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Two apparently contrasting theories have been proposed to account for the development

of children’s theory of mind (ToM): theory-theory and simulation theory. We present a

Bayesian framework that rationally integrates both theories for false belief reasoning. This

framework exploits two internal models for predicting the belief states of others: one

of self and one of others. These internal models are responsible for simulation-based

and theory-based reasoning, respectively. The framework further takes into account

empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004):

developmental progressions of various mental state understandings leading up to false

belief understanding. By representing the internal models and their interactions as a

causal Bayesian network, we formalize the model of children’s false belief reasoning as

probabilistic computations on the Bayesian network. This model probabilistically weighs

and combines the two internal models and predicts children’s false belief ability as a

multiplicative effect of their early-developed abilities to understand the mental concepts

of diverse beliefs and knowledge access. Specifically, the model predicts that children’s

proportion of correct responses on a false belief task can be closely approximated as the

product of their proportions correct on the diverse belief and knowledge access tasks.

To validate this prediction, we illustrate that our model provides good fits to a variety of

ToM scale data for preschool children. We discuss the implications and extensions of

our model for a deeper understanding of developmental progressions of children’s ToM

abilities.

Keywords: false belief, theory-theory, simulation theory, Bayesian network, internal model

1. INTRODUCTION

Inferring and understanding other people’s mental states such as desires, beliefs, and intentions is
crucial for our successful social interactions. This ability has been referred to as having a “theory
of mind” (ToM; Premack and Woodruff, 1978). For decades, ToM development in childhood has
been the subject of intensive research; much of the research has focused on children’s false belief
understanding. Two false belief tasks are widely used for assessing children’s ToM: unexpected-
contents (Perner et al., 1987) and change-of-location (Wimmer and Perner, 1983) tasks. In

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
https://doi.org/10.3389/fpsyg.2016.02019
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.02019&domain=pdf&date_stamp=2016-12-27
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:n-asakura@otemon.ac.jp
https://doi.org/10.3389/fpsyg.2016.02019
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.02019/abstract
http://loop.frontiersin.org/people/363074/overview
http://loop.frontiersin.org/people/78848/overview


Asakura and Inui A Bayesian Framework for False Belief Reasoning

the unexpected-contents task, children are shown a familiar
container that holds something unexpected inside when it is
opened. They are then asked about what an agent will think is
inside the container when she has never seen it opened. In the
change-of-location task, children are shown a situation in which
an agent places an object at one location, leaves the scene, and
then her antagonist moves it to another location while she is
gone. They are then asked about where the agent will look for the
object after she returns. Correct answers for these tasks require
children to appreciate that an agent can have a false belief that
contradicts the reality with which they are faced. Hence, success
on false belief tasks is taken as indicating that ToM has become
mature enough to function as an inference engine for reasoning
about other people’s beliefs, as distinct from one’s own.

Many studies have revealed that children come to understand
other people’s false beliefs at around 4 or 5 years of age; in
addition, such a developmental transition appears to occur
gradually (e.g., Wellman et al., 2001, for a review). Two main
theories have been proposed for explaining the process of ToM
development: theory-theory (Gopnik and Wellman, 1992, 1994)
and simulation theory (Gordon, 1986; Gallese and Goldman,
1998). Theory-theory assumes that ToM ability rests on a set of
rules, or literally theories, about how the minds of others work.
It thus claims that children learn and become able to use such
theories to predict and explain others’ mental states and their
behavior. In contrast, simulation theory argues that ToM ability
does not require theorizing the minds of others. Instead, it claims
that children come to use their own minds as a simulation model
to mimic and understand the minds of others.

These theories have long been regarded as contrasting
conceptualizations of ToM. In recent years, however, a number
of researchers have advocated hybrid theories that incorporate
the essences of both theory and simulation (Nichols and Stich,
2003; Saxe, 2005; Goldman, 2006; Mitchell et al., 2009). Notably,
Mitchell et al. (2009) proposed that children first acquire a
competence of simulation and then develop a theory-based
reasoning skill, and they will adopt both of these reasoning
strategies depending on the demands of a particular task
at hand. Recent neuroimaging findings further support such
hybrid approaches, demonstrating mixed evidence for the neural
mechanisms of ToM responsible for either theory-based or
simulation-based reasoning (Apperly, 2008; Mahy et al., 2014).

In spite of a large body of empirical findings and recent
theoretical advances in ToM research, relatively few studies
have proposed computational models of ToM understanding,
particularly false belief understanding (O’Laughlin and Thagard,
2000; Goodman et al., 2006; Berthiaume et al., 2013). Moreover,
none deal with mixed reasoning strategies based on theory-
theory and simulation theory. Therefore, it still remains unclear
whether and how children can, in principle, combine both
strategies into a coherent theory of mind. In this study, we
present a computational model that integrates theory-based and
simulation-based strategies for false belief reasoning. Our model
builds on a Bayesian framework and thus provides a rational
account of children’s ToM. It also makes testable predictions
about children’s performance on false belief tasks, allowing a
quantitative comparison with existing behavioral data.

We argue that a developmental ToM scale (Wellman and
Liu, 2004) is of particular relevance for any computational
model of false beliefs. The ToM scale consists of tasks to assess
children’s understanding of multiple mental state concepts. It
reflects extant findings of children’s ToM such that they develop
an understanding of diverse desires (people can have different
desires for the same thing) before developing that of diverse
beliefs (people can have different opinions and beliefs about the
same situation); they develop understandings of diverse beliefs
and knowledge access (others can have different perspectives
that prevent them from having access to the true real-world
information) before developing that of false beliefs. This kind
of developmental sequence has been confirmed for preschool
children with diverse cultural backgrounds (Wellman and Liu,
2004; Peterson et al., 2005; Wellman et al., 2006; Toyama, 2007;
Shahaeian et al., 2011; Hiller et al., 2014). From a constructivism
point of view, such a sequential progression of ToM suggests
that an understanding of false beliefs should emerge under
the developed understandings of the mental concepts such as
diverse desires, diverse beliefs, and knowledge access. Taking
into account this view, we formalize a model of false belief
reasoning based on a Bayesian network (Pearl, 2000; Spirtes et al.,
2001) that represents causal relationships among the relevant
mental concepts of others and one’s own. In so doing, we show
that this Bayesian network in effect provides a natural way
to integrate theory-based and simulation-based strategies. We
further demonstrate that our model provides a good fit to the
existing ToM scale data.

2. MODEL

2.1. Bayesian Network
A Bayesian network is a graphical model that provides a compact
representation of the joint probability distribution for a set of
random variables (Pearl, 2000; Spirtes et al., 2001). Its graph
structure represents the causal probabilistic relationship among
the variables, specifies a particular factorization of the joint
probability distribution, and enables efficient computation of
probability distributions of the unobserved variables, given the
observed ones. Bayesian networks have been used in a wide range
of fields and applications, such as computer science, engineering,
statistics, medical diagnosis, and bioinformatics. Recently, they
have found application in various areas of psychology, such as
visual perception (Kersten et al., 2004), cognition (Griffiths et al.,
2008; Jacobs and Kruschke, 2011), causal inference (Griffiths and
Tenenbaum, 2005; Lu et al., 2008), and cognitive development
(Gopnik et al., 2004; Gopnik and Tenenbaum, 2007; Gopnik
and Wellman, 2012). Notably, Gopnik and Wellman (2012) have
argued that Bayesian networks can be used for formalizing a
theory-theory of cognitive development. In the following, we use
this Bayesian network formalism to elaborate a model of false
belief reasoning in children.

From a theory-theory perspective, Goodman et al. (2006)
proposed Bayesian network models of false belief reasoning in
the change-of-location task. Our Bayesian formulation closely
follows their work; the differences are that we additionally take
into account the idea of simulation theory and that we focus on
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the unexpected-contents task to model false belief reasoning. The
latter is motivated by the fact that this type of task was commonly
used across the ToM scale studies listed above, but has not been
the subject of formal analysis. The extension of our model to the
change-of-location task will be discussed later.

We note that the unexpected-contents task is divided into two
stages. According to Wellman and Liu (2004), in the first stage,
a child sees a familiar, closed Band-Aid box that holds inside a
plastic pig toy. From the appearance of the Band-Aid box, the
child first expects Band-Aids inside. Subsequently, the Band-Aid
box is opened and the child sees the pig toy inside. Then, the
Band-Aid box is closed again. In the second stage, there is a
toy figure of a boy named Peter. The child hears that Peter has
never seen inside this Band-Aid box. Then, the child answers the
question: What does Peter think is in the box? Band-Aids or a
pig? Thus for the child, the first stage concerns updating the belief
state of the self, whereas the second stage involves reasoning
about the belief state of others.

These consecutive stages can be formalized within a Bayesian
network framework as follows. Consider the process of belief
updating in the first stage. The initial belief about the hidden
contents of the Band-Aid box (i.e., Band-Aids) comes from
observing the outside of the box. Then, the updated belief (i.e., the
pig toy) arises from having visual access to the inside of the box.
This in turn implies that without such visual access, the initial
belief wound not be updated, but instead remain in its original
state.

These causal relationships can be concisely represented with
a causal graphical model or a Bayesian network, as depicted
in Figure 1A. This graph has three nodes of random variables
(W, V , and B) and two directed edges between the nodes (i.e.,
single arrows). W represents the true state of the world, that is,

the Band-Aid box that holds the pig toy inside. V represents
the binary states of visual access to the inside of the box: the
contents are observed or not. B represents the binary states of the
belief about the contents: the pig toy (true belief) or Band-Aids
(false belief). The directed edges represent causal connections
between these variables: each arrow points from a cause to an
effect. Accordingly, this graph specifies a causal relation such
that V and W are the cause of B. In addition, it implies a
probabilistic interpretation of the causal relation in terms of the
conditional probability of B given V and W: P(B|V ,W). To be
more specific, this graph defines the joint probability distribution
over all variables P(B,V ,W), and the causal structure implies
a particular factorization of the joint probability distribution as
P(B,V ,W) = P(B|V ,W)P(V)P(W). This Bayesian network thus
denotes how belief formation proceeds in children’s minds for the
unexpected-contents task.

Next, consider belief reasoning in the second stage. Given
the updated belief in the first stage and available information
about Peter’s visual access, the child makes an inference about
Peter’s belief about the hidden contents of the Band-Aid box.
We propose that the child makes a probabilistic inference about
Peter’s belief using a “theory” that represents the process of belief
updating in the first stage. Specifically, we propose that at the
computational level (Marr, 1982), the child’s belief reasoning
can be formalized as probabilistic computations on a Bayesian
network that represents the causal process of belief formation
(Figure 1B).

To construct this Bayesian network, we make two
assumptions. First, we assume that the child has two theories
of belief formation, one applied to her and the other to Peter,
each of which can be represented as the Bayesian network in
Figure 1A. In other words, we postulate two internal models

A B

FIGURE 1 | (A) Bayesian network describing a causal relation among the states of the world (W), visual access (V ), and belief (B). The conditional probability table

indicates that the belief updating is deterministic. (B) Our Bayesian network model for false belief reasoning. The S subscript is the abbreviation for “self;” the O

subscript for “others.”
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(Wolpert et al., 2003) of self and others for belief prediction. In
effect, the internal model of self acts as a simulator of one’s own
mind. This can be viewed as a form of rule-based simulation (cf.
Mitchell et al., 2009). Second, we assume that during children’s
early development, their internal model of self is inseparable
from and affects that of others. Specifically, we hypothesize that
when reasoning about Peter’s belief, the child’s own states of
belief and visual access have an effect on those in the internal
model of Peter. This hypothesis embodies a true-belief default
(Leslie et al., 2004): others tend to have the same true belief as
one’s own, as people usually have true beliefs about everyday
matters. It also follows from the “like-me” hypothesis of infant
social cognitive development (Meltzoff, 2007a,b).

These two assumptions lead us to construct the Bayesian
network depicted in Figure 1B. This graph has two sets
of random variables: VS and BS, representing the binary
states of visual access and belief, respectively, of self; and
VO and BO of others. Given W, each set of the variables
can constitute a subgraph that exactly matches the graph in
Figure 1A. Then, merging the two subgraphs leads to jointly
representing two internal models of belief updating: one for
the self and one for others. This meets the first assumption.
Further, in Figure 1B, the whole graph has two extra edges
between the variables of the self and others: one from VS

to VO, and the other from BS to BO. This represents their
causal connections and thereby reflects the second assumption.
Furthermore, this Bayesian network can be interpreted as
representing the joint probability distribution over all relevant
variables, implying its factorization as P(VO,BO,VS,BS,W) =

P(BO|VO,BS,W)P(VO|VS)P(BS|VS,W)P(VS)P(W).
The Bayesian network in Figure 1B thus describes our

proposed theory of mind that children might use in the
unexpected-contents false belief task. From now on, we refer
to this Bayesian network as the ToM network. Its use allows
children to perform theory-based reasoning about the belief
states of others. But this reasoning does not strictly follow the
standard theory-theory in which the mental states of others
are detached from those of one’s own. Rather, reasoning with
this ToM network inevitably entails more or less simulation-
based reasoning through the internal model of one’s own mind.
Therefore, our proposed ToM network can be viewed as a
hybrid model combining both theory-based and simulation-
based reasoning. In the following section, we formulate false
belief reasoning as Bayesian inference with such a hybrid model.
This can be done through parameterization of the ToM network
to specify a conditional probability for each relevant variable.

2.2. False Belief Reasoning
First, we introduce notations to denote the states of a binary
variable. For the states of visual access to the inside of the Band-
Aid box, let VS and VO take on the value of 1 when the contents
are observed and 0 otherwise. For the states of belief about the
contents, let BS and BO take on the value of 1 for the pig toy (true
belief) and 0 for Band-Aids (false belief).

Given the ToM network, reasoning about the belief state of
others amounts to estimating the state of the variable BO from
available information about the remaining variables. For this

estimation, the Bayesian approach suggests using the predicted
probability P(BO|VS = 1,W): the conditional probability of BO
given the observed state ofVS and the fixed state ofW. Recall that
the ToM network represents the joint probability distribution
over all variables. Then, from this, the predicted probability can
be computed by applying Bayes’ rule and marginalization:

P(BO|VS = 1,W) =
∑

VO

∑

BS

P(BO|VO,BS,W)P(VO|VS = 1)

P(BS|VS = 1,W) (1)

Here, the summation is taken over all possible values of VO and
BO. Hence, to formulate this predicted probability, it is necessary
to specify three conditional probabilities on the right side of the
Equation (1).

First consider P(BS|VS = 1,W). This conditional probability
concerns only the mental states of self and represents children’s
belief updating in the first stage of the unexpected-contents task.
As the child comes to hold the true belief when she observes the
inside of the box (i.e.,VS = 1), BS will take on the value of 1 when
her belief is just updated.We assume, however, that the child may
fail to maintain the updated belief owing to accidental error, or
the limited capacity of her working memory. Assuming that such
failure occurs with small probability δ, we set

P(BS = 0|VS = 1,W) = δ (2)

P(BS = 1|VS = 1,W) = 1− δ (3)

Next, consider P(VO|VS = 1). This conditional probability is
due to our assumption that the mental states of self have an
effect on the representations of those of others. As the child hears
that Peter has not observed the inside of the box, VO should
be 0 if she correctly identifies the state of Peter’s visual access.
However, our assumption states that the child may mistakenly
attribute her state of mind to Peter. Assuming that this happens
with probability 1− πV , we set

P(VO = 0|VS = 1) = πV (4)

P(VO = 1|VS = 1) = 1− πV (5)

Thus, πV expresses the degree to which children can appreciate
the states of others’ visual access, or equivalently, the knowledge
states of others.

Finally, consider P(BO|VO,BS,W). This conditional
probability represents the process of others’ belief updating
with its dependence on the belief states of self. This dependence
is again due to our assumption stated above. We assume that
the child may automatically adopt her state of belief to represent
Peter’s own and this occurs with a probability of 1 − πB. This
prompts us to decompose P(BO|VO,BS,W) as follows:

P(BO|VO,BS,W) = πBP(BO|VO,W)+ (1− πB)P(BO|BS) (6)

This decomposition implies that to represent Peter’s belief, the
child uses P(BO|VO,W) with probability πB, or P(BO|BS) with
probability 1 − πB. Thus, πB expresses the degree to which
children can attribute different beliefs to others.
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Note that P(BO|VO,W) concerns only the mental states
of others and represents the identical causal structure with
P(BS|VS,W). Therefore, as Equations (2) and (3), when VO = 1,
we set

P(BO = 0|VO = 1,W) = δ (7)

P(BO = 1|VO = 1,W) = 1− δ (8)

When VO = 0, Peter should hold the false belief (BO =

0) because he observes only the outside of the Band-Aid box.
However, we assume that the child takes into account the
possibility that Peter expects something other than Band-Aids
inside the box. This can happen because the box is a container
that can hold anything smaller than its size; in fact, it held the
pig toy inside in the unexpected-contents task. Assuming that the
child supposes such a misconception could occur with a small
probability ǫ, we set

P(BO = 0|VO = 0,W) = 1− ǫ (9)

P(BO = 1|VO = 0,W) = ǫ (10)

For P(BO|BS), we assume that it is deterministic since its
probabilistic nature has already been captured with the
probability 1−πB. That is, assuming that the child’s state of belief
is just copied to Peter’s belief, we set

P(BO = 0|BS = 0) = P(BO = 1|BS = 1) = 1 (11)

P(BO = 0|BS = 1) = P(BO = 1|BS = 0) = 0 (12)

By using the parameterization introduced thus far, we can derive
the predicted probability P(BO|VS = 1,W), and then our model
of false belief reasoning as P(BO = 0|VS = 1,W). First, we
substitute Equation (6) into Equation (1) to obtain:

P(BO|VS = 1,W) = πB

∑

VO

P(BO|VO,W)P(VO|VS = 1)

+ (1− πB)
∑

BS

P(BO|BS)P(BS|VS = 1,W)

(13)

This illustrates how theory-based and simulation-based strategies
are combined to perform reasoning about the belief state of
others. The first term means that the child first obtains an
estimate of the state of Peter’s visual access using her own state
(P(VO|VS = 1)), then feeds the estimate into the internal
model of others (P(BO|VO,W)) to predict the belief state of
Peter. This corresponds to a theory-based strategy. In contrast,
the second term means that the child first employs the internal
model of self (P(BS|VS = 1,W)) to simulate her own belief
updating and then projects the simulated state of belief onto Peter
(P(BO|BS)). This corresponds to a simulation-based strategy. The
probability πB acts as a gate to select one of these strategies: the
child performs theory-based reasoning with probability πB and
simulation-based reasoning with probability 1− πB.

Then, by setting BO = 0 and summing VO and BS in Equation
(13), we finally obtain our model of false belief reasoning:

P(BO = 0|VS = 1,W) = πBπV (1− ǫ)+ (1− πBπV )δ (14)

This is the probability that given knowledge about the true state
of the world, the child estimates the belief state of Peter as a false
belief. In the following, we denote this probability as πFB.

2.3. Relation to the Theory-of-Mind Scale
Our model of false belief reasoning takes four probabilities as
its parameters: δ, ǫ, πB, and πV . Of these, the effects of δ and
ǫ are likely to be limited since they are assumed to be small,
random errors. This is justified by the procedure employed in
all the ToM scale studies listed above. In fact, for children’s
false belief responses to be scored as correct, the children were
first required to respond correctly to preliminary and control
questions about what is usually in a Band-Aid box (i.e., Band-
Aids) and what is actually in the Band-Aid box presented (i.e.,
the pig toy). Thus, we can safely assume that children rarely, if
ever, came up with something other than Band-Aids inside the
box (i.e., small ǫ) and failed to maintain the updated belief about
the contents of the box (i.e., small δ). In contrast, the remaining
two probabilities, πB, and πV , play a dominant role in specifying
the behavior of our model. Let us remember that πB and πV are
introduced to quantify children’s abilities to differentiate their
mental states, beliefs, and visual access, respectively, from those
of others. These abilities as well as false belief reasoning are,
in fact, ToM skills that are to be assessed with the ToM scale
(Wellman and Liu, 2004). Two relevant ToM tasks included
in the scale: diverse beliefs and knowledge access. A diverse-
beliefs task involves the ability to understand that others can
have different beliefs about the same situation. A knowledge
access task involves the ability to discern others’ visual access to
judge whether they are knowledgeable or ignorant. Hence, πB

corresponds to the proportion correct for the diverse-beliefs task,
and πV for the knowledge access task. Obviously, πFB amounts to
children’s proportion correct for the unexpected-contents false-
beliefs task.

Our model thus predicts that, when assessed with the ToM
scale in terms of the proportion correct, children’s false belief
ability can be predicted through their abilities to understand
diverse beliefs and knowledge access. Indeed, assuming that
δ and ǫ are sufficiently small, we can approximate Equation
(14) to obtain a simple relation: πFB ≈ πBπV . It follows that
false belief reasoning can be viewed as a multiplicative effect of
understanding diverse beliefs and knowledge access. Below we
will show that this simple multiplicative relation holds across a
wide variety of children’s ToM scale data.

3. RESULTS

We illustrated the validity of our model by fitting the full
model of four parameters using a Bayesian method to the
children’s ToM scale data for the three above-mentioned tasks.
The data for each task consist of the number of children
who successfully completed the task. To fit our model to the
data, we take the proportion of children who were correct on
each task as their proportion correct for the task. Specifically,
we assume an individual child’s responses to these tasks as
independent Bernoulli trials with success probabilities πB for
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diverse beliefs, πV for knowledge access, and πFB for unexpected-
contents false belief. This allows us to derive the joint likelihood
function of the parameters πB, πV , δ, and ǫ (note that πFB is
a function of them). In addition, similar to Goodman et al.
(2006), we assume asymmetric beta priors on δ and ǫ to
make their small values more likely than large ones. Then,
we combine the likelihood and prior to form the posterior
distribution over the parameters, from which we find their
maximum a posteriori estimates (see the Appendix for details).
Given these estimates, we will obtain a prediction of πFB using
Equation (14).

Figure 2 shows the comparison of our model prediction with
the data from several ToM scale studies (Wellman and Liu,
2004; Peterson et al., 2005; Wellman et al., 2006; Toyama, 2007;
Shahaeian et al., 2011; Hiller et al., 2014). These studies recruited
participants from the same age group (range: 3–6 years), but
differed in their choice of the children’s cultural background. One
exception is Hiller et al. (2014), whose focus was on a younger age
group including 2-year-old children. For each study, we fitted our
model to the aggregated data from all participants with varying
ages.

For three ToM tasks considered in our model, the above
studies revealed different orders of difficulty between cultures.
Western, English-speaking children mastered the tasks in the
following order: diverse beliefs, then knowledge access, and
finally false beliefs. In contrast, Asian/Middle Eastern peers
reversed the order between diverse beliefs and knowledge access
(Note that these orders only indicate cross-sectional ToM
progressions. However, Wellman et al. (2011) have recently
revealed that children’s longitudinal ToM progressions assessed
with the ToM scale follow the same orders as obtained cross-
sectionally. This validates the use of the cross-sectional data as
a good approximation of the longitudinal sequences of ToM
understanding for individual children). As demonstrated in
Figure 2, our model is able to capture this cross-cultural contrast.
It predicts that children’s abilities to understand diverse beliefs
and knowledge access multiplicatively contribute to their ability
to understand false beliefs. Hence it further predicts that the
order of difficulty between the former two tasks is irrelevant
to the level of false belief understanding. Our fitting results
confirmed these predictions, almost quantitatively reproducing
both the ToM scale data from Western and Non-Western
children.

Note that our model is in good agreement with the data from
Hiller et al. (2014), whose focus was on a younger age group
including 2-year-old children. This suggests that our model can
apply to separate age groups to predict each age-related level
of ToM development. We examined this possibility using ToM
scale data for Japanese children (Toyama, 2007) from the only
study among those listed above that reported children’s ToM
task performance at every age group between 3 and 6 years old.
Figure 3 shows a separate fit of our model to the data for each
age group. The model fits were good, and the linear correlation
between the estimated parameters (i.e., πB, πV , and πFB) and the
data over all age groups was 0.98. These results indicate that our
model can capture the pattern of children’s ToM abilities at each
stage of their development.

Finally, we assessed whether our model can apply to children
with developmental delays. Peterson et al. (2005) compared
sequences of ToM development between typically developing
and ToM-delayed Australian children with deafness or autism
and found the same order of difficulty across all children
groups, at least for three ToM tasks considered in our model.
Figure 4 shows separate fits of our model to the data for
four children groups: native signers (deaf children born to
signing deaf parents, mean age 10.67 years), late signers (deaf
children born to non-signing hearing parents, mean age 10.01
years), autistic children (mean age 9.32 years), and typical
preschoolers (mean age 4.50 years). The model fits were good
even for ToM-delayed children (i.e., late singers and children
with autism), suggesting that their ToM abilities, albeit delayed
in development, should work in the same way as native signers
and typical children.

4. DISCUSSION

We have formalized a Bayesian model of false belief reasoning
that incorporates the internal models of self and others for
belief formation. This model can be viewed as a version of
theory-theory, explicitly representing a set of mental concepts
and their interactions by a probabilistic causal model (Gopnik
and Wellman, 2012). Critically, however, our model differs from
the standard theory-theory in that it possesses a theory of one’s
own mind as well as that of other people’s minds. Moreover,
it allows simulation-based and standard theory-based strategies
for reasoning about the belief states of others to be integrated.
We have demonstrated that this hybrid approach can capture
various aspects of ToM scale findings: cultural differences, age-
wise development, and developmental delays with autism and
deafness.

Our model predicts children’s false belief ability as a
multiplicative effect of their abilities to understand diverse beliefs
and knowledge access. As shown above, in terms of success
probabilities for corresponding ToM scale tasks, this prediction
can be concisely expressed as: πFB ≈ πBπV . It is important to
remember that the latter two probabilities are introduced into
our model to represent the degree to which children can discern
their mental states, beliefs, and visual access, from those of others.
In effect, the larger these probabilities, the larger πFB, and the
stronger the tendency for children to recognize that others are
not “like-me” in their mental states. Thus, our model predicts
that developed false belief reasoning (i.e., larger πFB) should
rest predominantly on the internal model of others to employ
a theory-based strategy and that conversely, undeveloped false
belief reasoning (i.e., smaller πFB) should be based mainly on the
internal model of self to employ a simulation-based strategy. This
differential weighting between the internal models of self and
others enables our model to account for a wide variety of ToM
scale data, capturing the variability of false belief ability observed
across those behavioral studies.

Thus, our model is able to characterize children’s competence
in false belief reasoning at the various stages and aspects
of their development. However, the model is not itself,
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FIGURE 2 | Comparisons between our model prediction and behavioral ToM scale data for three tasks: diverse beliefs (DB), knowledge access (KA),

and false beliefs (FB). Orange bars represent the behavioral data. Green bars represent the fits of our prediction (the estimated values of the parameters πB, πV ,

and πFB). The left part of the figure depicts the results for Western children (Australian and American); the right part for Asian/Middle Eastern children (Iranian, Chinese,

and Japanese).
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FIGURE 3 | Comparison between our model prediction and the ToM scale data of different age groups in Toyama (2007). DB, diverse beliefs; KA,

knowledge access; FB, false beliefs. Orange bars represent the behavioral data. Green bars represent the fits of our prediction (the estimated values of the parameters

πB, πV , and πFB).

in its current formulation, a model for ToM acquisition.
Nevertheless, it provides preliminary evidence regarding how
ToM development proceeds in childhood. The key point is
again the multiplicative relation: πFB ≈ πBπV . The relation
states that a larger πFB requires both πB and πV to be much
larger simultaneously. Therefore, it implies that children’s earlier
understanding of diverse beliefs and knowledge access is a
prerequisite for promoting their later false belief understanding.
This naturally corresponds to a constructivist account of ToM

development. Specifically, our model follows an approach of
rational constructivism in cognitive development (Xu and
Kushnir, 2013), as it builds on a Bayesian framework to
make rational inferences. Hence, our model gives a formal
constructivist interpretation of the sequential progression of
ToM understandings assessed with a ToM scale.

Regarding the process of ToM development, our model
makes another constructivist prediction with the multiplicative
relation: πFB ≈ πBπV . A key observation is that the relation
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FIGURE 4 | Comparison between our model prediction and the ToM scale data of children with and without developmental delays in Peterson et al.

(2005). DB, diverse beliefs; KA, knowledge access; FB, false beliefs. Orange bars represent the behavioral data. Green bars represent the fits of our prediction (the

estimated values of the parameters πB, πV , and πFB).

is bilinear: πFB is linear in πB when πV is fixed and vice versa.
This means that a fixed level of πB or πV affects the slope in
the linear function of the other. Hence, provided that either
πB or πV is fixed to a certain level and the other increases
monotonically, a higher fixed level will result in a faster increase
in the level of πFB. This leads us to predict that children’s initial
level of understanding of diverse beliefs or knowledge access
determines how fast their later understanding of false beliefs
progresses over the course of ToM development. This prediction
is qualitatively consistent with a recent microgenetic study by
Rhodes and Wellman (2013). They demonstrated that children
who had a well-developed understanding of knowledge access
reliably developed an understanding of false beliefs following
repeated observations of other people acting on false beliefs,
whereas children who had an undeveloped understanding of
knowledge access did not. Our model further predicts that
children’s level of diverse belief understanding also constrains
their development of false belief understanding. This is due
to the fact that the roles of πB and πV are interchangeable
in our model. Pursuing this idea in a future empirical study
would be worthwhile to test the prediction with microgenetic
methods.

We should finally note that our Bayesianmodel of false beliefs,
however successful, is only applicable to the unexpected-contents
task, and not to the change-of-location task. To formalize false
belief reasoning in the latter task, we need a related but different
theory, or causal structure, to represent relevant mental state
concepts. Specifically, the change-of-location task involves an
extra representation of other people’s actions (i.e., where to look
for an object). In addition, the state of their actions depends
not only on that of their beliefs (where the object is located),

but also on the state of their desires (whether they want the
object).

Representing this causal structure as Bayesian networks,
Goodman et al. (2006) proposed two models of false beliefs: a
copy theorist (CT) model and a perspective theorist (PT) model.
The CT model assumes that others’ beliefs depend only on
the real state of the world. In contrast, the PT model assumes
that they further depend on others’ visual access to the world.
Then it follows that the CT model is able to represent true
beliefs, but is too simple to represent false beliefs, whereas the
PT model is complex enough to represent both true and false
beliefs. Goodman et al. modeled the development of the false
belief ability as a rational transition from the CT model to the PT
model: one of these models is selected for false belief reasoning
according to their corresponding posterior model probabilities.

Thus, for the change-of-location task, a similar computational
explanation has been advanced to understand false belief
reasoning. However, similar to most behavioral ToM studies,
Goodman et al. (2006) have focused on false beliefs per se, without
taking into account extended developmental progressions of
ToM leading up to false belief understanding. Therefore, we
argue that, by extending our Bayesian model to accommodate
the change-of-location task, it will have more explanatory power
in understanding children’s developing ToM abilities. Such
extension is rather straightforward. It simply uses Goodman
et al.’s PT model (Bayesian network) as a building block for the
internal models of self and others’ minds. Causal connections
are then added between variables of the two internal models.
The relevant variables include the state of desire as well
as those of belief and visual access. This extended model,
in principle, allows for Bayesian inference of other people’s
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action goal on the change-of-location task. Importantly, it can
also cope with the unexpected-contents task since it reduces
to our current formulation when irrelevant variables, in this
case desire and action, are marginalized out. Furthermore,
within the extended model, a causal influence between the
desire states of self and others can be assessed with another
task included in the ToM scale: a diverse-desires task. We
are currently formalizing and validating the extended model,
trying to fit it to ToM scale data including the false belief
ability for the change-of-location task (Wellman and Liu, 2004;
Shahaeian et al., 2014). Extending our model would thus make
better use of ToM scale data to contribute to a more in-
depth understanding of developmental progressions of ToM
abilities.
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APPENDIX

Fitting the Model of False Belief Reasoning
to ToM Scale Data
We adopted a Bayesian method for estimating the parameters
πB, πV , δ, and ǫ to fit Equation (14) to ToM scale data
D for three tasks: diverse beliefs, knowledge access, and
unexpected-contents false beliefs. This can be done through
maximizing the posterior probability distribution for the
parameters:

P(πB,πV , δ, ǫ|D) =
P(D|πB,πV , δ, ǫ)P(πB,πV , δ, ǫ)

P(D)
(A1)

where P(D|πB,πV , δ, ǫ) is the likelihood function of the data

and P(πB,πV , δ, ǫ) is the prior probability distribution for the

parameters. P(D) is a normalization constant. This is due

to Bayes’ rule. We assume an individual child’s responses to

the three tasks as independent Bernoulli trials with success

probabilities πB for diverse beliefs, πV for knowledge access, and

πFB for unexpected-contents false beliefs. We can then represent

the number of children passing each task using the sum of the

Bernoulli trials with the values of 1 for success and 0 for failure.

This sum has a binomial distribution, giving the likelihood
function of the data for each task. The joint likelihood function

of the entire data set is the product of three likelihood functions
for each task and is given by:

L(πB,πV ,πFB;D) = nCrBπB
rB (1− πB)

n−rB · nCrVπV
rV

(1− πV )
n−rV · nCrFBπFB

rFB (1− πFB)
n−rFB

(A2)

where n is the number of participating children and rB, rV and
rFB are the numbers of children passing the corresponding tasks.
The likelihood function P(D|πB,πV , δ, ǫ) is then obtained by
substituting Equation (14) into πFB. For the prior probability
distribution P(πB,πV , δ, ǫ), we assume uniform priors on πB

and πV , and asymmetric beta priors on δ and ǫ with a
beta distribution: Beta(2, 48) (mode 0.02; mean 0.04; variance
0.00075). Thus, the prior probability reduces to P(δ)P(ǫ) =

Beta(2, 48) · Beta(2, 48).
As shown above, the posterior distribution is proportional

to the product of the likelihood and the prior distribution. For
convenience, we numerically maximized the logarithm of the
product with respect to the parameters to obtain their maximum
a posteriori estimates. We did this using Mathematica’s built-
in NMaximize function with the constraint that each parameter
takes values between zero and one (i.e., all parameters should be
probabilities). Substituting these estimates into Equation (14), we
obtained a prediction of πFB.
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