vectors, corresponding to the
reconstructed dimensions of the phase space, and in particular
Ṽ1 is the measured variable x from which the other dimensions
are constructed. RQA is a method to statistically describe these
multidimensional dynamics through the concept of recurrence
in phase-space. RQA statistics are based on the recurrence plot
(RP), which was invented as a means to graphically display the
dynamics of a multidimensional phase-space (Eckmann et al.,
1987). In essence, the RP describes repetitions of the values of V
in its phase-space. A point RPij in the RP is considered recurrent
if the distance

∥

∥Vi(x)− Vj(x)
∥

∥ between the point Vi(x) (at time
ti) and the pointVj(x) (at time tj) is smaller than the threshold T.
This can be written as

RPij = 2(T −
∥

∥Vi(x)− Vj(x)
∥

∥), (4)

where 2(x) is the Heaviside step function, which has the value
0 for x < 0 and 1 for x ≥ 0. Throughout the remainder of the
manuscript, values of the threshold parameter T are relative to a
Euclidean distance norm of the respective phase-spaces.

As an example, imagine that we want to measure the position
of a person on a merry-go-round, then assuming that the person
does not move up and down, we only need two variables x
and y to determine the position of the person at a given time.

These two variables make up the phase-space of the system1.
If we only measured one of these variables, say x, then we can
reconstruct the full phase space from this variable alone using
the method described above. Figure 1 illustrates the process
where the measured values of x have been simulated by using a
sine-wave with added noise.

Because repetitions are usually never exact, either due to
intrinsic fluctuations of the system’s dynamics or measurement
noise, a threshold parameter T is applied, within which values in
phase-space are counted as being recurrent or not (see Figure 2).

MdRQA extends RQA by allowing the use of additional
measured variables from the system under study to be used as
dimensions in phase-space. Hence, instead of quantifying the
dynamics of a D -dimensional system from a single observable
x by using the D -dimensional vectors Vi(x), MdRQA allows us
to quantify the dynamics by using a number N of observables y1,
y2, ... YN to construct the phase-space:

W =











W1

W2

...
Wn











=











y1,1 y2,1 . . . yN,1

y1,2 y2,2 . . . yN,2

...
...

...
y1,n y2,n . . . yN,n











(5)

where Wi is the N -dimensional vector consisting of the N
observables measured from the system sampled at time ti. The
elements of the matrix W are thus given by Wij = yj,i, where yj,i
is the value of yj at time ti.

MdRQA shares commonalities with Self-Similarity Matrices
(SSM): Both methods rely on the computation of a distance
matrix, where distances between sequences of positions of
a multidimensional array are charted. However, while SSMs
operate on the Euclidean distance of this distance matrix (e.g.,
Junejo et al., 2008), MdRQA proceeds by operating on the
thresholded distance matrix (see RP illustration in Figure 2) in
order quantify the matrix in terms of the standard recurrence
measures (Webber and Zbilut, 1994; Marwan et al., 2002).

1For a full description we would also need the velocity as part of the phase-space,

but we will ignore this here.
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FIGURE 2 | Illustration of the effect of the threshold parameter on the percentage of recurrence points in an RP. The upper panels (A–C) show the same

phase-spaces as in Figure 1, but with an application of increasingly larger threshold, within which points in phase-space are counted as being recurrent, illustrated by

a gray circle. The lower panels (A–C) show that the corresponding RP yield increasingly higher percentages of recurrence points, evident by the increasing thickness

of the diagonal line patterns on the plots.

Earlier attempts to use RQA on multidimensional signals
were made by computing the Euclidean distance of multiple
signals and analyzing the resulting distance vector, for example
by Thomasson et al. (2002) (cited in Webber and Zbilut,
2005) who quantified scaling characteristics in EEG-activity as
a global brain-dynamics analysis. Applying RQA directly on
multidimensional signals has been done in prior studies on the
analysis of joint action by (Mitkidis et al., 2015; Wallot et al.,
2016) to quantify the joint dynamics of handmovement in a joint
car-model building task, taking each of the four hand acceleration
time-series of the collaborating builders as variables.

COMPARISON TO RQA

The relation between RQA and MdRQA has already been
described above. Nevertheless, we want to illustrate how RQA
can be used to infer the multidimensional dynamics of a system
from a single observable, and compare this to how MdRQA
allows the quantification of those dynamics by taking into
account multiple observables. As an example, we choose the
Lorenz system (Lorenz, 1963), a dynamic system of three coupled
differential equations:

dx

dt
= σ (y− x)

dy

dt
= x(ρ − z)− y

dz

dt
= xy− βz (6)

where the parameters σ , ρ,β are constants with positive values.
In the following we have chosen the fixed values σ = 10,
ρ = 28, and β = 8/3. We solve the equations numerically
in the interval 0 ≤ t ≤ 20, giving us solutions for x(t), y(t),
and z(t), shown in Figures 3A–C. The maximum time (t = 20)
is a somewhat arbitrary choice, that was chosen simply to give
enough data points to use for recurrence analysis. We resample
the data from the numerical integration to ensure that all three
time series x(t), y(t), z(t) are sampled uniformly with the same
time values, using a sampling interval 1t = 0.0162. In order to
get comparable phase spaces, we further normalize the sampled
time series for x, y, and z by using z-scores. If we plot the (z-
scored) points

(

x(t), y(t), z(t)
)

for all values of t, we get the well-
known Lorenz attractor, shown in Figure 3G. This plot shows the
dynamics of the system in phase space, where the time, t, is no
longer plotted along one of the axes, but each data point with
regard to its position in the 3D space was sequentially plotted
with temporal ordering on t.

Using the method of time-delayed embedding, we can take
each of the individual dimensions, x, y, and z, to reconstruct
the three-dimensional dynamics of the system via time-delayed
embedding. The attractors, reconstructed with embedding
dimension D = 3 and time delay τ = 4, are shown in
Figures 3D–F. For the reconstructed attractors the points plotted
are the row vectors V1, V2, and V3, that are created from the
time-delayed values of x, y, and z, respectively.

The points that make up these reconstructed attractors using
the time delayed embedding can be used to produce recurrence
plots as shown in Figures 3H–J, by applying RQA. Note that
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FIGURE 3 | The time series for x (A), y (B), and z (C) obtained by numerical integration in the solution interval. The Lorenz attractor (G) is the phase space plot of x,

y, and z shown in z -scored dimensions. The reconstructed attractor based on time delayed embedding of x, y, and z respectively, with D = 3 and τ = 4, is shown in

(D–F) (also in z -scored dimensions). Finally recurrence plots, using a threshold T = 0.1 to define a recurrence, are shown for the reconstructed attractors, based on x

(H), y (I), and z (J); as well as based on the original attractor (K) with a threshold T = 0.08.

the axes on the RPs refer to vector index, rather than time,
and correspond to the full time series shown in Figures 3A–C

(there are 1234 samples, and 1234 · 1t = 20). Analogously, the
information in all three dimensions can be used to produce the
RP shown in Figure 3K, by applying MdRQA.

The figure illustrates that the time delayed embedding method
relying on Takens’ theorem does indeed produce reconstructed
attractors (Figures 3D–F) that are isomorphic to the true
attractor (Figure 3G), but it is also clear that the fidelity is not
the same for all dimensions, e.g., the reconstruction based on
z(t) does not properly reproduce the double-lobed structure of
the original attractor. The RPs in Figures 3H–J that are based on
a single variable x, y, or z clearly resemble each other, and also
resemble the RP based on all three variables (Figure 3K). Many
of the diagonal line structures are reproduced in all of the RPs, but
with “noise” in the form of broken diagonal lines and points that
are not part of diagonal lines seen in the RPs based on a single
variable (Figures 3H–J) when compared to the RP based on all
three variables (Figure 3K).

As mentioned above, the RP is not just a means to visually
display the dynamics, but also allows to quantify them. Webber
and Zbilut (1994) defined the first four recurrence measures,

recurrence rate (RR), determinism (DET), average diagonal line
length (ADL), and longest diagonal line length (LDL). These four
measures quantify different aspects about the dynamics and their
definitions are given inTable 1. Recurrence rate and determinism
are commonly reported both as a fraction and in percent (%
recurrence and % determinism).

Further measures have been developed and are currently
in development (e.g., Marwan et al., 2002). However, for the
purpose of describing MdRQA as a method we will only focus
on those four. Values of the four recurrence measures for the
recurrence plots shown in Figures 3H–K are shown in Table 2.

The measures in Table 2 are consistent with the qualitative
interpretation of the recurrence plots, presented above, and we
also get some information that is difficult to read off a plot,
e.g., that the recurrence rate is almost exactly the same in all
of the RPs (with the RP based on y being slightly denser). The
main difference between the MdRQA measures and the RQA
measures is that the diagonal line structures are consistently
longer in MdRQA than in RQA. This is because, in this case,
MdRQA captures the true dynamics of the system, since we
have all the dimensions included, whereas RQA is based on an
approximation using only one of these. Moreover, this allows for
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TABLE 1 | Description of the four RQA measures RR, DET, ADL, and LDL.

Measure Name Definition

RR Recurrence rate Sum of recurrent points in RP/Size of RP

DET Determinism Sum of diagonally adjacent recurrent

points/Sum of recurrent points in RP

ADL Average diagonal line

length

Average length of diagonal lines in RP

LDL Length of longest

diagonal line

Length of longest diagonal line in RP

TABLE 2 | Values of the RQA measures RR, DET, ADL, and LDL for the

recurrence plots shown in Figures 3H–K with embedding dimension

D = 3, time delay τ = 4, and threshold T = 0.01 for RQA and T = 0.008 for

MdRQA).

RQA(x) RQA(y) RQA(z) MdRQA

RR (%) 0.69 0.84 0.68 0.69

DET (%) 99.4 97.4 99.5 99.9

ADL 9.12 7.84 10.3 16.4

LDL 131 118 82 167

comparisons of how well the individual dimensions from which
the phase-spaces were reconstructed approach the original: For
example, comparing the RQA values in Table 2, it seems that
the dimension x of the Lorenz system (Figure 3A) provides a
better reconstruction than y and particularly z (Figures 3B,C,
respectively).

COMPARISON TO CRQA

Cross-Recurrence Quantification Analysis (CRQA) was probably
the first multivariate extension of RQA, allowing for the analysis
of two variables and their cross-recurrences (Marwan and
Kurths, 2002). Besides explicitly incorporating more than one
variable for analysis, CRQA also enables capturing the relation
between the two variables, as CRQA-measures are not derived
from the distances within a single phase-space profile, but are
based on the distances between two profiles in phase-space. This
is made explicit by comparing the formula for the recurrence plot
(RP) with the formula for the cross recurrence plot (CRP). The
recurrence plot is a plot of all non-zero elements of the recurrence
matrix RPij (see Equation 4), just as the cross-recurrence plot is
a plot of all non-zero elements of the cross-recurrence matrix
CRPij:

CRPij = 2(T −
∥

∥Vi(x)− Vj(y)
∥

∥) (7)

Here, as in Equation (4), T is the threshold parameter that
determines how close two points must be to each other to count
as a recurrence. The formula for the RP (Equation 4) contains the
distance,

∥

∥Vi(x)− Vj(x)
∥

∥, between two points, Vi and Vj in the
reconstructed phase-space based on the points in the time series
x, whereas the formula for the CRP contains the distance between
a pointVi(x) in the phase space reconstructed with points from x

and a point Vj(y) reconstructed with points from y.

As amodel system to compareMdRQAwith CRQAwe choose
a system of two coupled van der Pol oscillators, whose dynamics
are governed by the coupled, second-order, differential equations:

d2x

dt2
= µ(1− x2)

dx

dt
− x+ ǫ1(x− y)

d2y

dt2
= µ(1− y2)

dy

dt
− y+ ǫ2(y− x) (8)

We fix µ = 100 and choose an asymmetric coupling between the
variables, so that ǫ2 = 5ǫ1, leaving only one free parameter in the
system. A Cross-Recurrence Plot (CRP) and Multidimensional
Recurrence Plot (MdRP) for the coupled van der Pol oscillators
are shown in Figure 4 for two different values of the coupling.

Comparing the time series at low coupling (Figure 4A) with
the time series at high coupling (Figure 4D) it is evident that
the two oscillators synchronize and become phase-locked for the
high value of the coupling, whereas this happens on a longer time
scale for low coupling. Here we are interested in whether CRQA
and MdRQA capture this difference. There is a clear difference
between the RPs produced by CRQA and MdRQA, both at low
(Figures 4B,C) and high (Figures 4E,F) coupling. However, the
RPs for CRQA at both low (Figure 4B) and high (Figure 4E)
coupling look qualitatively similar, as do the RPs for MdRQA
(Figures 4C,F). The RPs for MdRQA are indicative of a system
that is initially non-periodic, but switches to periodic behavior.
The RPs based in CRQA are somewhat insensitive to this, because
the CRQA method is based on recurrence between to different
phase-space trajectories—one built from x and one built from
y —and these are both individually periodic, which masks the
initial non-periodicity of the combined system.

To investigate the difference between CRQA and MdRQA in
this example, we show in Figure 5 how the recurrence measures
obtained from the (cross-)recurrence plots vary as a function of
coupling strength ǫ1. This figure demonstrates, quantitatively,
that both methods are sensitive to changes in coupling.
However, the MdRQA-based measures exhibit stronger, and
more convergent correlations with coupling strength, which is
evident from the correlation coefficients in Table 3: The MdRQA
measures have generally high correlations with ǫ1, compared to
the lower (in one case even negative) correlations between ǫ1 and
the CRQA measures.

This example of two coupled van der Pol oscillators illustrates
the utility of MdRQA in detecting the coupling between two
systems. It is important to note that this does not generally imply
a greater sensitivity of MdRQA relative to CRQA, as we have
not systematically tested different systems and their coupling
properties.

COMPARISON TO JRQA

Another extension of the basic recurrence plot is the Joint
Recurrence Plot (JRP), which also allows investigations of the
relation between multiple variables (see Marwan et al., 2007,
for an introduction to JRPs and comparisons between JRPs
and CRPs). While CRPs capture the commonalities between
two signals as the distance between their phase-space profiles
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FIGURE 4 | Temporal dynamics (A) of a system of two (in red and blue) coupled van der Pol oscillators with ǫ1 = 0.01. CRP (B) and MdRP (C) for the time series

shown in (A) with D = 2, τ = 1, and T = 0.01 for both CRP and MdRP. (D–F) show the same, but for ǫ1 = 0.02. In both cases ǫ2 = 5ǫ1.

FIGURE 5 | Recurrence measures RR, DET, ADL, and LDL for CRQA (dashed lines) and MdRQA (solid lines) as a function of the coupling constant ǫ1.
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TABLE 3 | Pairwise Pearson correlation coefficients between the RQA

measures shown in Figure 5 and the coupling constant ǫ1.

RR DET

ǫ1 CRQA MdRQA ǫ1 CRQA MdRQA

ǫ1 – 0.48 0.99 – −0.86 0.89

CRQA – 0.42 – −0.74

MdRQA – –

ADL LDL

ǫ1 CRQA MdRQA ǫ1 CRQA MdRQA

ǫ1 – 0.43 0.94 – 0.60 0.60

CRQA – 0.32 – 0.35

MdRQA – –

(see section above), JRPs capture the commonalities between
two signals as coinciding instances of recurrence between
the individual RPs of those signals. So first, proper RPs are
constructed for each signal, and then their JRP can simply
be computed by joining the plots together, so that common
instances of recurrences are kept, but instances of recurrence
that are different between the two plots are discarded. In the
formula for the JRP, this is achieved as a product of two Heaviside
functions, which is 1 if they are both 1 (recurrence in both
variables) and 0 otherwise.

JRPij = 2(Tx−
∥

∥Vi(x)− Vj(x)
∥

∥)·2(Ty−
∥

∥Vi(y)− Vj(y)
∥

∥) (9)

Here, we allow for different thresholds Tx and Ty in the two phase
spaces.

This plot can then be quantified just as a regular recurrence
plot, yielding a Joint Recurrence Quantification Analysis (JRQA).
Moreover, Marwan et al. (2007) also proposed a multivariate
extension for JRQA, where the JRP is computed not just by
joining two, but arbitrarily many individual RPs, based on a
number (d) of observed variables y1, y2... yd:

JRPij =

d
∏

k=1

2(Tk −
∥

∥Vi(yk)− Vj(yk)
∥

∥) (10)

Hence, similar to MdRPs, JRPs also offer a way to quantify
the simultaneous dynamics of more than two variables. The
difference is that MdRPs are based on a phase-space that
incorporate the component signals, JRPs are based on the RPs
of the individual component signals which are joint together.
In other words, MdRQA quantifies the commonalities based on
the recurrence profile of a multi-component-signal phase-space,
while multivariate JRPs quantify the commonalities based the
recurrence profiles of multiple individual component signals.
Using the Lorenz-system, we can illustrate the similarities
and differences of how multivariate JRPs and MdRPs handle
multivariate time series.

Table 4 summarizes the quantitative differences between the
multivariate JRP and the MdRP of the Lorenz system: In general,

TABLE 4 | Values of the RQA measures RR, DET, ADL, and LDL for

multivariate JRP shown in Figure 6A, and the MdRP shown in

Figure 6/Figure 3K .

JRP MdRP

RR (%) 0.14 0.84

DET (%) 98.1 97.4

ADL 11.9 7.84

LDL 82 118

the values are of comparable magnitude, except for RR which is a
factor 6 smaller for JRP compared toMdRP. This is due to the fact
that the structure on the JRP is contingent on recurrence in all the
three constituent RPs simultaneously. Since joint recurrence will
not be perfect across the plots, many of the recurrent instances in
the constituent plots will disappear in the JRP because recurrence
is absent in at least one of the other RPs.

EXAMPLE: ORIGAMI PRODUCTION TASK

As we have shown in the examples above, MdRQA can be
used to quantify the dynamics of a multidimensional system
at different levels of description by combining information
from multiple variables, and it can be used to infer the
shared dynamics of multiple time-series, similarly to CRQA or
JRQA. In the following, we will apply MdRQA to empirical
data to demonstrate how it can be used to systematically
analyze group dynamics at different levels of aggregation:
individuals, dyads, and at a global group level. In order to
do so, we present a re-analysis of a sub-set of data from a
study on teamwork investigating the role of team emotions for
cooperation (Håkonsson et al., 2015; Mønster et al., 2016a).

In this study, teams of three participants were asked to
build origami boats together over five consecutive sessions.
The participants were told that the team that built the most
boats would win an extra cash prize. Participants were fitted
with heart rate, skin conductance, and facial electromyography
monitors to investigate the role of dynamics of emotions during
teamwork. Participants were then shown how to build the boats
and subsequently built as many boats as they could during three
4-min sessions. After session three, participants were shown an
alternative building technique and could choose to either adopt
the new technique in sessions four and/or five, or stick with the
original folding technique (see Mønster et al., 2016a, for further
details on the study).

While the study by Håkonsson et al. (2015) looked at
static effects of emotional measures, aggregating individual team
members’ physiological reactions to an average score, the study
by Mønster et al. (2016a) re-examined the data using CRQA
to look at shared emotional dynamics between pairs of team-
members. The individual physiological responses averaged at
the group level showed only a marginal effect of emotions on
outcomes in this team task (Håkonsson et al., 2015). However,
shared emotional dynamics at the level of dyads as measured
by skin conductance and electromyography of the zygomaticus
major (“smiling muscle”) were influenced by task conditions

Frontiers in Psychology | www.frontiersin.org 8 November 2016 | Volume 7 | Article 1835

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Wallot et al. MdRQA

(Mønster et al., 2016a).Moreover, these dynamics were predictive
of subjective self-reports of the team members, as well as the
decision of whether to adopt a new work routine or not.

Comparing the results of these two studies demonstrates
that the dynamics of physiological markers of arousal and
emotions may contain information about interpersonal decisions
and subjective states, and, importantly, that aggregate shared
dyadic dynamics provides different information than aggregate
individual scores. However, as discussed above, dyadic analysis
only paints a partial picture of the global dynamics in groups
bigger than two as it is effectively an aggregate of sub-groups
at an intermediate level. In the following we demonstrate that
MdRQA can be used to systematically investigate different levels
of dynamics, starting from the individual to dyadic (triadic, etc.)
relationships within a group, up to the highest level of global
group-level-dynamics.

To illustrate this, we explore one of the observables from
the origami-study, the skin conductance measure. Recall, that
participants were put together in groups of three with the
goal of producing as many origami boats during each session
as possible. However, neither the individual measures of the
group processes (Håkonsson et al., 2015), nor the dyadic shared
dynamics investigated using CRQA (Mønster et al., 2016a)
showed any predictive relationship to the performance outcome
in terms of number of boats successfully built. Of course, it could
simply be the case that the observables used in this study (skin-
conductance, heart-rate, electromyography of facial muscles)
were not related to this aspect of group performance. However,
it could also be the case that the group dynamics were not
quantified at the level at which emotion-related team dynamics
were relevant for team performance.

We used MdRQA to differentiate between these explanations.
To that end, we subjected the individual skin-conductance
records of teammembers toMdRQA1 and averaged the resulting
measures across the team to capture the effect of the average
individual skin-conductance dynamics. We denote the number
n of measured observables taken as dimensions in MdRQA by
an index number: Hence, MdRQA1 means that MdRQA was
performed on a single, one-dimensional observable (equaling
simple RQA), MdRQA2 means that MdRQA was performed on
two, one-dimensional observables, and MdRQAN means that
MdRQA was performed on N, one-dimensional observables.
However, N does not necessarily equal the number of phase-
space dimensions D, as time-delayed embedding is performed
(see Section “A note on parameter estimation using MdRQA”).

This allowed us to explore higher-level group-dynamics as
well as the individual dynamics (i.e., MdRQA1). For the dyadic
level, we subjected paired skin-conductance records within each
team to MdRQA2 and averaged across the three resulting
pairings per team to capture the effect of dyadic dynamics within
the team. To capture the global effect of group level dynamics we
subjected the three skin-conductance records simultaneously to
MdRQA3.

We used the following embedding parameters to perform the
analysis: Delay τ = 6, embedding dimension D = 6 (i.e.,
a 3-dimensional signal embedded once, 3 · 2 = 6), threshold
T = 0.12, using a Euclidean norm. Note that normalization of the

phase-space is important to compare different signals or samples
with regard to their dynamics (see Shockley et al., 2003), and
various norms can be used to achieve this (Webber and Zbilut,
2005). However, themost important thing about selecting a norm
parameter is to keep it constant across all data sets.

Just as in the study by Mønster et al. (2016a), we
computed the recurrence measures RR, DET, ADL, and
LDL to capture the individual and shared skin-conductance
dynamics (Table 1 described these measures). We use these four
resulting MdRQA measures for average individual-level team
dynamics (RQA/MdRQA1), average dyadic-level team dynamics
(MdRQA2), and group-level dynamics (MdRQA3) as predictors
in a simple regression analysis to predict the number of boats
a team built, successfully and unsuccessfully, for each session
individually. Figure 6 presents the results of the regression
analysis in term of variance explained (R2) by each of the three
group levels. In accordance with Håkonsson et al. (2015) and
Mønster et al. (2016a), neither the individual level nor the
dyadic level dynamics predicted well the number of boats built
(R2 hovers around 0.1). In contrast, the analysis at the global
group level showed a much stronger relation to the performance
outcome, particularly in the later trials (R2 MdRQA3 increases
to above 0.2 in Figure 7A). A strikingly similar picture is seen for
the unsuccessful building attempts (Figure 7B). This suggests the
existence of genuine group-level physiological processes in team
interaction that span simultaneous interaction of all three group
members and correlate with a key aspect of group performance
but are neither located within the individual group members, nor
in their dyadic interaction.

The current example illustrates how MdRQA can specifically
be used in research of social interaction to systematically
investigate (shared) dynamics at different group-levels. We
identify a correlation between a global level physiological proxy
for group arousal dynamics and an independent outcome
measure of the team performance that could neither be seen
at the level of individuals (Håkonsson et al., 2015) nor of
dyads (Mønster et al., 2016a). This demonstrates the potential
of MdRQA to explore different levels of aggregation within
one analytical framework. Our finding could be interpreted as
evidence for the presence of an interpersonal synergy (Riley et al.,
2011) at the group-level, that is, interaction of all three team
members is crucial for successful task performance, and this
performance (or at least the emotional-arousal aspect of it) is not
attributable solely to the individual group members, but emerges
in their interaction.

It is likely that this type of dynamics depends on the
specifics of the group interaction. In the present experiment, all
group members were simultaneously present in the same room,
working on the origami figures. However, there could be other
group-setting, where only certain participants can interact with
each other, or only interact with each other in certain ways that
constrains their behavior (Wallot et al., 2016). We hypothesize
that in this case dyadic interaction would more relevant for
group performance, and hence we would see the strongest
correlation with MdRQA2. In the same vein, we hypothesize
that performance in automated assembly lines, where “social
interaction” is fully—or primarily—determined by electronic
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FIGURE 6 | Multivariate JPR obtained by joining the individual RPs from Figures 3H–J (A). MdRP from Figure 3K (B). The plots convey a similar qualitative

picture of the dynamics of the Lorenz system, with the main difference that the JRP has fewer points and fewer diagonal structures than the MdRP.

FIGURE 7 | R2 of a simple regression model using RR, DET, ADL, and LDL as predictors for (A) the number of successfully built origami boats and (B) the

number of unsuccessful attempts during each of the five trials for average individual dynamics (MdRQA1), average dyadic dynamics (MdRQA2), and group-level

dynamics (MdRQA3). As all regression models had the same number of degrees of freedom (predictor DF = 4, residual DF = 95), a significant model at α = 0.05 had

to explain at least 9.6% of variance (R2 = 0.096), i.e., all models with R2 > 0.096 are significant at p < 0.05.

control systems that are the pace-maker of the interaction, would
be most informative at the individual level. We suggest that
MdRQA provides a coherent analysis framework to test such
hypotheses.

A NOTE ON PARAMETER ESTIMATION
USING MdRQA

Of course, a system with two (or more) measured variables could
boast yet-higher dimensional dynamics than the two (or more)
measured variables at hand. Then, it would be necessary to infer
the appropriate dimensionality and reconstruct the phase-space
by the method of time-delayed embedding (Takens, 1981). Here,
one can start by assessing the delay and embedding parameters
from the individual component signals that are eventually fed to
MdRQA. For example, before running MdRQA on three signals
(MdRQA3), one can test each signal’s embedding parameters,
and if dimensionality of the individual signals, as determined by a
false-nearest-neighbor algorithm (Kennel et al., 1992) is, say, six,
then the time-series consisting of three component signals could

be embedded once to yield this dimensionality (i.e., 3 · 2 = 6).
However, as these methods are just estimators for embedding
parameters, one could also try to infer the delay and embedding
parameters directly from the multidimensional signals (Clark
et al., 2014).

Whether or not (or how) to embed cannot be answered
conclusively by such estimation procedures, however.
Embedding might not always be necessary. As March et al.
(2005) showed, an unembedded recurrence plot—the “parent
plot” (p. 194)—can, under given circumstances, contain all
the information that embedded versions of this plot provide,
and Iwanski and Bradley (1998) showed that recurrence
variables for a variety of deterministic systems are invariant or
at least highly similar over a range of embedding parameters,
including the non-embedded versions. However, in our own
practical experience analyzing behavioral and physiological data,
considerations regarding the “adequate” embedding of the data
does sometimes make a substantial difference for the results, and
effects of embedding on the results should at least be investigated.

Another issue is the question of comparingMdRPs of different
dimensionality. If one is interested in comparing the magnitude
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of the different RQA-variables across a range of pairings of the
component signals, using the analysis strategy we have described
above [i.e., comparing for example DET for the individual signal
(MdRQA1) vs. pairs of signals (MdRQA2) vs. the group-level
(MdRQA3)], then one has to correct for the “baseline” effect of
dimensionality on distances in phase-space and, subsequently,
on all of the RQA outcome variables. Figure 8 illustrates this:
Figures 8A,B shows how the average distance in phase-space
increases as the square-root of subsequent dimensions added
(each new dimension was a z-scored vector of random numbers
drawn from a uniform distribution [0, 1]). This increase is similar
to the increase in average phase-space distance when a single
random variable is embedded in increasingly higher dimensions,
see Figures 8C,D.

In particular, for random variables with equal variance, the
average phase-space distance increases with dimensionality as
L2D = 2D, giving the scaling relation:

LD =

√

L2D+n − 2n (11)

where LD is the average distance in phase-space given some
dimensionality D of that space, and LD+n is the average distance
in a phase-space with n additional dimensions.

This can be taken as a baseline-correction factor to adjust
the phase-space when one wants to compare RQA measures
of, for example, a one-dimensional, non-embedded signal
(RQA/MdRQA1) to three one-dimensional signals that are
embedded together (i.e., MdRQA3). Alternatively, one could
keep percent recurrence constant across RQAs obtained from
phase-spaces with different dimensionality, and analyze other
RQA measures, such as DET, ADL, or LDL. If, however, the
one-dimensional signal is embedded in three dimensions using
time-delayed surrogates, then such corrections are not necessary
to compare RQA measures. This needs to be kept in mind if one
wants to compare phase-spaces of different dimensionality using
RQA/MdRQA, no matter whether the different dimensions are
time-delayed surrogates or actual different observables.

INTERPRETATION OF MdRQA,
LIMITATIONS, AND POTENTIAL FUTURE
DEVELOPMENTS

As already mentioned in the last section, illustrating the
application of MdRQA on skin-conductance measures during
teamwork, as well as in the sections relating MdRQA to

FIGURE 8 | Scaling of average phase-space distance with phase-space dimensionality (each dimension is a z-scored random variable taken from a

uniform distribution [0, 1]). (A) Shows the increase of average distance as a function of separately added dimensions, and (B) shows that the increase in average

distance follows the square-root of the dimensionality of the phase-space. (C) Shows the increase of average distance as a function of separately number of

embeddings via time-delayed surrogates of a single random variable, and (D) shows that the increase in average distance follows the square-root of phase-space

dimensionality as well. Distances in both cases scale similarly, with LD =

(

L2
D+n

− 2n
)1/2

.
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RQA, CRQA, and JRQA, there are two different, but related
interpretations of MdRQA measures. On the one hand, we
can interpret the outcome variables as capturing the dynamics
of a (single) multidimensional system, as in the case of the
Lorenz attractor, or as capturing synergistic relationship between
different systems, as in the case of our skin-conductance example.
Such interpretations might be more theoretically interesting,
but could also put further demands on the data collected
or explanations sought (i.e., is there a well-defined attractor
manifold describing the dynamics of the variables? Can the
coupling relationships between the variables be described in
greater detail?). On the other hand, one can also simply view
MdRQA as a tool to capture the simultaneous correlation of
multiple variables over time—a form of dynamic multivariate
correlation technique—that solves the problem of assessing
multivariate correlation strength. In the former case, one would
ideally investigate whether additional embedding is necessary
(see consideration in the section “A note on parameter estimation
in MdRQA”). In the latter case, one might consider simply using
MdRQA on the non-embedded, one-dimensional component
signals.

Besides the advantage of MdRQA, the ability to capture
the dynamics of multiple signals at once, MdRQA also has
disadvantages relative to other nonlinear coupling analyses, such
as CRQA: At least with the method in its present form, it is
not possible to calculate time-lagged coupling between signals to

investigate leader-follower relationships among the component
variables as with CRQA (Coco and Dale, 2014). It is also not
possible to test the specific influence that one component signal
has on another over time as with convergent cross-mapping
(Mønster et al., 2016b). Solutions to this problem could be
comparisons of different MdRPs with and without the specific
signal of interest, such as in Joint Recurrence Analysis (Romano
et al., 2004), or investigating the effects of time-shifting individual
signals systematically and comparing the resulting MdRPs (as
has been suggested by Marwan et al. (2007) for JRPs with
two variables). Future developments in this direction would be
desirable for a more accurate and detailed analysis of group-level
performances beyond the dyad, and recurrence-based techniques
seem very well suited to tackle such challenges.
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