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Expert musicians introduce expression in their performances by manipulating sound

properties such as timing, energy, pitch, and timbre. Here, we present a data driven

computational approach to induce expressive performance rule models for note duration,

onset, energy, and ornamentation transformations in jazz guitar music. We extract

high-level features from a set of 16 commercial audio recordings (and corresponding

music scores) of jazz guitarist Grant Green in order to characterize the expression in

the pieces. We apply machine learning techniques to the resulting features to learn

expressive performance rule models. We (1) quantitatively evaluate the accuracy of

the induced models, (2) analyse the relative importance of the considered musical

features, (3) discuss some of the learnt expressive performance rules in the context of

previous work, and (4) assess their generailty. The accuracies of the induced predictive

models is significantly above base-line levels indicating that the audio performances

and the musical features extracted contain sufficient information to automatically learn

informative expressive performance patterns. Feature analysis shows that the most

important musical features for predicting expressive transformations are note duration,

pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the

piece. Similarities and differences between the induced expressive rules and the rules

reported in the literature were found. Differences may be due to the fact that most

previously studied performance data has consisted of classical music recordings. Finally,

the rules’ performer specificity/generality is assessed by applying the induced rules to

performances of the same pieces performed by two other professional jazz guitar players.

Results show a consistency in the ornamentation patterns between Grant Green and the

other two musicians, which may be interpreted as a good indicator for generality of the

ornamentation rules.

Keywords: expressive music performance, jazz guitar music, ornamentation, machine learning

1. INTRODUCTION

Expressive performance actions (EPAs) such as variations in timing, dynamics, articulation, and
ornamentation, are resources used by musicians when performing a musical piece in order to
add expression. In classical music, EPAs are usually indicated in the score using the archetypical
conventions for articulations (e.g., sforzando, staccato, tenuto), ornamentation (e.g., grace notes,
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trills, turns), and tempo deviations (e.g., ritardando, accelerando).
However in jazz music, EPAs are seldom indicated in the
score, and they are freely introduced in the performance by the
musician based on his/her taste, background, knowledge, and
playing style. Therefore, there are no concrete rules on how and
when to apply them, and can not be categorized using the classical
archetypical conventions.

Expressive music performance (EPM) research aims to
understand how and in which music contexts EPAs occur
in real music performances. Numerous studies in EPM have
been conducted (see Palmer, 1997; Gabrielsson, 1999, 2003
for surveys) form different perspectives (e.g., psychological
and cognitive). Computational expressive music performance
studies the phenomenon using computational tools (for an
overview see Goebl et al., 2008, 2014) by generating models
based on data observed/measured in music performances. The
resulting computational systems for expressive music performance
(CEMP) aim to automatically generate human-like performances
by introducing variations in timing, energy, and articulation
obtained by computational modeling (for an overview see Kirke
and Miranda, 2013).

Two main approaches have been explored in the literature
to computationally model music expression. On one hand,
empirical systems have been proposed, in which expressive
performance rules are obtained manually from music experts. A
relevant example of such approach is the work of the KTH group
(Bresin and Friberg, 2000; Friberg, 2006; Friberg et al., 2006).
Their Director Musices system incorporates rules for tempo,
dynamic, and articulation transformations. Other examples
include the Hierarchical Parabola Model by Todd (1989, 1992,
1995), and the work by Johnson (1991). Johnson developed a
rule-based expert system to determine expressive tempo and
articulation for Bach’s fugues from the Well-Tempered Clavier.
The rules were obtained from two expert performers. Livingstone
et al. (2010) report on a rule based system for emotion modeling
of score and performance in which rule generation parameters
were generated using analysis-by-synthesis. On the other hand,
learning systems obtain expressive performance models by
applying machine learning techniques to the data extracted from
music performance recordings. For example, neural networks
have been applied by Bresin (1998) tomodel piano performances,
and by Camurri et al. (2000) to model nine different emotions
(mapped on a 2-D space) in flute performances. Rule-based
learning algorithms together with clustering algorithms have
been applied by Widmer (2003) to discover general piano
performance rules. Other piano expressive performance systems
worth mentioning are the ESP piano system by Grindlay (2005)
in which Hidden Markov Models were applied to generate
expressive performances of pianomusic consisting ofmelody and
chord progressions, and the generative performance system of
Miranda et al. (2010) in which genetic algorithms are used to
construct tempo and dynamic curves.

Most of the expressive performance systems proposed target
classical piano music. Exceptions include the expressive jazz
saxophone modeling approaches of Arcos et al. (1998) who use
case-based reasoning, and Ramírez and Hazan (2006) who use
inductive logic programming. Maestre et al. (2009) combine

machine learning techniques and concatenative synthesis to
synthesize jazz saxophone expressive performances. Most of
these systems consider performances with simple ornaments, i.e.,
one-note ornamentations (e.g., grace notes or one passing notes).
In previous work (Giraldo, 2012; Giraldo and Ramírez, 2015a,b,c,
2016), we applied machine learning techniques to model
expressive performance actions in jazz guitar performances,
which include complex ornaments. However, little attention was
paid to the perspicuity of the extracted models in terms of its
musical interpretation.

In this paper, we induce expressive performance rules by
applying machine learning methods. Concretely, we apply
a propositional rule learner algorithm to obtain expressive
performance rules from the data extracted from commercial
audio jazz recordings and its respectives scores.We are interested
in rules characterizing EPAs, i.e., variations in timing ( onset
and duration deviation), energy (loudness), and ornamentation
(i.e., insertion and deletion of an arbitrary number of melody
notes) in jazz guitar music. To achieve this, we extract score
descriptors from the scores and calculate EPAs from the resulting
alignment deviations between the scores and its corresponding
audio performances. Later, we apply feature selection and
machine learning algorithms to induce rule models for the
considered EPAs (onset, duration, energy, and ornamentation).
Finally, we evaluate the accuracy of each of the models obtained,
discuss the similarities between the expressive induced rules
and the ones reported in the literature, and asses the generality
of the models by comparing the actions predicted by the
induced rules to performances by two other professional guitar
players.

2. MATERIALS AND METHODS

2.1. Materials
The music material considered in this work is presented in
Table 1, and consists of 16 commercial recordings of Grant
Green, and their corresponding commercially available music
scores obtained from (The real book, 2004), a compilation of
jazz pieces in the form of lead sheets. The collected music scores
contain melodic and harmonic information, i.e., main melody
and chord progressions. The instrumentation for most of the
pieces consists of guitar (g), piano (p), double bass (b), and drums
(d). Details can be found in Table 1.

2.2. Methods
The general research framework of this investigation (depicted
in Figure 1) is based on our previous approach to jazz guitar
ornament prediction (Giraldo, 2012; Giraldo and Ramírez,
2015a,b,c). It consists of three main blocks: data extraction, data
analysis, and expressive performance modeling.

2.2.1. Data Extraction
In the data analysis block, both the scores and the recordings
are gathered and parsed to obtain a machine readable
representation. Data analysis consists of three main
parts: score processing, feature extraction, and recordings
transcription.
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TABLE 1 | Recordings list containing album, recording year, instrumentation (g, guitar; p, piano; b, double bass; and d, drums), piece name, and

performer(s).

Album Recording year Personel/ Name Author

Instrumentation

Standard 1961 G. Green (g) All the things you are J. Kern

W. Ware (b) If I had you Cambell and Connelly

A. Harewood (d) I’ll remember April G. de Paul

I Remember you V. Schertzinger

Love walked in G. Gershwin

Goodens Corner 1961 G. Green (g) On green dolphin street B. Kaper

S. Clark (p) What is this thing called love C. Porter

S. Jones (b)

L. Hayes (d)

Nigeria 1962 G. Green (g) Airegin S. Rollins

S. Clark (p)

S. Jones (b)

A. Blakey (d)

Green Street 1962 G. Green (g) Alone together A. Schwartz

B. Tucker (b) Moon river H. Mancini

D. Bailey (d) Round about midnight T. Monk

Born to be blue 1962 G. Green (g) If I should lose you R. Rainger

S. Clark (p) My one and only love G. Wood

S. Jones (b)

L. Hayes (d)

Oleo 1962 G. Green (g) Tune up M. Davies

S. Clark (p)

S. Jones (b)

L. Hayes (d)

Matador 1964 G. Green (g) My favorite things Rogers and Hammerstein

McC. Tyner (p)

B. Cranshaw (b)

E. Jones (d)

I want to hold your hand 1965 G. Green (g) Speak low K. Weill

L. Young (o, b)

E. Jones (d)

2.2.1.1. Score processing
Each score was re-written using an open source software for
music notation (Froment et al., 2011), and then converted to
MusicXML format containing note onset, duration and tempo
information, as well as contextual information (e.g., key, chords,
mode). In each piece, tempo and key were adapted to match
the recordings. Ambiguity in chord information in the scores
was resolved as shown in Table 4 (Notice that the chords shown
in the table are listed so that they fall within an octave).
Each section of the piece’s melody was recorded once (i.e., no
repetitions nor solos were recorded), e.g., for a piece with a
(typical) AABAmusical structure, only the sections A and B were
considered.

2.2.1.2. Feature extraction
Score notes were characterized by automatically extracting
descriptors for each note, (Giraldo, 2012; Giraldo and Ramírez,
2015a,b,c). We implemented our own feature extraction library
for computing all the reported features, with the exception
of the perceptual features for which we used the methods
provided by the miditoolbox (Eerola and Toiviainen, 2004).
The complete list of extracted featuresare summarized in
Table 2. Descriptors were categorized into four categories, as
follows:

• Nominal descriptors refer to intrinsic properties of the notes
(e.g., pitch, duration). Duration and onset were measured
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FIGURE 1 | General framework for EPAs modeling.

in seconds and beats, as pieces were recorded at different
tempos. Tempo changes within a piece (e.g., ritardando,
doubled tempo sections) were taken in consideration when
performing beat-tracking (see Section 2.2.1.3). Onset in bar
refers to the beat within a measure, and its maximum value
(bpb) refers to the beats per bar (e.g., four in a 4/4 time
signature).

• Neighbor descriptors refer to the note’s immediate musical
context given by the properties of neighboring notes (e.g.,
interval with previous and next note, pitch of previous
and next note). Previous and next inter-onset distance
is the distance between the onset of two consecutive
notes.

• Contextual descriptors refer to properties of the piece in
which the note appears (e.g., mode, key, chord). The Key
descriptor refers to the piece key, and was encoded using
the circle of fifths (e.g., Bb = −1, C = 0, F = 1).
For some calculations (e.g., note to key in Table 2) a linear
representation of the notes (e.g., C = 0, C#/Db = 1,
D = 2) was used instead. Melodic analysis is captured
with the note to key and note to chord interval descriptors.
They specify the interval of each note with respect to the
key and to the concurrent chord’s root, respectively. Is a
chord note is a boolean descriptor that indicates if the

current note belongs to the notes comprising the ongoing
chord, according to Table 4. Metrical strength categorize
notes occurring at strong or weak beats within a bar,
according to the time signature of the piece, as shown
in Table 3. The Phrase descriptor was computed using the
melodic segmentation approach by Cambouropoulos (1997),
which indicates the probability of each note being at a
phrase boundary. Probability values were used to decide if
the note was a boundary note, annotated as either initial
(i) or ending (e). Non-boundary notes were annotated as
middle (m).

• Perceptual descriptors are inspired by music perception
and cognition models. Narmour’s implication-realization
model (Narmour, 1992) proposes eight basic melodic
structures based intervallic expectation in melodies.
The basic Narmour structures (P, D, R, and ID) and
their derivatives (VR, IR, VP, and IP) are represented in
Figure 2. Symbols refer to prospective or retrospective
(shown in parenthesis in the Range column of Table 2)
realization. Schellenberg (1997) simplified and quantified
Narmour’s model into five principles: registral direction,
intervallic difference, registral return, proximity, and
closure. Tonal stability (Krumhansl and Kessler, 1982)
represents the degree of belonging to the (local) key
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TABLE 2 | Note Description.

Descriptor Units Range Discrete labels

Nominal Duration s [0,+∞] {verylarge, large, nominal, short, veryshort}

Duration beats [0,+∞] –

Onset s [0,+∞] –

Onset beats [0,+∞] –

Onset in Bar beats [0,+bpb] –

Pitch semitones [1, 127] –

Chroma semitones [0, 11]
{C,C # /Db,D,D # /Eb,E,

F, F # /Gb,G,G # /Ab,A,A # /Bb,B}

Neighbor Prev. duration s [0,+∞] {verylarge, large, nominal, short, veryshort}

Prev. duration beats [0,+∞] –

Next duration s [0,+∞] {verylarge, large, nominal, short, veryshort}

Next duration beats [0,+∞] –

Prev. interval dir semitones [−60, 60] {ascending, unison,descending}

Prev. interval semitones [−60, 60] {large, small}

Next interval dir semitones [−60, 60] {ascending, unison,descending}

Next interval semitones [−60, 60] {large, small}

Prev. inter-onset dist. s [0,+∞] {verylarge, large, nominal, short, veryshort}

Next. inter-onset dist. s [0,+∞] {verylarge, large, nominal, short, veryshort}

Context Measure bars [0,+∞] –

Tempo bpm [30, 260] {Up− tempo,medium,moderate, slow}

Key semitones [0, 11]
{C,C # /Db,D,D # /Eb,E,

F, F # /Gb,G,G # /Ab,A,A # /Bb,B}

Mode label – {major,minor}

Note to Key semitones [0, 11] –

Chord root semitones [0, 11] –

– {+, 6, 7, 7#11, 7#5, 7#9, 7alt

Chord type label – 7b5.7b9,Maj7,dim,dim7,

– m,m6,m7,m7b5,major}

Chord func. – {dom,maj,min,dim, aug, hdim,NC}

Note to chord semitones [0, 11] –

Is chord note boolean – {true, false}

Metrical Strength label –
{Verystrong,Strong,

Weak,Veryweak}

Phrase label – {initial,middle, final}

Perceptual

Narmour I-R struc. label

– {P,D,R, ID, (P), (D), (R),

– (ID),VR, IR,VP, IP, (VR),

– (IR), (VP), (IP),dyadic,monadic}

Nar. Reg. Dir. boolean {0, 1} –

Nar. Inter. Diff. boolean {0, 1} –

Nar. Reg. Ret. int {0, 1, 2, 3} –

Nar. Proximity int {0, 1, 2, 3, 4, 5, 6} –

Nar. Closure int {0, 1, 2} –

Consonance int {0, 10} –

Tonal stability int {0, 10} –

Melodic Attraction % {0, 1} –

Tessitura semitones [0,+∞] –

Mobility % {0, 1} –
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TABLE 3 | Strength at beat occurrence, for different time signatures.

Time signature Very strong Strong Weak Very weak

4/4 Beat 1 Beat 3 Beats 2 and 4 Other

3/4 Beat 1 None Beats 2 and 3 Other

6/8 Beat 1 Beat 4 Beats 2, 3, and 6 Other

TABLE 4 | Chord description list.

Chord type Intervals

major 0 4 7

m (minor) 0 3 7

sus2 0 2 7

sus4 0 5 7

Maj7 0 4 7 11

6th 0 4 7 9

m7 0 3 7 10

m6 0 3 7 9

mMaj7 0 3 7 11

m7b5 0 3 6 10

dim 0 3 6 9

7th 0 4 7 10

7#5 0 4 8 10

7b5 0 4 6 10

7sus 0 5 7 10

Maj9 0 2 4 7 11

6/9 0 2 4 7 9

m9 0 2 3 7 9

9th 0 2 4 7 10

7b9 0 1 4 7 10

7#9 0 3 4 7 10

13 0 2 4 7 9 10

7b9b13 0 1 4 7 8 10

7alt 0 1 3 4 6 8 10

context. Melodic attraction (Lerdahl, 1996) measures the
weight (anchoring strength) of the pitches across the pitch
space. Tessitura and mobility are measures proposed by
Von Hippel (2000). Tessitura is the standard deviation
of the pitch height distribution and predicts the listener
expectation of the tones being close to the median
pitch. Mobility is based on the intuition that a melody
is constrained to its tessitura and therefore melodies
change direction after long intervals otherwise they will
fall outside their comfortable range. This measure is
calculated using one lag autocorrelation between consecutive
pitches.

Because our aim is to obtain interpretable rules from a
musical perspective, a set of numerical descriptors were
discretized into categorical features, according to the fourth
column of Table 2. For example, duration in seconds was
discretized into classes very large, large, nominal, short,
and very short. We defined duration thresholds in seconds
according to the data distribution over the quantization bins, as
follows:

FIGURE 2 | Basic Narmour structures P, D, R, and ID, and their

derivatives VR, IR, VP, and IP.

durationnom(n) =























































verylarge if dsn ≥ 1.6s.

large if 1.6s. ≤ dsn < 1s.

nominal if 1s. ≤ dsn < 0.25s.

short if 0.25s. ≤ dsn < 0.125s.

veryshort if dsn ≤ 0.125s.

(1)

Interval sizes were categorized into small and large
based on the Implication-Realization model of Narmour
(Narmour, 1992), which assumes that intervals
smaller/larger than 6 semitones are perceived to be
small/large.

Tempo indications in jazz often are refereed based on the
performance style (e.g., Bebop, Swing) or on the sub-genre
of the piece (e.g., medium, medium up swing, up tempo
swing). However, ambiguity on the BPM range for which this
categorization corresponds exists among performers. In this
section the discretization of the tempo of the piece was performed
based on the performers’ preferred tempo clusters found by
Collier and Collier (1994). In the study, the tempo of several jazz
recordings datasets are analyzed and preferred tempo clusters of
performers are found at 92, 117, 160, and 220 bpm. The study is
based on the assumption that tempos in the range of 4 tempo
cluster (attractor) may gravitate toward it. Based on this, we
defined four different bpm ranges around each cluster and labeled
it as follows.

temponom(n) =











































Up− tempo if tn ≥ 180

Medium if 180 > tn ≥ 139

Moderate if 139 > tn ≥ 105

Slow if 105 > tn

(2)

Chord function was calculated based on the chord simplification
rules by Hedges et al. (2014), in which the notation of the
chord type (e.g., Ebmaj7) is simplified according to the harmonic
function of the chords. In this study we adapted the rules
according to make them consistent according to the chord degree
definitions given in Table 4, as follows:
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chordfunc(n) =























































































































































dom if [4, 10] ∈ chord degrees

maj if [4] ∈ chord degrees ∧ [10] /∈

chord degrees

min if [3, 7] ∈ chord degrees

dim if ([0, 3, 6, ] ∨ [0, 3, 6, 9])

= chord degrees

aug if [#5,+] ⊂ chtn

hdim if [0, 3, 6, 10] = chord degrees

dom if [10] ∈ chord degrees ∧ [sus] ⊂ chtn

maj if [10] /∈ chord degrees ∧ [sus] ⊂ chtn

NC if no chord

(3)

2.2.1.3. Recordings transcription
In order to extract the predominantmelody pitch profile from the
recordings audio mix (containing guitar, double bass, drums, and
piano), we applied an optimized version of theMelodia algorithm
(Salamon and Gómez, 2012). We optimized the algorithm
parameters related to spectral peak distribution thresholds, and
time and pitch continuity thresholds to best detect the guitar
melody in the audio mix. This optimization was implemented
using genetic algorithms (Giraldo and Ramírez, 2014). An energy
profile of the melody was obtained by manipulating the Melodia
algorithm and forcing it to output its confidence value frame
by frame instead of the detected pitch profile segment mean.
From the pitch profile of the guitar, we calculated a MIDI
representation of the melody by segmenting it into notes (Mcnab
et al., 1996; Bantula et al., 2014; Mauch et al., 2015). Note
onsets and offsets were obtained based on pitch changes and
energy adaptative thresholds. Transcription errors were removed
using heuristic rules based on minimum note/gap duration,
defined according to human perception thresholds (Woodrow,
1951).

2.2.2. Data Analysis

2.2.2.1. Score to performance alignment
Melodic ornaments in jazz consist not only of the archetypical
classical music ornaments (e.g., trills, appogiaturas) but also of
sets of small phrases, which are part of the jazz idiom and are
used by performers based on their musical background and/or
knowledge. In this context, score to performance alignment
is a very challenging task as there are no clear rules about
which notes on the performance correspond to which notes
in the score (see Figure 3). The ornamentation alignment
problem is addressed by Grachten et al. (2006) using edit-
distance. Following a similar approach, we addressed this
problem by applying Dynamic Time Warping techniques to
match performance and score note sequences (Giraldo and
Ramírez, 2015d). Our system automatically aligns performance
notes to score notes using a distance cost function based on
onset, pitch, and duration deviations, as well as deviations based
on short ornament-phrase-onset/offset level. These deviations
over ornament-phrase-onset/offset are calculated based on the
assumption that the notes conforming the ornament are played
legato, forcing the algorithm to map a score parent note to
the complete set of child notes conforming the ornament in
the performance sequence. After the calculation of a similarity
matrix of the note events of the score against the performance,
an optimal path is found in which vertical paths corresponds
ornamented notes and diagonal paths corresponds one to one
note correspondence (i.e., not ornamented notes). A detailed
description of our aligning method can be found in Giraldo and
Ramírez (2016).

2.2.2.2. Expressive performance actions calculation
Score notes aligned to exactly one performance note were
labeled as non-ornamented, whereas score notes aligned to
several performance notes (as well as omitted ones) were labeled
as ornamented. Performance action deviations in duration,
onset, and energy were discretized into classes as shown in
Table 5. Duration was discretized into lengthen, shorten, and
none; onset into advance, delay, and none; and energy into
piano, forte, and none. A note is considered to belong to
class lengthen/shorten, if its performed duration one semiquaver
longer/shorter (or more/less) than its duration according to
the score. Otherwise, it belongs to class none. Classes advance,
delay, and none are defined analogously. A note is considered
to be in class forte/piano if it is played louder/softer than the

FIGURE 3 | Parent score notes (top) to performance notes (bottom) alignment example.
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mean energy of the piece plus/minus 20% and in class none
otherwise. The quantization boundaries were selected empirically
by considering thresholds which seemed reasonable form a
musical perspective, that at the same time produce relatively
balanced distributions (see Figure 4). Finally, each pair of aligned
score and performance parent notes were annotated along with
the score note description, and the corresponding measured EPA
on a database.

2.2.3. Expressive Performance Modeling

2.2.3.1. Learning task
We explored machine learning techniques to induce models for
predicting the different expressive performance actions defined
above. Concretely, our objective is to induce four classification
models M1, M2, M3, and M4 for ornamentation, note duration,
note onset, and note energy, respectively. The models are of the
following form:

M1(FeatureSet) → Ornamentation

M2(FeatureSet) → Duration

M3(FeatureSet) → Onset

M4(FeatureSet) → Energy

Where M1,M2,M3, and M4 are functions which take as
input the set of features (FeatureSet) shown in Table 2, and
Ornamentation,Duration,Onset, and Energy are the set of classes
defined above for the corresponding performance actions.

TABLE 5 | Expressive performance actions.

PA Classes

Ornamentation {yes, no}

Durartion ratio {shorten, lengthen, none}

Onset deviation {advance,delay, none}

Energy ratio {piano, forte, none}

2.2.3.2. Learning algorithm
We applied Ripper (Cohen, 1995), a rule learner algorithm. This
algorithm is an optimized version of the sequential covering
technique used to generate rules (e.g., PRISM algorithm by
Cendrowska, 1987). The main motivation for applying the
Ripper algorithm was that Ripper examines the classes in
ascending order, starting with the minority class, which is very
convenient in our problem set, as the classes for ornamentation
are unbalanced. i.e., the percentage of ornamented notes is
considerably lower than the percentage of non-ornamented
ones. Thus, the covering algorithm approach will try to
isolate first the minority class (i.e., the class of ornamented
notes).

Ripper evaluates the quality of rules using heuristic measures
based on coverage (i.e., how much data they cover) and accuracy
(i.e., how many mistakes they make). Once a rule is obtained
the instances covered by the rule are removed from the data set,
and the process iterates to generate a new rule, until no more
instances are left. We used the WEKA library implementation of
RIPPER (Hall et al., 2009).

2.2.3.3. Feature selection
Automatic feature selection is a computational technique for
identifying the most relevant features for a particular predictions
task. Our aim is to identify the features which contain the most
significant information for predicting the different expressive
performance actions studied.We considered theWrapper feature
selection method, in which the selection is performed based on
the accuracy obtained over different feature subsets for predicting
the EPA (wrapper feature selection). The most relevant feature
subsets for each performance action are shown in Table 6.

3. RESULTS

3.1. Expressive Performance Rules
The expressive performance models induced consist of sets
of conjunctive propositional rules which define a classifier for
the performance actions, i.e., ornamentation, and duration,
onset, and energy deviation. These rules capture general
patterns for classifying the musician’s expressive decisions during
performance.

FIGURE 4 | Distribution over quantized bins of performance actions classes.
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TABLE 6 | Most relevant features for each performance action obtained by

both filter and wrapper feature selection.

EPA Selected features

Ornament Duration (s)

Next duration (beats)

Phrase

Next Interval

Next duration (s)

Duration Duration (s)

Narmour

Duration (beats)

Met. Strength

Phrase

Onset Tempo

Duration (s)

Next duration (s)

Prev. duration (s)

Chord Type

Energy Pitch

Tempo

Narmour

Key

Metrical strength

The set of induced expressive performance rules for each
performance action is shown bellow. A rule is expressed as

IF (condition) THEN (action)

where action computes a deviation of an specific EPA.

3.1.1. Ornamentation Rules
• O1: IF duration of note is very long THEN ornament note
• O2: IF duration of note is long AND note is the final note in a

phrase THEN ornament note
• O3: IF duration of note is long AND next note’s duration is long

THEN ornament note
• O4: IF note is the 3rd note in an IP (Narmour) structure AND

previous note’s duration is not short AND next note’s duration is
short THEN ornament note.

The first ornamentation rule (i.e., IF duration of note is very long
THEN ornament note) specifies that if a note’s duration is very
long (i.e., longer than 1.6 s) then it is predicted as ornamented
with a precision of 0.79 (calculated as the proportion of true
positives over the sum of true positives plus false positives). The
precondition of this rule is fulfilled by 111 notes in the data set
from which 88 are actually ornamented and 23 are not. This rule
makes musical sense since long notes are likely to be ornamented.
The second ornamentation rule (Rule O2) is similar in spirit, it
specifies that if a note’s duration is long (i.e., longer than 1 s)
and this note is the ending note of a musical phrase, then it is
predicted as ornamented with a precision of 0.74. Thus, this rule

relaxes the constraint on the duration of the note but requires
that the note appears at the end of a phrase in order to classify
it as ornamented. The rule captures the intuition that phrase
boundary notes (in this case notes at the ending of a phrase)
are more likely to be ornamented. Rule O3 and Rule O4 add
conditions about the duration of neighboring notes (i.e., next
and previous notes) in order to classify notes as ornamented. The
intuition of these rules is that notes may be ornamented by using
part of the duration of the neighboring notes.

3.1.2. Duration Rules
• D1: IF note is the final note of a phrase AND the note appears in

the third position of an IP (Narmour) structure THEN shorten
note

• D2: IF note duration is longer than a dotted half note AND
tempo is Medium (90–160 BPM) THEN shorten note

• D3: IF note duration is less than an eighth note AND note is in
a very strong metrical position THEN lengthen note.

3.1.3. Onset Deviation Rules
• T1: IF the note duration is short AND piece is up-tempo (≥ 180

BPM) THEN advance note
• T2: IF the duration of the previous note is nominal AND the

note’s metrical strength is very strong THEN advance note
• T3: IF the duration of the previous note is short AND piece is

up-tempo (≥ 180 BPM) THEN advance note
• T4: IF the tempo is medium (90–160 BPM) AND the note is

played within a tonic chord AND the next note’s duration is not
short nor long THEN delay note

3.1.4. Energy Deviation Rules
• E1: IF the interval with next note is ascending AND the note

pitch not high (lower than B3) THEN play piano
• E2: IF the interval with next note is descending AND the note

pitch is very high (higher than C5) THEN play forte
• E3: IF the note is an eight note AND note is the initial note of a

phrase THEN play forte.

The rules about duration and onset transformations involve
conditions that refer to note duration, metrical strength, and
tempo. Long notes in medium tempo pieces are likely to be
shortened (Rule D2), while short notes appearing in strong
metrical positions are lengthened (Rule D3). The first onset rule
(Rule T1) states that short notes in up-tempo pieces likely to
be advanced, while Rule T2 constrains the first rule stating to
advance notes that occur within a sequence of short notes. On
the other hand, a note is delayed if it belongs to a medium tempo
(i.e., 90–160 BPM) piece and it is played within a tonic chord and
succeeded by a medium length note (Rule T4). Finally, energy
deviation rules contain conditions that refers to the direction of
the interval with respect to the next note. Rule E1 states that notes
occurring in a low pitch register and in an ascending interval are
played softer, whereas notes coming from higher pitch registers
and in a descending intervals are played forte (Rule E2). Rule
E3 states that a note occurring at the beginning of a phrase is
accentuated by playing it forte.
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4. DISCUSSION

4.1. Feature Selection Analysis
As can be seen from the feature selection analysis (Table 6),
the most influential descriptors for predicting ornamentation in
the investigated performance recordings are duration in beats
and Duration in seconds. This may be explained by the fact
that it is easier and more natural to ornament longer notes as
opposed to shorter ones. In addition to allowing more time to
plan the particular ornamentation when playing long notes, it
is technically simpler to replace a long note with a sequence of
notes than it is for shorter notes. Duration in seconds represents
the absolute duration of a note, while duration in beats represents
the relative duration of a note measured in beats. In general,
notes with same duration in beats values may vary considerably
depending on the tempo of the piece to which they belong.
Intuitively, it is the duration of a note in seconds which is the
most important feature according to what we have discussed
above, so the fact that one feature selection method (e.g., filter
feature selection) ranked first the duration in beats feature may

indicate that the variation in tempo in the pieces in our data-set
is not too important to show this fact. Similarly, next duration
in beats and next duration in seconds have been found to be very
informative features by the feature selection algorithms. Thismay
be explained as in the case of the duration in beats and duration in

seconds features: notes that are followed by long notes are more
likely to be ornamented since it is possible to introduce extra
notes by using part of the duration of the following note.

Next interval and NarNext interval are other informative
features for ornamentation prediction as detected by the feature
selection algorithms. The importance of Next interval may be
interpreted by the fact that notes that are followed by notes
forming an interval of more than 1 or 2 semitones may be
ornamented by inserting one or more approximation notes.
Phrase has been also identified as informative. This confirms
our intuition that notes in phrase boundaries are more likely
to be ornamented. Nar is related to the degree of expectation

of a note’s pitch, so the fact that this feature is among the five
most informative features for predicting ornamentation may
be due that musicians tend ornament highly expected notes in
order to add variation and surprise to the performed a melody.
This is interesting because according to Narmour’s theory these
expectations are innate in humans so it may be the case that the
choice to ornament expected/unexpected notes can be the results
of an intuitive and unconscious process.

As expected, the most informative features for predicting

ornamentation include both temporal (e.g., Duration in seconds
and Duration in beats) and melodic features (e.g., Next interval
and Nar). They involve not only properties of the note
considered, but also properties that refer to its musical context,
i.e., its neighboring notes (e.g., Next duration, Next interval,
Phrase, and Nar). Similar results were obtained for the other
expressive performance actions (i.e., duration, onset, and energy
variations): Temporal features of the note considered and its
context (e.g., Duration in seconds, Duration in beats, Next
duration, and Prev duration) are found to be informative, as
well as melodic features (e.g., Pitch, Next interval, and Nar).

Interestingly, Pitch was found to be the most informative feature
for energy prediction. This may be explained by the tendency of
the performer to play higher pitch notes softer than lower pitch
ones. It could be argued that this finding might be an artifact
of the loudness measure in combination with the instrument
acoustics, i.e., a higher pitched note, even if it is played by the
musician with the same intensity, produces less sound. However,
we discarded this possibility for two main reasons: Firstly, a high
quality electric guitar should produce an even level of loudness in
all its tesitura (i.e., across the fretboard). Secondly, a professional
player would adjust the force applied to strum a note according
to the expected level of loudness based on the music expressive
intention. Finally, metrical strength was found to be informative
for duration variation prediction which seems intuitive since the
note’s duration is often used to emphasize the metrical strength
or weakness of notes in a melody.

4.2. Relationship with Previous Rule
Models
The duration and energy rules induced in this paper were
compared with the rules obtained by Widmer (2003, 2002)
(applying machine learning techniques to a data set of 13
performances of Mozart piano sonatas) as well as with the rules
obtained by Friberg et al. (2006) (using an analysis by synthesis
approach). Duration rule D3 is consistent with Widmer’s TL2
rule “Lengthen a note if it is followed by a substantially longer
note,” which may imply that the note in consideration is
short. However, it contradicts its complementary condition TL2a
(“Lengthen a note if it is followed by a longer note and if it is in a
metrically weak position”). This might be due to the fact that note
accentuation in jazz differ considerably from note accentuation
in a classical music context, e.g., in case of swinging quavers,
the first quaver (stronger metrical position) is usually lengthen.
This however, is consistent with Friberg’s inégales rule [“Introduce
long-short patterns for equal note values (swing)”]. Duration rule
D2 can be compared with Widmer’s rule TS2 (“Shorten a note in
fast pieces if the duration ratio between previous note and current
note is larger than 2:1, the current note is at most a sixteen note,
and it is followed by a longer note”). Similarly, duration rule D2
and D3 are consistent with Friberg’s Duration-contrast (“Shorten
relatively short notes and lengthen relatively long notes”), as dotted
half notes can be considered relatively long notes, and eight
notes can be considered as relatively short notes. The rules take
as preconditions the duration of the note and the tempo of
the piece. Energy rules E1 and E2 are consistent with Friberg’s
high-loud (“Increase sound level in proportion to pitch height”)
and phrase-arch (Create arch-like tempo and sound level changes
over phrases") rules, as notes in an ascending context might be
played softer and vice-versa. However, energy rule E3 contradicts
phrase-arch rule. Energy rule E2 shares the interval condition of
the next note of Widmer’s DL2 rule (“Stress a note by playing
it louder if it forms the apex of an up-down melodic contour
and is preceded by an upward leap larger than a minor third”).
In addition, Widmer’s rules for attenuating dynamics of notes
(play softer) and our energy rules share the fact that the rule
preconditions include intervals with respect to neighbor notes.
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All in all there are similarities between the rules induced in
this paper and the rules reported in the literature. However, at
the same time, there are differences and even opposite findings,
fact that is expected given the different data sets considered in
the studies. While there seems to be similarities in expressive
patterns in both classical and jazz music, clearly, both traditions
have their own peculiarities and thus it is expected to find
different/contradictory rules.

4.3. Model Evaluation
Tables 7, 8 shows the accuracy of each performance action
model trained with information of all features considered, and
trained with selected features only. Accuracy is measured as
the percentage of correctly classified instances. A statistical
significance test (paired t-test with significance value of 0.05 and
DoF of 99) against the baseline (i.e., majority class classifier)
was performed for each model/feature-set (8 in total), using the
approach by Bouckaert and Frank (2004) based on a repeated
k-fold cross-validation scheme (i.e., using 10 runs of 10-fold
cross validation). Significance level was corrected to 0.0125 for
multiple comparisons with the Bonferroni correction (Benjamini
and Hochberg, 1995). The significance results are shown in
Tables 7, 8.

The difference between the results obtained and the accuracy
of a baseline classifier, i.e., a classifier guessing at random,
indicates that the audio recordings contain sufficient information
to distinguish among the different classes defined for the four
performance actions studied, and that the machine learning
method applied is capable of learning the performance patterns
that distinguish these classes. It is worth noting that almost every
model produced significantly better than random classification
accuracies. This supports our statement about the feasibility of
training classifiers for the data reported. However, note that this
does not necessary imply that it is feasible to train classifiers for
arbitrary recordings or performer.

The accuracy of all models except the energy variation model
improved after performing feature selection. The improvement

TABLE 7 | Accuracy of models trained with all extracted features (Mean ±

Std Dev).

Dataset Baseline Ripper p-val

Ornamentation 66.67 ± 0.50 68.86 ± 4.95 0.2426

Duration 50.46 ± 0.51 51.04 ± 5.80 0.7739

Onset 53.63 ± 0.52 60.53 ± 4.27 1.336e-4◦

Energy 43.28 ± 0.50 52.48 ± 4.60 1.588e-6◦

◦Statistically significant improvement.

(p<0.0125) w.r.t baseline classifier.

TABLE 8 | Accuracy of models trained with selected features (Mean ± Std

Dev).

Dataset Baseline Ripper p-val

Ornamentation 66.67 ± 0.50 70.12 ± 4.34 0.024857

Duration 50.46 ± 0.51 56.11 ± 5.66 0.001603◦

Onset 53.63 ± 0.52 63.07 ± 3.90 2.91e-9◦

Energy 43.28 ± 0.50 52.21 ± 4.62 6.3e-6◦

◦Statistically significant improvement.

(p<0.0125) w.r.t baseline classifier.

found with feature selection is marginal in most cases. However,
this shows that it suffices to take into account a small subset of
features (i.e., five or less features) in order to be able to predict
with similar accuracy the performance actions investigated.
The selected features contain indeed sufficient information to
distinguish among the different classes defined for the four
performance actions studied.

4.4. Rules Specificity—Generality
It has to be noted that the obtained expressive rules are specific
to the studied guitarist and in particular to the considered
recordings. Thus, the rules are by no means guaranteed general
rules of expressive performance in jazz guitar. Nevertheless, the
induced rules are of interest since Grant Green is a musician
recognized for his expressive performance style of jazz guitar. In
order to assess the degree of performer-specificity of the rules
induced from the Grant Green’s recordings we have, similarly
to Widmer (2003), applied the induced rules to performances
of the same pieces performed by two other professional jazz
guitar players. The two guitarists recorded the pieces while
playing along with prerecorded accompaniment backing tracks,
similarly to the Grant Green recording setting. We processed the
recordings following the same methodology explained in Section
2.2. In Table 9, we summarize the coverage of the rules measured
in terms of the true positive (TP) and false positive (FP) rate,
which is the proportion of correctly and incorrectly identified
positives, respectively. As seen in the first two rows of the table,
no significant degradation on the rule coverage was found for
ornamentation prediction, which might be a good indicator for
generality the ornamentation rules. However, rules for duration,
energy, and onset show a higher level of degradation, which
may indicate that these performance actions vary among Grant
Green and the other two musicians. Nevertheless, in order to
fully validate this results a much larger number of performances
should be taken into consideration.

5. CONCLUSIONS

In summary, we have presented a machine learning approach
to obtain rule models for ornamentation, duration, onset,
and energy expressive performance actions. We considered 16
polyphonic recordings of American jazz guitarist Grant Green
and the associated music scores. Note, descriptors were extracted
from the scores and audio recordings were processed in order to
obtain a symbolic representation of the notes the main melody.
Score to performance alignment was performed in order to
obtain a correspondence between performed notes and score
notes. From this alignment expressive performance actions were
quantified. After discretizing the obtained performance actions
we induced predictive models for each performance action
prediction by applying a machine learning (sequential covering)
rule learner algorithm. Extracted features were analyzed by
applying (both filter and wrapper) feature selection techniques.
Models were evaluated using a 10-fold cross validation and
statistical significance was established using paired t-test with
respect to a baseline classifier. Concretely, the obtained accuracies
(over the base-line) for the ornamentation, duration, onset,
and energy models of 70%(67%), 56%(50%), 63%(54%), and
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TABLE 9 | Model performance measured as true/false positives on train data (Grant Green) and test data (Musicians 1 and 2).

No. of rules Grant Green Musician 1 Musician 2

TP rate (%) FP rate (%) TP rate (%) FP rate (%) TP rate (%) FP rate (%)

Ornament Yes 4 52.4 13.3 60.6 30.6 52.5 22.3

No (default) 86.7 47.6 69.4 39.4 77.7 47.5

Dur rat Lengthen 1 50 9.4 32 12.7 27 16.5

Shorten 2 51 2.4 45.2 5.2 31 8.4

Energy Forte 2 34.7 11.7 17.1 18.5 24.4 18.9

Piano 1 21.3 5.8 13.6 6.9 15.9 10.4

Onset dev Advance 3 38.6 6.6 1.9 10.8 7.1 4.8

Delay 1 49.8 10.4 28.8 36.5 29.9 25.2

52%(43%), respectively. Both the features selected and model
rules showed musical significance. Similarities and differences
among the obtained rules and the ones reported in the literature
were discussed. Pattern similarities between classical and jazz
music expressive rules were identified, as well as expected
dissimilarities expected by the inherent particular musical aspects
of each tradition. The induced rules specificity/generality was
assessed by applying them to performances of the same pieces
performed by two other professional jazz guitar players. Results
show a consistency in the ornamentation patterns between Grant
Green and the other two musicians, which may be interpreted
as a good indicator for generality of the ornamentation
rules.
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