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Associative learning theories offer one account of the way animals and humans
assess the relationship between events and adapt their behavior according to
resulting expectations. They assume knowledge about event relations is represented
in associative networks, which consist of mental representations of cues and outcomes
and the associative links that connect them. However, in human causal and contingency
learning, many researchers have found that variance in standard learning effects is
controlled by “non-associative” factors that are not easily captured by associative
models. This has given rise to accounts of learning based on higher-order cognitive
processes, some of which reject altogether the notion that humans learn in the manner
described by associative networks. Despite the renewed focus on this debate in recent
years, few efforts have been made to consider how the operations of associative
networks and other cognitive operations could potentially interact in the course of
learning. This paper thus explores possible ways in which non-associative knowledge
may affect associative learning processes: (1) via changes to stimulus representations,
(2) via changes to the translation of the associative expectation into behavior (3) via a
shared source of expectation of the outcome that is sensitive to both the strength of
associative retrieval and evaluation from non-associative influences.

Keywords: associative learning, causal learning, expectation, prediction error, blocking

INTRODUCTION

Associative theories of learning offer a powerful account of the way animals and humans assess the
relationship between events and generate expectations about the future. They assume that we reflect
our knowledge about the predictive relationships between events in associative networks, which
consist of mental representations of these events and the associations that link them. These events
could be predictive cues and subsequent outcomes in the case of Pavlovian learning or actions
associated with antecedents and consequences in the case of instrumental learning. Through
observing the co-occurrence of cues and outcomes, an individual learns the associations between
them in such a way that the presence of a predictive cue brings to mind the outcome and thus
informs subsequent behavior by generating an outcome expectation.

Associative accounts have been applied to many widely replicated learning phenomena. The
focus of theory development over the last 50 years has included explaining how simultaneously
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presented cues might compete for association, how selective
attention affects and is affected by learning, and explaining
how association formation could be a simple but effective
means of tracking statistical contingencies between events
rather than merely tracking their temporal coincidence. Not
surprisingly, many associative learning models provide detailed
and compelling explanations for these phenomena. Central to
many of these explanations is the notion of prediction error,
the discrepancy between what the associative system predicts
will happen next and what is then actually experienced. The
prediction error thus captures an experienced violation of
expectations and we return to this concept and its widespread
use in associative learning theory later. (Note also, we will use
the terms expectation and prediction interchangeably). The term
expectancy will usually refer to the explicit judgement of outcome
expectations.

Despite the relative success that associative learning models
have enjoyed in both explaining and predicting phenomena
observed in conditioning and contingency learning studies,
there are clearly also many influences on learning that
associative models simply do not capture. In this article,
we review some of these influences and speculate on how
they might influence the operations of an associative learning
system, assuming that such a system forms a core part of
human learning and cognition more generally. A number
of theoretical and empirical papers published in the last
decade have approached this question and reviewed relevant
literature in causal and contingency learning (e.g., Shanks,
2007; Mitchell et al., 2009; Boddez et al., 2014). The current
paper does not intend to systematically and comprehensively
review the same body of literature or provide a critique of
the theoretical views proposed by these authors. Instead, our
focus will be on outlining and discussing ways non-associative
knowledge might influence the operations of an associative
learning system without changing its fundamental principles.
In doing so, we hope to provide a means of evaluating
the contribution of theories based on associative networks to
explaining complex behavior more broadly. We would argue
that this is particularly relevant to human associative learning,
where influences on behavior are clearly more complex than
formal associative models can explain in isolation but where
there is still support for the existence of association formation
mechanisms. Some of the traditional sources of evidence have
failed to convince all theorists that it is necessary to posit
association formation as being mechanistically distinct from
inferential reasoning or higher order cognition in general.
For instance, the notion that associative learning can occur
in the absence of awareness is still as contentious as ever
(see Goujon et al., 2015; Colagiuri and Livesey, 2016; Vadillo
et al., 2016 for a recent iteration of this debate concerning
implicit learning in visual search). Nevertheless, a number
of results (e.g., Morís et al., 2014; Perruchet, 2015; Cobos
et al., 2016) suggest that associative learning mechanisms are
separable from other cognitive sources of expectation in at
least some circumstances and could represent the operation of
an independent system. This possibility is certainly plausible
enough to warrant a more in-depth consideration of how

associative and non-associative sources of prediction might
interact.

EXPECTANCY AND JUDGMENT IN
HUMAN CAUSAL LEARNING

Studies of causal and contingency judgements are concerned with
the way humans make explicit assessments of the predictive and
causal relationships between events. These events may consist of
a particular outcome in a fictitious scenario, such as an allergic
reaction suffered by a patient, and the cues that may cause or
predict that outcome, e.g., foods eaten by the patient. Participants
will receive on a trial-by-trial basis information about what the
patient has eaten. They are then requested to make a choice
between different possible allergic responses that the patient
might experience, e.g., “no allergic response,” “rash,” and “fever,”
to indicate their expectation, and receive feedback whether their
expectation was correct and which symptoms the patient actually
suffered after eating these foods. In a test phase after several trials
of training, participants might be additionally asked to rate the
relationship of certain foods with a certain allergic symptom on a
scale from “not predictive/causal” to “highly predictive/causal.”

One line of research has been to relate this kind of causal
learning to classical conditioning and by this to associative
accounts of learning. In addition to the apparent parallels in both
the procedure and the content of learning – participants learn to
predict future events based on their relationships with preceding
events – many behavioral effects can be observed in both classical
conditioning and human causal learning paradigms. However,
when researchers started to investigate factors controlling
learning in these kinds of procedures, critical factors quickly
emerged that were not easily captured by associative models of
learning, factors relating to “non-associative” knowledge relevant
to the learning situation (see De Houwer, 2009).

ASSOCIATIVE AND NON-ASSOCIATIVE
KNOWLEDGE: A WORKING DEFINITION

For the purpose of this paper, we will define associative knowledge
as knowledge that can be derived merely from the statistical
relationships among the relevant cues and outcomes. All
knowledge that goes beyond this is then seen as non-associative.
This concerns both the way this information is obtained and the
content of the information. Non-associative knowledge includes
information given verbally (i.e., by instruction, other people’s
accounts, prior semantic knowledge), relational information
inferred from the co-occurrence of other, separately presented
cues and outcomes, (e.g., whether other outcomes are predicted
reliably by other cues), or information implied by other aspects
of the experimental procedure (e.g., spatial position of cues and
outcome on the screen, the format of the test question). We
also regard information about properties of the associative links
other than the statistical contingency, like their causal nature
or the additivity of their effects, as non-associative, as well as
information about properties of the cues and outcomes (e.g.,
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whether the outcome is binary vs. continuous, and if continuous,
whether it is observed at a maximal or submaximal intensity).
These and many other factors that are related to the individual’s
understanding of, or engagement with, a given context may
impact on the learning of causal relationships but are rarely
captured satisfactorily by formally quantified associative learning
mechanisms. These factors all involve prior knowledge of one
form or another, and it must be assumed that their influence thus
depends very heavily on prior learning. The point of defining
them as non-associative is not to make particular claims about
their content or the mechanism by which they were initially
acquired, but rather to acknowledge that their often substantial
impact on new learning is not formally captured in existing
models of association formation1.

BLOCKING IN HUMAN CAUSAL
LEARNING AND ITS ASSOCIATIVE
EXPLANATION

In the following, we rely heavily on research on the blocking effect
(Kamin, 1968). In terms of its influence on the development of
new theories, Kamin’s blocking effect in Pavlovian conditioning is
historically one of the most important phenomena. The blocking
effect is also an often cited example for a basic learning effect
that is regularly reported in human causal learning. It has been
one of the empirical cornerstones for the argument that the same
underlying learning processes are controlling learning in both
conditioning and in human causal learning (Dickinson et al.,
1984) and it is therefore not surprising that a particularly high
number of studies have investigated non-associative influences
on human learning in the context of blocking paradigms.

In a simple blocking experiment (see also Table 1),
participants might first observe that cue A results in the
occurrence of the outcome (A+). In a subsequent phase they may
also observe that cues A and B together result in the occurrence of
the outcome (AB+). On other trials, they observe that cues C and
D together also result in the occurrence of the outcome (CD+).
When asked to judge whether B causes the outcome, participants
will often give a rating that is substantially lower than their rating
for either C or D, even though all three cues have resulted in
the outcome on an equal number of occasions. For example, if
participants first experience that apples cause an allergic reaction
in a Patient X and afterward that two different food combinations,
one comprising apples (A) and beans (B) and one carrots (C)
and dates (D), will both lead to an allergic reaction, they will rate
beans as less likely to cause the allergic reaction on its own than

1There are successful attempts to capture at least some of the effects we refer to
as non-associative within a purely associative learning framework. For instance,
Haselgrove (2010) has successfully modeled the effects of some forms of pretraining
on blocking by appealing to the role played by common elements. However, these
attempts rely on assumptions that should not necessarily be easily generalized to
other learning designs and paradigms. For instance, a necessary assumption of
Haselgrove’s (2010) explanation is strong generalization from previously trained
cues to the critical test cues and is most clearly applicable to designs in which most
or all stimuli are paired with the outcome. In contrast allergist tasks are usually run
with multiple filler cues that do not predict the outcome and most participants in
these experiments show very clear discrimination between trained and novel cues.

TABLE 1 | A typical set of contingencies displayed to participants as part
of a blocking experiment.

Stage 1 Stage 2 Test

Blocking cues A+ AB+ B?

Control cues CD+ C? D?

Letters A–D refer to predictive cues, + refers to the presentation of the outcome, ?
to the absence of feedback on test.

carrots or dates (i.e., B < C or D, see for example, Luque et al.,
2013).

Figure 1 depicts an example of a simple standard associative
network after training and its interaction with the events in the
world. The network inside the box on the left side consists of
two cues, A and B, which are each connected via associations
to the representation of the outcome. As a result, the presence
of a predictive cue, represented by the black rectangles outside
the box, activates not only its own representation within the
associative network but brings also to mind the associatively
connected representation of the outcome. Associative models
claim that the strength of this associative retrieval of the outcome
is a key source of evidence in making a prediction about the
outcome. The outcome is rated as likely to occur after certain cues
because these cues activate its representation and thus result in
an expectation of the outcome. As the strength of this associative
retrieval, and thereby the outcome expectation, is a function of
the strength of the associative links between the presented cues
and the outcome, f(V), differences in responding are based on
differences in associative strength.

Most associative accounts furthermore rely on the prediction
error in some way to establish the associations. Broadly speaking,
changes in associative strength, 1V, are proportional to the
error made in the prediction of the outcome, i.e., the violation
of the expectation. Every time a prediction is made, it is
compared to the actual outcome, represented via the value
assigned to λ (e.g., λ = 1 if the outcome is present; λ = 0
if absent). The resulting prediction error, that is, the difference
between the actual outcome and the outcome expectation, is
given by the generalized error term [λ− f (V)], and is used to
optimize the associative links such that the error is minimized
in future predictions. Most models therefore agree that the
current prediction plays a key role for the formation and further
adjustment of the associative links. Different models assume
different ways of combining the associative effects of several cues,
that is, when several cues are presented together at the same
time, for example A and B in an AB compound. The Rescorla
and Wagner (1972) model and most others like it rely on an
additivity assumption, that is they assume that the associative
effect of cue A and cue B will be the same when they are
subsequently presented within the compound AB and will simply
sum together, f (V) = 6V . The equation controlling the changes
in associative strength can thus be expressed in the following way:
1V ∼ (λ−6V).

According to associative theories of blocking, participants will
develop a strong association between the cue A (apples) and
the outcome (allergic reaction) in the first stage of a blocking
experiment, so that, whenever A is presented, the outcome will
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FIGURE 1 | Simple associative network and its interaction with the events in the world.

be retrieved and correctly expected. If the outcome is already
expected and subsequently occurs, then minimal learning will
take place because the outcome was not surprising (i.e., no
prediction error). The same is true for the AB compounds in
the second stage. Cue A will again strongly activate the outcome
representation and result in a strong expectation of the outcome.
Therefore, the prediction error in AB+ trials is already minimal
and further correction of the associative links of either A or B
with the outcome are soon unnecessary. Learning about B will be
blocked by the previous learning about A, and B will not develop
a strong association with the outcome. In contrast, the control
cues C and D will not retrieve the outcome representation at the
beginning of the second stage of the blocking procedure and will
therefore not generate a strong expectation of the outcome in
CD+ trials. The resulting prediction error will in turn fuel the
formation of associative links between C, D and the outcome.
At the end of the experiment, C and D will each result in a
stronger associative retrieval of the outcome than B (because
VB < VC/VD) and thus in a stronger prediction, even though
they were all paired the same number of times with the outcome.
The concept of prediction error as a determinant of learning
is thus closely linked to the blocking effect and furthermore,
prediction error has been shown to be important if not indeed
causal for blocking (Steinberg et al., 2013). Blocking is regarded
as an instance of cue competition because A and B (and likewise C
and D) arguably compete over the association with the outcome.
B loses this competition as it is paired with A, which had a head
start by virtue of its prior individual pairing with the outcome.

SOME KNOWN EFFECTS OF
NON-ASSOCIATIVE KNOWLEDGE

From the description of a simple associative network, it should
be apparent that participants that receive the same cue-outcome
pairings should show the same learning as this is the only kind of
information on which the formation of associations and thus the

expectation is based. As already pointed out, however, it is well
established that non-associative knowledge affects learning and
decision making. One classic demonstration of the effect of verbal
information on causal learning was provided by Waldmann and
Holyoak (1992). Their experiments were designed to create two
learning tasks that were equivalent at the associative level – that
is, identical in terms of the statistics of the events involved –
but differed in terms of the general causal information conveyed
in the cover story. All participants in Waldmann and Holyoak’s
study received the same cue-outcome combinations during
Stages 1 and 2 of a blocking experiment. However, the cover story
established either a predictive or diagnostic learning situation
for these cue-outcome pairings. While the cues were always the
same, participants in their predictive task had to learn which cues
would cause a new kind of emotional response in observers. In
contrast, participants in the diagnostic task saw the same cues
but redefined as symptoms of a disease and had to learn which
symptoms were caused by the disease. Even though subjects saw
identical cues and cue-outcome pairings, they rated the critical
target cue differently in the diagnostic and in the predictive
condition. Specifically, participants given the diagnostic scenario
gave the target cue, B, a stronger rating. As Waldman and
Holyoak’s study did not include the appropriate control cues
for blocking, C and D, drawing a conclusion on the blocking
effect is not possible. However, similar subsequent experiments
have replicated the effect of causal model, implemented through
instructions and prior knowledge, on blocking and other effects
(e.g., Waldmann, 2000, 2001; Luque et al., 2008; Blanco et al.,
2014; but see Shanks and Lopez, 1996; Thorwart and Lachnit,
2010).

Another line of experiments has demonstrated an effect
of inferential reasoning on blocking. These experiments show
how information about the causal relationship between cues
and outcomes influences learning. In De Houwer et al. (2002)
experiments, participants had to rate how likely it was that a
tank would be destroyed (i.e., the outcome) if a certain weapon
was fired (i.e., a causal cue) or if an indicator lit up (i.e., a
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predictive cue). Weapons and indicators were represented by
the same abstract visual cues that were present during training
shortly before the possible destruction. Nevertheless, participants
rated the relationship between them and the destruction of a
tank differently. Beckers et al. (2005b) replicated this result in 4-
year-old and 8-year-old children with a scenario about predicting
rain, rather than exploding tanks. A related series of studies
addressed how assumptions about the additivity of the causal
effects of cues may determine the strength of the blocking effect
(Lovibond et al., 2003; Beckers et al., 2005a). An additivity rule
would state that, if two cues cause the outcome separately, the
outcome should be even stronger when both cues are present at
the same time. This assumption permits the application of simple
deduction such that on observing that A and B together do not
cause a more severe allergy than A alone, B must therefore not
cause the outcome. Consequently one would expect to observe
blocking from inferential reasoning alone if participants hold
this assumption. A non-additivity rule would instead reflect the
belief that adding a second cue does not increase the likelihood
or strength of the outcome if this is already predicted by
the first cue, even if both cues are predictive on their own.
Pretraining and verbal instructions were successfully employed to
shift participants’ beliefs in one or the other direction and these
experiments showed repeatedly that affirming the additivity rule
strengthens the blocking effect.

Models of associative learning are designed to account for
blocking but, as these examples show, the presence of the
effect itself varies considerably across procedures, and in ways
that seem to be more consistent with cognitive processes that
differ considerably from the simple principle that learning is
proportional to prediction error. For the theoretical approach
typified by associative networks, the challenge posed by these
results is not the fact that they show other cognitive factors
play a role in controlling behavior. For instance, nowhere
have associative models explicitly assumed that other mental
processes cannot produce cue competition effects (symbolized
by the arrow from cues to non-associative knowledge in
Figure 1). But the fact that associative models do not
speak to these non-associative factors works against their
relative utility as accounts of human learning, since there
are clearly important properties of human learning, judgment,
and behavior that they fail to capture. Clear evidence exists
that non-associative factors influence associative learning in
the laboratory. It might be the case that this evidence reflects
a thin veneer of cognitive penetrability on an otherwise
highly regular and lawful set of learning principles that
capture real-life learning quite well. After all, knowledge that
one is participating in a psychology experiment must surely
encourage introspection and careful thought. Alternatively, and
more worryingly for the conventional associative approach,
this evidence may be symptomatic of broad, general and
far-reaching sensitivity to a host of factors that are poorly
accounted for by associative learning networks. Therefore,
even if one is to retain the association-formation approach
in theorizing about human learning, there is a need to
better understand how other factors play a role in human
learning.

HOW MIGHT NON-ASSOCIATIVE
KNOWLEDGE INFLUENCE AN
ASSOCIATIVE NETWORK?

Since non-associative knowledge can clearly influence associative
learning phenomena, including those that form the basis of
contemporary prediction-error models, it is tempting to discard
the notion that we possess a system dedicated to mental
association in the manner described by associative networks.
Indeed some authors have already reached this conclusion
(Mitchell et al., 2009). They too assume that the expectation of the
outcome will inform our behavior, but this expectation is based
on generating and evaluating propositions in deductive reasoning
processes. However, an alternative approach, and one that we
think is still instructive, is to ask how non-associative knowledge
could impact upon learning, expectations, and behavior if we
assumed that a general-purpose associative system was still in
place. How could the non-associative knowledge influence the
operations of such a system and what would be the implications if
it did so? Here we consider briefly several possible ways in which
this could occur.

Non-associative Knowledge May Change
the Inputs to an Associative Network
One might account for the variations in the blocking effect
in causal learning by suggesting that the formation of
associations is sensitive to parametric differences. Certainly,
most associative learning models generate parameter-specific
predictions about various learning phenomena, meaning that
quantitative parameter variations can produce different effects
without fundamentally changing the inner workings of the
network itself. They affect what is happening but not how it is
happening. Often the manner in which stimuli are represented
within an associative network can be critical for how learning
takes place. For instance, although associative learning models
generally predict blocking, the strength of the predicted effect
can vary widely according to assumptions about how the stimuli
are mentally represented and how quickly learning occurs during
training. These assumptions are captured in parameters like the
associability of the cues. If non-associative knowledge alters such
parameter values, it would affect learning without replacing or
even fundamentally changing the learning mechanism that is
assumed to have worked and survived successfully throughout
evolution. However, why and how should non-associative
knowledge influence quantitative parameters of the network?

Associative models generally assume that physical properties
of the cues and the outcome influence parameters like their
associability such that there is a link between basic perceptual
principles and the determinants of learning (Annau and Kamin,
1961; Mackintosh, 1976; Redhead and Pearce, 1995). Many
theorists take a further logical step by assuming that basic
cognitive operations like attention also determine key aspects
of stimulus representation in the learning system. That is,
the mental representations that engage in learning reflect
information subjected to limited sensory processing, which is
selectively biased by attention. Theorists have often assumed that
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selective attention affects learning in other animals just as it
appears to in humans (e.g., Lashley and Wade, 1946; Sutherland
and Mackintosh, 1971; Mackintosh, 1975; Pearce and Hall, 1980).
Therefore, to the extent that beliefs derived from non-associative
knowledge can affect attention and perception, those beliefs may
also impact upon learning within an associative network, even if
the operations of that network are relatively automatic (Figure 2).

Work on the learned predictiveness effect clearly demonstrates
an effect of instructed attention on selective learning (Mitchell
et al., 2012; Don and Livesey, 2015; Shone et al., 2015). The
learned predictiveness effect is a widely observed learning bias
toward previously predictive cues in novel situations (see Le
Pelley et al., 2016 for a recent review). The effect is generally
attributed to an attentional shift that occurs as a natural
consequence of acquiring associative knowledge about those
cues. As cues are associated with outcomes, attention to more
predictive cues is enhanced, resulting in faster learning for
those cues within the associative network. However, Mitchell
et al. (2012) demonstrated that explicit instructions manipulating
participants’ beliefs about the predictiveness of cues in a second
learning phase had significant effects on their learning of cue–
outcome contingencies. After learning about the predictiveness
of the stimuli in a trial-and-error fashion (which we assume
led to acquisition of associative knowledge), participants in a
“continuity” group received instructions at the start of Phase 2
that the cues that were predictive in Phase 1 were also likely to
be predictive in Phase 2. A “change” group received opposing
instructions, that the cues that were predictive in Phase 1 were
unlikely to be predictive in Phase 2. Interestingly, participants
in the “change” group showed a strong reversal of the learned
predictiveness effect. That is, more was learned about previously
non-predictive cues than previously predictive cues in Phase
2. Subsequent studies have partially replicated this sensitivity
to instructions, though have typically found much weaker
instructed reversal effects accompanied by a continued influence
of biases established in Phase 1, despite clear evidence that the

participants have read and understood the instructions (Don and
Livesey, 2015; Shone et al., 2015). While Mitchell et al. (2012)
favored an explanation purely based on conscious reasoning
processes, where participants deliberately attend to the cues they
believe are important, a viable alternative is that attentional
processes are brought under conscious control and thus let
non-associative knowledge influence the course of subsequent
learning. This source of influence does not necessitate that non-
associative expectations fundamentally change the operations of
the associative network itself, merely what it receives (Livesey
and Harris, 2009). In other words, a cue that possesses relevance
merely because the instructions have enhanced its importance
may be better or more fully represented in an associative network
(i.e., have greater salience) because the individual is deliberately
attending to it.

This might also go some way to explain some instances
where the blocking effect appears to be unreliable or completely
absent. In addition to the associative processes explained above,
some theories assume that blocking is partly governed by a
lack of selective attention to the blocked cue, either because
it is redundant (Mackintosh, 1975) or because the outcome is
predictable (Pearce and Hall, 1980). If non-associative factors
influence selective attention, they may provide a means by which
attention to the blocked cue is enhanced (or reduced even
further), which could alter the likelihood of observing a blocking
effect considerably even if learning were still primarily based on
association formation.

In addition, if non-associative knowledge can affect the way
stimuli are represented then this knowledge may also change the
manner in which associative retrieval generalizes from A to AB
at the beginning of Stage 2 learning and from the compounds
to the single stimuli presented on test (Livesey and Boakes,
2004; Thorwart and Lachnit, 2009, 2010). Several authors have
suggested that pretraining, task instructions, and spatial stimulus
characteristics can alter the encoding strategy that participants
use or the way they mentally represent cues, which in turn affects

FIGURE 2 | Non-associative knowledge may change the inputs to an associative network (indicated by connection in red).

Frontiers in Psychology | www.frontiersin.org 6 December 2016 | Volume 7 | Article 2024

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-02024 December 24, 2016 Time: 16:0 # 7

Thorwart and Livesey Associative and Non-associative Knowledge

generalization between compounds and individual cues (e.g., see
Melchers et al., 2008 for a review). The potential for these changes
in stimulus representation to impact on learning is sometimes
discussed in terms of flexible shifting between elemental and
configural learning (Melchers et al., 2008) or shifts within an
elemental learning system (e.g., Wagner and Brandon, 2001;
Livesey and Harris, 2008; Thorwart et al., 2012, 2016). Such
changes in stimulus representation reduce generalization from
A to AB and thus result in a weak expectation of the outcome
in AB+ trials. The resulting increased prediction error supports
considerable further correction of the associative links of both A
and B with the outcome. This change in stimulus encoding would
also affect the generalization from trained compounds AB+ and
CD+ to individual test cues B, C, and D, which may result in
overall weak expectation and a smaller blocking effect in test,
where blocking is generally measured by the difference between
the rating of B and the mean rating of C and D. If all ratings are
low due to reduced generalization from the training compounds
AB and CD, the blocking effect will be small as well. No matter
how the global properties of stimulus representation operate, the
broader issue at hand is that generalization between different trial
types might vary according to various sources of non-associative
knowledge that affect stimulus encoding, which in turn impact on
the expectation of the outcome when a new but related trial type
(e.g., AB+) is experienced.

Finally, how and what information is sampled by the learner
affects learning (Matute, 1996; see Fiedler and Juslin, 2006,
for similar arguments in relation to decision making) and it
is known that sampling strategies can be modified through
verbal instructions (Matute, 1996; Blanco et al., 2012) or the
amount of personal involvement (Yarritu et al., 2014). This
influence is clearest in instrumental tasks where the learner’s
actions directly control the delivery of outcomes and thus also
the opportunities to observe relationships between action and
outcome. For instance, in contingency judgment experiments
where participants are asked to judge the degree of control of
an action over the occurrence of an outcome, participants often
perform the action relatively frequently (e.g., on considerably
more than 50% of trials), which in turn limits the opportunity
to learn about the likelihood of the outcome in the absence of the
action and creates circumstances that favor overestimation of the
association between the action and outcome. Changes in action
strategy can thus directly influence the quality of the evidence
for statistical relationships between events, and these strategic
changes could be initiated by any number of non-associative
manipulations.

Non-associative Knowledge May
Change How Associative Outputs
Translate to Beliefs and Behavior
The clearest evidence that associative and non-associative
knowledge might provide dissociable expectations at a behavioral
level comes from studies that compare explicit predictions
and ratings with other behavioral measures such as response
priming and conditioned responding that gauge expectation
less directly. One example is the Perruchet (1985, 2015) effect,

where within the same experiment and indeed the same trial,
diverging response patterns can be obtained in two behavioral
systems (for example eye blink conditioning and causal rating;
for details see below). Cobos et al. (2016) observed diverging
“associative” and “non-associative” response generalization in
cued response times and verbal ratings, respectively and Morís
et al. (2014, Exp 4) found that non-associative knowledge, given
by instruction, affects verbal judgements but not responses in
a recognition priming-based test. But a related and in many
ways more difficult question is how associative predictions might
generate explicit judgements.

Most associative models generate predictions about behavior
based on the summed associative strength of the cues that are
active, or the activation of the representation of the outcome
itself, outputs that we will refer to as associative predictions.
Because they are usually intended to apply to a wide range
of behavioral paradigms, few associative models provide formal
rules for translating these associative predictions into specific
behaviors. Fewer still provide precise rules for how associative
predictions should be translated into judgements or verbal
behaviors of the variety that can only be meaningfully measured
in human learning. As such, when model predictions are tested
empirically, they are usually expressed as ordinal hypotheses
rather than precisely quantified predictions.

A problem thus still remains in characterizing how associative
predictions are conveyed in the explicit expectations of the
individual and whether the relationship between the two should
be expected to be consistent across different experimental
situations. It might well be expected that simple memory and
retrieval mechanisms determine our judgements in at least some
situations. The classical associationist view is that a cue might
be judged as being the cause of an outcome to the extent that
the presence of the cue brings to mind the idea of the outcome.
Similarly we might expect a particular outcome to occur simply
because a representation of that outcome has been activated via
its associations with other cues that are present at the time.

Theoretically, this relationship between associative retrieval
and causal rating could be regarded as an immutable property
of a system that integrates memory with an understanding
of causal structure. Alternatively, it may be that the fluency
of memory retrieval serves as just one source of evidence
on which judgements about causation and expectations about
future events are based, as conclusions based on non-associative
knowledge serves as a second (Figure 3). In some circumstances,
associative activation of the outcome may form the strongest
available evidence about what is going to happen when a cue is
presented, or the strongest indicator of how the individual should
behave. But under other circumstances, for instance where it is
very clear that a deductive reasoning process should be used,
associative memory retrieval may play a relatively minor role.
Thus the relative strength of non-associative knowledge may
play an important role in how associative predictions translate
to overt judgements and predictions. One might then assume
that associative learning in the form characterized by associative
networks exists and operates fairly consistently across different
individuals and contexts, and that most of the variance in
causal judgments results from non-associative factors having
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FIGURE 3 | Non-associative knowledge may change how associative outputs translate to beliefs and behavior (indicated by connection in red).

an influence on performance, for instance in the interpretation
of associative memories and their translation into explicit
behavior.

This possibility again does not imply that the internal
workings of the associative network need be materially affected by
expectations derived from non-associative knowledge. It merely
assumes that associative predictions do not always have a strong
influence on behavior. Returning to the blocking example, it is
possible that the observed sensitivity of predictive ratings to non-
associative information about causality (e.g., blocking is more
readily observed in causal scenarios than non-causal scenarios)
means that associative retrieval plays no part in determining
the judgements made in either scenario. But it could also mean
that associative retrieval plays a greater a role under some
instructional and task conditions than others (e.g., Sternberg and
McClelland, 2012). For instance, perhaps judgments that feel
more naturally intuitive or familiar to the individual allow a
greater influence of associative predictions, particularly among
individuals who are disposed to making intuitive judgments
already (Livesey et al., 2013). Support for such an influence of
non-associative knowledge may be found in studies by Matute
et al. (1996), Vadillo et al. (2005) and Vadillo and Matute (2007),
which showed that the precise wording of the test question
does have an influence on judgements. For example, Matute
et al. (1996) found that the relative-validity effect, another cue
competition effect related to blocking, appears when subjects are
asked to rate whether the target cue X is a cause or an indicator
of the outcome, but vanishes when participants are asked to rate
to what extent cue X and the outcome co-occurred. Similarly,
Gredebäck et al. (2000) found a significant cue competition effect
when participants were asked about the predictive value of the
cue, as well as when they were asked about the causal relationship
between the cue and the outcome. However, the cue competition
effect did not reach statistical significance when participants
were asked about the probability of the outcome given the cue,
nor when they were asked about the frequency of cue–outcome
pairings.

Many of the results that we have discussed thus far, including
those that show a sensitivity of blocking to causal model, contain
single dissociations in which the behavioral ratings in one
condition are generally closer to ceiling (e.g., Waldmann, 2001)
and therefore change the likelihood of observing differences
between ratings for reasons that might be to do with the
measurement scale rather than the underlying process. For
example, ratings in non-causal scenarios tend not to show
blocking effects as readily as causal scenarios, specifically because
the rating for the blocked cue is higher. If there were differences in
how participants regard the blocked cue and the control cues that
were in fact equivalent under causal and non-causal scenarios, it
is reasonable to assume that those differences would appear to be
weaker, possibly even non-existent, if ratings were generally near
ceiling anyway. Thus an observation that blocking is weaker in
non-causal scenarios could be achieved simply by assuming that
participants use the scale differently in the two scenarios, without
making any assumptions about changes in underlying process.
Although we do not necessarily favor an explanation purely in
these terms, it is worth pointing out that the evidence suggesting
sensitivity to non-associative influences on causal learning is
often consistent with multiple explanations, and at least some of
these explanations do not assume that anything fundamentally
different is happening in terms of learning and memory when
non-associative knowledge is manipulated.

Non-associative Knowledge May
Influence Association Formation Directly
Assuming that associative learning does occur via an associative
network of some form, the previous two hypotheses do not
necessitate that non-associative cognitive processes have any
direct impact on how associations form within that network.
Rather, they may affect the information that is fed in to the
network and what is done with the output that the network
returns. One could posit that cognitive interactions of these
forms occur and still assume that associative learning is relatively
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modular in its operations. However, it is worth considering
an alternative hypothesis in which learning within associative
networks is directly affected by non-associative factors.

Outcome expectation and prediction error form the
centerpiece of many associative learning rules and the obvious
and most effective point of interaction of non-associative
knowledge with associative processes. Changes to the outcome
expectation have profound effects on the updating and thus
the structure of the associative network representing the
relationships between current cues and outcomes, even if the
outcome expectation is more a result of the associative learning
system than a part of it.

Since associative learning is often assumed to be proportional
to prediction error and predictions can often be made on the
basis of both associative and non-associative information, an
obvious way in which a direct non-associative influence might
occur would be if prediction error was a function of all sources
of outcome expectation, and not just associative prediction. In
this case, controlled cognitive operations based in metacognition
and reasoning could have a significant impact on a key variable
that determines trial-to-trial variations in associative learning.
Thus variations in cognitive processes could have a lasting impact
on the course of associative learning even though association
formation lawfully follows a basic learning rule.

Figure 4 shows how this interaction of non-associative
knowledge with the associative network could work. Crucially,
the associative network does not contain additional or enriched
representations of information about the cover-story or the
outcome and the links are still simple quantitative links that
contain no qualitative or structural information about the
relationship between the events. It is also important to note that
there are no higher-order deductive reasoning processes assumed
to be responsible for optimizing and changing the network.
Indeed, the associative network in the box in Figure 4 is exactly
the same as that in Figure 1, and when a cue is presented, it
activates its associative representation and all associatively linked
events. The activation of the outcome representation therefore
depends on the strength of the associative link and we assume that
its retrieval remains a key source of evidence in deciding whether
to predict the outcome or not.

However, it is not the only source of evidence as the cues, the
learning situation, or the retrieval of the outcome representation
itself can trigger other mental processes. After the associative
retrieval of the outcome, this knowledge is used to re-evaluate
and adjust the expectation of the outcome. The final outcome
expectation is then a function of both the strength of the
associative links between the presented cues and the outcome and
any other information that the learner perceives as being relevant
[f(V, other)].

One source of non-associative influence is the extent to
which the individual reflects upon their own learning and
thought processes, that is metacognitive processes. This may
be a strong source of variance across different procedures
and across individuals and if associative learning is sensitive
to the operations of metacognition (in any one of the
ways outlined earlier) then this could be a major source of
variance in cue competition and other learning phenomena.

An obvious way in which metacognition may be relevant to
prediction error is the possibility that associative predictions
are evaluated and potentially revised by the individual prior to
observing the relevant outcome. We describe this re-evaluation
as being metacognitive as it relies on assessment of the
outcome expectation and some cognizance of the source of that
expectation. Thus we typify the process as being very explicit and
probably quite variable between individuals and between learning
contexts. We will consider an example in relation to blocking.

Associative learning models all assume some degree of
generalization between trials that have cues in common. In the
case of blocking, pretraining with A+ leads to an expectation of
the outcome in the presence of A. This expectation generalizes to
AB+ trials. As described above, the default assumption of many
associative learning theories is that the associative strengths of the
cues that are present will combine in an additive fashion (Rescorla
and Wagner, 1972), although there are many hypothesized
reasons why this summation might be less than perfectly additive
(see McLaren and Mackintosh, 2000, 2002; Wagner and Brandon,
2001; Harris, 2006; Harris and Livesey, 2010; Thorwart et al.,
2012 to name just a few). Thus the process that provides a
means of generalization is assumed to automatically produce
an expectation of the outcome based on some combination of
the associative strengths of the cues present. This assumption
is based partly on direct evidence of summation in human and
animal learning (see for example Myers et al., 2001; Pearce, 2002;
Soto et al., 2009; Thorwart et al., 2016) but also on the fact
that it is necessary for the associative account of the blocking
effect and that the blocking effect is found in diverse and various
circumstances and paradigms, indicating that the additivity rule
is in fact the default mode by which our learning system operates.

In contrast, when an individual is deliberately engaged in
the task of trying to understand the general rules by which
relationships between cues and outcomes abide, they may have
reason to question this simple summative principle and they may
do so to differing to degrees depending on the individual and
the context in which they experience the cues and outcomes.
We might assume that the process operates according to the
following. In phase 1 of a blocking experiment, in addition
to forming an association between A and the outcome, the
participant has episodic memory of witnessing certain trial types
(e.g., A+) and entertains beliefs about the relationship between
A and the outcome. In the second stage, the current trial type
(AB+) has some overlap with previous experience and associative
memory results in retrieval of the outcome representation or
increased activation of the outcome representation. This would
normally result in an associatively retrieved expectation that the
outcome will occur. The learner might accept this expectation
at face value and thus will not be particularly surprised to
find that the outcome occurs again on this new AB trial.
However, the participant may also notice that the current trial
type (AB+) is not the same as those previously witnessed.
Although the participant has strongly retrieved the outcome
representation, they might question whether their expectation
of its occurrence is accurate given their uncertainty about the
perceived change in trial type. The learner may acknowledge
the fact that this is a novel situation, that they don’t know
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FIGURE 4 | Non-associative knowledge may influence the outcome expectation that is directly involved in association formation.

how these indicators operate in combination and entertain the
possibility that indicators A and B together might not indicate
the same outcome as A alone. The expectation generated on
the basis of A+ episodes is consequently moderated, and the
learner may regulate their predictions in a way that reduces
their expectation of the outcome. That reduction affects both the
explicit predictions of the individual and the associative learning
that takes place when the participant observes the outcome on
that trial. This cautious approach means that the occurrence of
the outcome on such trials is still at least partially surprising and
its presence should be learned about more effectively. Thus, an
associative link between B and the outcome may be established
and the blocking effect attenuated.

At face value, this is simply a cognitive description of external
inhibition, a well-documented effect in animal learning (e.g.,
Pavlov, 1927) in which the addition of a novel cue reduces the
learned response to a previously trained cue. The difference
here is that we specifically assume that moderation occurs
as a consequence of the participant’s appraisal of what they
know about how the cues and outcomes generally operate.
Consequently, one can begin to predict different effects on
learning in conditions where the cues and outcomes are the same
but the causal scenario differs. In a food allergist experiment, a
participant might first observe on multiple occasions that their
“patient” has consumed Apple and suffers an allergic reaction as
a consequence. From this they may form an association between
Apple and the reaction, and they may also form a belief that the
patient is allergic to Apple. When the patient then eats Apple
and Beans in one meal, it seems reasonable to assume that
most participants would believe that the patient will suffer an
allergic reaction because Apple was eaten. But what of a situation
in which the cues are unknown drugs that cause or prevent
side effects, or symptoms of a hitherto unknown disease? Is it
reasonable to assume that if a patient suffers a migraine after
being given Melixil, they will also suffer a migraine when given
Melixil and Andrum? Many people might be considerably less

sure of this, given that they know nothing about the drugs and
have little relevant experience to draw on. One might therefore
assume that the expectation of the outcome generated by Melixil
(cue A) will be moderated by the uncertainty that the individual
feels about the scenario, about the way cues interact, or the
reliability of their effects (using this drug scenario, Lee and
Livesey, 2012 found no evidence of blocking).

The hypothesis being entertained here is that uncertainty
about new trial types may increase the amount that is learned
about a redundant cue. The assumption is that factors that
increase the uncertainty of a participant about the current
learning situation decreases blocking. An extension of this
hypothesis would further predict that participants will learn
less about the blocking cue B when their natural assumptions
about cause and effect in a given scenario are not contradicted
by instructions or pretraining. That is, if the participant feels
well-informed and confident about their understanding of the
situation, they may show less evidence of learning about
redundant cues.

A hypothesis of this sort is applicable to the influence of non-
associative knowledge about the additivity of outcome properties,
and specifically how this impacts cue competition. Most causal
judgment experiments present deterministic relationships where
the probability of the outcome is either 0 or 1 depending on
the cue or cues presented, and the presentation of the outcome
consists of little more than a label or picture. Therefore the
method of presenting the outcome to participants lacks the clarity
of information needed to determine whether the outcome is
truly additive or non-additive. Lovibond et al. (2003) suggested
that this is the reason that blocking is typically fairly weak in
human causal learning experiments, because not all participants
maintain an assumption of outcome additivity during the
experiment. They set about testing the effect of outcome
additivity assumptions by giving one group of participants
pretraining that explicitly demonstrated the additive nature of the
outcome and another group of participants explicit pretraining
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demonstrating that the outcome was the same magnitude
whether there were one or two causes present. The additive group
received pretraining in which two cues, which were unconnected
to the cues A and B of the actual blocking training, each led
to the outcome (X+Y+) and their compound led to an even
stronger outcome (XY++, e.g., a stronger allergic response). This
group subsequently displayed significantly larger blocking than
the non-additive group, which received pre-training in which the
compound led to the same outcome as the single cues (X+ Y+
XY+). This result has been replicated in several studies (e.g.,
Livesey and Boakes, 2004; Beckers et al., 2005a; Mitchell et al.,
2005).

This is problematic for associative accounts as no associative
knowledge about A and B is established in the pretraining.
A common explanation offered is that additivity assumptions
encourage deductive reasoning, which results in a conclusion
that the blocked cue is not a cause of the outcome (e.g., see
Mitchell and Lovibond, 2002; Lovibond et al., 2003; Beckers et al.,
2005a). While this explanation is certainly very plausible, additive
pretraining like X+ Y+ XY++, which is usually accompanied
by very explicit instructions about cue additivity, also removes
any uncertainty about the way cues combine in a particular
learning situation and in this way could influence the outcome
prediction and therefore the prediction error on AB+ trials.
As A is known to lead to the outcome, the learner will indeed
be unsurprised to find that the outcome occurs again on this
new AB trial and no prediction error will occur. However,
after non-additive X+Y+ XY+ training, participants still know
very little about the way the cues combine. The participant
may entertain the hypothesis that the influence of the cues is
somehow normalized or that there is a ceiling effect masking the
summative effects. If uncertainty at a metacognitive level reduces
the outcome expectation, prediction error will increase when
AB+ trials are experienced and thus more associative learning
takes place when the participant observes the outcome on that
trial.

One result that clearly conflicts with this explanation is
Beckers et al.’s (2005a) finding that manipulating assumptions
about additivity after the trial-by-trial learning has already taken
place still influences the strength of the blocking effect. It is
clearly implausible that the operations of an associative network
at the time of learning could be influenced by this later non-
associative knowledge. However, non-associative knowledge does
not need to change the operations of an associative network
at the time of learning but only the impact of the associative
knowledge on performance in the test phase after learning, either
by influencing the outcome expectation directly or by changing
the expression of the associative prediction, as described above.
The experience of additional cues between training and test
might increase the influence of non-associative knowledge on
the outcome expectation by increasing uncertainty – if only
for the additional time that has passed between training of the
compounds AB+ and CD+ and testing the cues B, C, and D. In
this case, blocking under the additive condition may be enhanced
because causal ratings for the cues are only weakly related to
associative memory and are moderated by the reasoning that
additivity instructions strongly encourage.

We have described how an unfamiliar context or unfamiliar
cues like unknown drug names will increase the uncertainty of
learning situation and how this can explain why it is much harder
to find blocking in one scenario than in another. In Waldmann
and Holyoak (1992), participants showed less blocking in the
diagnostic than in the predictive condition. While the cues were
always the same stimuli, participants in their predictive task had
to learn whether certain cues would elicit a new kind of emotional
response in observers. In contrast, participants in the diagnostic
task saw the same features redefined as symptoms of a disease
and had to learn which symptoms were diagnostic for the disease.
We would argue that the diagnostic learning situation increased
uncertainty, for instance because the cover story established
that the outcome actually precedes the cues in real life, so that
participants were in a situation where they had to “predict” an
outcome that had already happened. Furthermore, participants
in the diagnostic situation have to take into account alternative
diseases as causes of the observed symptoms (Waldmann, 2001).
For example, even though fever may be an effect of flu, it has
many alternative causes, which participants cannot rule out easily
within the learning situation and thus increase the uncertainty
about their prediction.

ISSUES, LIMITATIONS, AND FUTURE
DIRECTIONS

The scope of our discussion has been necessarily highly selective
and has avoided several issues that are obviously important. As
we have noted, we make no attempt here to specify in any way
how non-associative knowledge is acquired, and define it simply
as cognitive influences that associative networks make no attempt
to explain. This undoubtedly belies the complexities involved
in acquiring such information. In describing three basic ways
how non-associative knowledge might influence learning in an
associative learning system, we have also avoided consideration of
how their effects might combine. It might well be that sources of
non-associative knowledge influence the processing of the cues,
the translation of the outcome expectation in behavior as well
as the expectation of the outcome directly at the same time.
However, for sake of the theoretical exercise, we have left the
interaction of all three possible mechanisms out of consideration.

We have chosen to focus our discussion on results from
causal and contingency learning paradigms. These results, among
others, established the relevance of non-associative knowledge
in human causal learning. We would argue that the setting of
contingency and causal experiments makes them particularly
receptive to such information because they typically rely on
explicit and self-paced judgements and since they usually invite
the individual to entertain a fictitious scenario in which their
previous knowledge may come to bear (even though participants
are usually encouraged to ignore what they know about similar
causal relationships in the real world). In classical conditioning
studies, the experimental situation does not contain much non-
associative information that could show an influence on learning.
In the extreme case, participants are given no other instruction
than to sit in front of a computer screen and pay close attention
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to it. Far more contextual information is given in human causal
learning studies and the experimental situation is thus more likely
to encourage activation of non-associative knowledge. However,
this does not mean that beliefs and expectations based on non-
associative knowledge do not affect classical conditioning and
other forms of human learning. At least some studies support
the notion that non-associative knowledge affects the learning
of conditioned responses as well. For instance, Mitchell and
Lovibond (2002) showed that skin conductance conditioning
is sensitive to information about outcome additivity given in
the verbal instructions. They observed significant effects only
when participants received verbal instructions emphasizing the
additivity rule whereas blocking was not evident when the
instruction introduced a non-additivity rule. Therefore, we
assume that these issues are relevant to all forms of human
associative learning and extend beyond the limited selection of
procedures and phenomena that we have discussed here.

The account we offer here necessarily involves non-
associative processes impacting upon observable behavior (i.e.,
performance) as well as on the formation of associations (i.e.,
learning). As such, the large number of studies exploring non-
associative factors in associative learning – many of which show
that instructions, pretraining, and cover stories affect causal
and contingency learning – do not offer unique support for,
or refutation of, this approach because most can be explained
in terms of a performance-level effect alone. To properly test
the hypotheses outlined above, a different approach is required,
one in which performance-level and learning-level influences
can be dissociated. Applying this logic to blocking in causal
learning, instructional manipulations are required which can
be expected to change participants’ predictions during learning
of the AB+ compound without resulting in global changes to
the way the ratings scale is used at test. There is also still a
general need to examine how potential differences in learning
manifest differently depending on the properties of the test
measure. Although recent work has revealed much about the
way blocking is sensitive to causal assumptions, researchers have
typically been less concerned with the general properties of the
measure itself, even though these properties may strongly affect
the potential to observe cue competition effects. The presence
of ceiling effects on the strength of ratings provides a simple
example of this. As previously noted, using a test measure in
which ratings are generally close to ceiling could mask a blocking
effect in non-causal scenarios even if the causal scenario made
no difference to the strength of learning about competing cues.
This simple possibility alone is cause to think seriously about the
basic properties of the test measure and is indicative of a more
general problem with comparing blocking effects across different
conditions. After all, the magnitude of blocking is a difference
between the judgments made for two types of cue (blocked
vs. control), and is often measured on a ratings scale with
unknown psychometric properties. Comparing the magnitude of
two differences on a measurement scale that is at best ordinal in
nature is a risky exercise.

Beyond cue competition, procedures in which associative
predictions and non-associative expectation can be directly pitted
against each other may be particularly useful for testing the

hypotheses outlined in this article. As mentioned above, such
examples do exist, though they are relatively rare. Two that
might prove useful are Perruchet’s (1985) dissociation between
the strength of anticipatory responding and explicit ratings of
outcome expectancy and Shanks and Darby’s (1998) dissociation
between similarity-based and rule-based generalization.

Perruchet’s dissociation emerged originally in classical human
eye-blink conditioning. Perruchet (1985) arranged a partial
reinforcement schedule in which the same tone cue played on
every trial, but was followed on just 50% of trials by the outcome –
an irritant (a puff of air delivered to the eye) that elicits an
eyeblink. A conditioning procedure of this kind usually leads
to the development of anticipatory eyeblinks during the tone
cue in expectation of the airpuff. The randomization of the two
trial types (cue-outcome and cue-alone) meant that the trial
types sometimes remained the same over several consecutive
trials, and sometimes alternated frequently, resulting in short
runs of just one or two of the same trial type. When Perruchet
arranged the analysis based on the length of the preceding
run of trials, he found a pattern of anticipatory eyeblinks
that followed the pattern one would expect from conditioning
based on basic associative principles. Runs of cue-outcome trials
increased anticipatory behavior as a function of the length of
the run, whereas runs of cue-alone trials decreased anticipatory
behavior as a function of the run length. However, when he
asked participants to indicate explicitly how much they expected
the airpuff on the next trial, their pattern of expectancies was
the opposite; Runs of cue-outcome trials decreased expectancy
ratings as a function of run length, whereas runs of cue-alone
trials increased expectancy ratings as a function of the run
length. This pattern follows a classic gambler’s fallacy effect
and is inconsistent with the predictions of associative networks.
The result has now been replicated across several paradigms
involving classical conditioning and voluntary responding (see
Perruchet, 2015 for a review). Current debates about the validity
of this dissociation center around whether the pattern observed
in anticipatory behavior is a bona fide example of associative
learning (e.g., Weidemann et al., 2009, 2016; Barrett and Livesey,
2010; Mitchell et al., 2010) and whether participants truly hold
these two conflicting belief biases concurrently (Livesey and
Costa, 2014; Lee Cheong Lem et al., 2015). However, to date
there has been no attempt to explore how these beliefs affect
future learning. For instance, after a long run of trials on
which the outcome has occurred, if another cue-outcome pairing
occurs then the prediction error based on associative mechanisms
should be relatively small but prediction error based on explicit
expectancy should be relatively high.

The Shanks-Darby patterning task was developed specifically
to create opposing influences on generalization within a causal
learning task. Shanks and Darby (1998) trained participants
to solve multiple examples of a positive patterning (e.g.,
A−/B−/AB+) and negative patterning (e.g., C+/D+/CD−)
in a simple food allergist causal learning procedure. In
animal learning, conditional discriminations of this variety, and
particularly negative patterning, are relatively difficult to acquire
(e.g., Harris et al., 2008), and there is at least some evidence
that humans too find negative patterning more difficult to learn

Frontiers in Psychology | www.frontiersin.org 12 December 2016 | Volume 7 | Article 2024

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-02024 December 24, 2016 Time: 16:0 # 13

Thorwart and Livesey Associative and Non-associative Knowledge

than positive patterning (Livesey et al., 2011; Thorwart et al.,
2016). Associative networks generally anticipate this difference
because the summation of associations formed to the single
stimuli in negative patterning (C+ and D+ trials) provides a
particularly strong and incorrect prediction for the compound
(CD−). However, from an abstract relational perspective, positive
and negative patterning possess the same complexity; they are
perfect examples for a simple rule that the outcome of the
compound is always the opposite of the outcome of the single
cues (Shanks and Darby, 1998; Lachnit et al., 2001, 2002; Harris
and Livesey, 2008; Cobos et al., 2016). Capitalizing on this simple
relational property, Shanks and Darby also trained participants
on a series of single cues (I+/J+/M−/N−) and compounds
(KL−/OP+), and later tested how participants would predict
the consequences of these cues in novel combinations (e.g., IJ?;
MN?) or as singles cues (K? L?; O? P?). The authors observed
that a subset of participants showed a generalization pattern
consistent with this opposites rule such that they predicted
the outcome would occur after MN, K, and L and predicted
that it would not occur after IJ, O, and P. This pattern of
behavior is hard to reconcile with an associative network which
derives its predictions based on feature overlap and thus would
predict the exact opposite pattern. Even if knowledge gained
about the complete patterning discriminations (A− B− AB+;
C+ D+ CD−) is represented within the associative system, it
would not be activated in the IJ? or MN? test trials and thus
influence the outcome expectation. Maes et al. (2015) have shown
that this pattern of abstract rule generalization is absent from
the behavior of rats and pigeons, which appear to generalize
mainly in ways consistent with associative learning principles.
Cobos et al. (2016) showed the same is true for humans when
using a cued-response priming task, whereas verbal ratings were
consistent with rule-based generalization. Furthermore, the use
of rule-based generalization has been shown to be related to
working memory, cognitive reflection, and strategic model-based
choice in other instrumental learning tasks (Wills et al., 2011a,b;
Don et al., 2015, 2016). However, as with the Perruchet effect,
researchers have not yet explored whether these competing forms
of generalization have an impact on the strength of future
learning. Given that several cognitive correlates of rule extraction
can be used to predict which individuals are most likely to use a
relational rule in this task, predictions can be made about which
individuals should find it surprising when a new trial type violates
the rule and which should not.

These avenues for future research are among several that
might be fruitful for testing how associative predictions and
expectations based on non-associative factors might contribute

to new learning. Given that most of the current evidence is
consistent with multiple theoretical accounts (including those
that retain and those that reject classical association formation as
a key explanatory construct), devising new experimental designs
is essential for the advancement of the field.

CONCLUSION

Having valid and reliable expectations about future events is
one of the most essential and necessary conditions for the
adaptivity of human behavior. Associative learning theories have
offered a very successful account of how humans obtain these
expectations and how they update and optimize them whenever
these expectations are violated. However, by necessity, formal
implementations of these theories in associative networks have
a limited scope, which does not capture the influence of a
variety of other cognitive factors on our learned judgments and
expectations. We have explored three ways how these sources of
non-associative knowledge can affect associative learning without
changing the fundamental principles of such an associative
learning system. We argue that recent theorists have failed to
give these possibilities due credence and, even though there is
no specific evidence for any of them, they offer plausible ways in
which an associative learning and memory system may contribute
to judgments and expectations that is consistent with most of the
available evidence. Future research is needed to examine whether
and how associative predictions and other sources of expectations
contribute to future associative learning.

AUTHOR CONTRIBUTIONS

AT and EL were equally responsible for the conception, drafting,
and revising of the paper.

FUNDING

The research reported in this article is partly based on work
done while AT was a postdoctoral researcher at the University of
Sydney, financed by grants from the German Academic Exchange
Service (DAAD) and the Australian Research Council (ARC), and
while EL was a Mercator Fellow to AT’s Project TH 1923/1-1
awarded by the German Research Foundation (DFG). EL’s
contribution was supported by Australian Research Council
grants DP130100864 and DP160102871.

REFERENCES
Annau, Z., and Kamin, L. J. (1961). The conditioned emotional response as a

function of intensity of the US. J. Comp. Physiol. Psychol. 54, 428–432. doi:
10.1037/h0042199

Barrett, L. C., and Livesey, E. J. (2010). Dissociations between expectancy and
performance in simple and two-choice reaction-time tasks: a test of associative
and nonassociative explanations. J. Exp. Psychol. Learn. Mem. Cogn. 36, 864–
877. doi: 10.1037/a0019403

Beckers, T., De Houwer, J., Pineno, O., and Miller, R. R. (2005a). Outcome
additivity and outcome maximality influence cue competition in human causal
learning. J. Exp. Psychol. Learn. Mem. Cogn. 31, 238–249.

Beckers, T., Van den Broeck, U. V., Renne, M., Vandorpe, S., Houwer, J. D., and
Eelen, P. (2005b). Blocking is sensitive to causal structure in 4-year-old and
8-year-old children. Exp. Psychol. 52, 264–271. doi: 10.1027/1618-3169.52.4.264

Blanco, F., Baeyens, F., and Beckers, T. (2014). Blocking in human causal learning is
affected by outcome assumptions manipulated through causal structure. Learn.
Behav. 42, 185–199. doi: 10.3758/s13420-014-0137-y

Frontiers in Psychology | www.frontiersin.org 13 December 2016 | Volume 7 | Article 2024

https://doi.org/10.1037/h0042199
https://doi.org/10.1037/h0042199
https://doi.org/10.1037/a0019403
https://doi.org/10.1027/1618-3169.52.4.264
https://doi.org/10.3758/s13420-014-0137-y
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-02024 December 24, 2016 Time: 16:0 # 14

Thorwart and Livesey Associative and Non-associative Knowledge

Blanco, F., Matute, H., and Vadillo, M. A. (2012). Mediating role of activity level
in the depressive realism effect. PLoS ONE 7:e46203. doi: 10.1371/journal.pone.
0046203

Boddez, Y., Haesen, K., Baeyens, F., and Beckers, T. (2014). Selectivity in associative
learning: a cognitive stage framework for blocking and cue competition
phenomena. Front. Psychol. 5:1305. doi: 10.3389/fpsyg.2014.01305

Cobos, P. L., Gutiérrez-Cobo, M. J., Morís, J., and Luque, D. (2016). Dependent
measure and time constraints modulate the competition between conflicting
feature-based and rule-based generalization processes. J. Exp. Psychol. Learn.
Mem. Cogn. doi: 10.1037/xlm0000335 [Epub ahead of print].

Colagiuri, B., and Livesey, E. J. (2016). Contextual cuing as a form of
nonconscious learning: theoretical and empirical analysis in large and very
large samples. Psychonomic Bull. Rev. 23, 1996–2009. doi: 10.3758/s13423-016-
1063-0

De Houwer, J. (2009). The propositional approach to associative learning as
an alternative for association formation models. Learn. Behav. 37, 1–20.
doi: 10.3758/LB.37.1.1

De Houwer, J., Beckers, T., and Glautier, S. (2002). Outcome and cue
properties modulate blocking. Q. J. Exp. Psychol. 55A, 965–985. doi: 10.1080/
02724980143000578

Dickinson, A., Shanks, D., and Evenden, J. (1984). Judgement of act-outcome
contingency: the role of selective attribution. Q. J. Exp. Psychol. 36, 29–50.
doi: 10.1080/14640748408401502

Don, H. J., Goldwater, M. B., Otto, R., and Livesey, E. J. (2016). Rule abstraction,
model-based choice and cognitive reflection. Psychonomic Bull. Rev. 23, 1615–
1623.

Don, H. J., Goldwater, M. B., Otto, R. A., and Livesey, E. J. (2015). “Connecting
rule-abstraction and model-based choice across disparate learning tasks,” in
Proceedings of the 37th Annual Conference of the Cognitive Science Society, eds
D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. Jennings, et al.
(Pasadena, CA: Cognitive Science Society), 590–595.

Don, H. J., and Livesey, E. J. (2015). Resistance to instructed reversal of the learned
predictiveness effect. Q. J. Exp. Psychol. 68, 1327–1347. doi: 10.1080/17470218.
2014.979212

Fiedler, K., and Juslin, P. (2006). Information Sampling and Adaptive Cognition.
New York, NY: Cambridge University Press.

Goujon, A., Didierjean, A., and Thorpe, S. (2015). Investigating implicit statistical
learning mechanisms through contextual cueing. Trends Cogn. Sci. 19, 524–533.
doi: 10.1016/j.tics.2015.07.009

Gredebäck, G., Winman, A., and Juslin, P. (2000). “Rational assessments of
covariation and causality,” in Proceedings of the 22nd Annual Conference of
the Cognitive Science Society, eds L. R. Gleitman and K. Joshi (Mahwah, NJ:
Erlbaum), 190–195.

Harris, J., Livesey, E., Gharaei, S., and Westbrook, F. (2008). Negative patterning is
easier than a biconditional discrimination. J. Exp. Psychol. Anim. Behav. Process.
34, 494–500. doi: 10.1037/0097-7403.34.4.494

Harris, J. A. (2006). Elemental representations of stimuli in associative learning.
Psychol. Rev. 113, 584–605. doi: 10.1037/0033-295X.113.3.584

Harris, J. A., and Livesey, E. J. (2008). Comparing patterning and biconditional
discriminations in humans. J. Exp. Psychol. Anim. Behav. Process. 34, 144–154.
doi: 10.1037/0097-7403.34.1.144

Harris, J. A., and Livesey, E. J. (2010). An attention-modulated associative network.
Learn. Behav. 38, 1–26. doi: 10.3758/LB.38.1.1

Haselgrove, M. (2010). Reasoning rats or associative animals? A common-element
analysis of the effects of additive and subadditive pretraining on blocking. J. Exp.
Psychol. Anim. Behav. Process. 36, 296–306.

Kamin, L. J. (1968). “Attention-like processes in classical conditioning,” in Miami
Symposium on the Prediction of Behavior: Aversive Stimulation, ed. M. R. Jones
(Miami, FL: University of Miami Press), 9–33.

Lachnit, H., Kinder, A., and Reinhard, G. (2002). Are rules applied in Pavlovian
electrodermal conditioning with humans general or outcome specific?
Psychophysiology 39, 380–387. doi: 10.1017/S0048577201393125

Lachnit, H., Lober, K., Reinhard, G., and Kinder, A. (2001). Evidence for the
application of rules in Pavlovian electrodermal conditioning with humans. Biol.
Psychol. 56, 151–166. doi: 10.1016/S0301-0511(01)00067-9

Lashley, K. S., and Wade, M. (1946). The Pavlovian theory of generalization.
Psychol. Rev. 53, 72–87. doi: 10.1037/h0059999

Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., and Wills, A. J. (2016).
Attention and associative learning in humans: an integrative review. Psychol.
Bull. 142, 1111–1140. doi: 10.1037/bul0000064

Lee, J. C., and Livesey, E. J. (2012). Second-order conditioning and conditioned
inhibition: influences of speed versus accuracy on human causal learning. PLoS
ONE 7:e49899. doi: 10.1371/journal.pone.0049899

Lee Cheong Lem, V. A., Harris, J. A., and Livesey, E. J. (2015). Testing the limits of
the Perruchet effect in choice response time tasks. J. Exp. Psychol. Anim. Learn.
Cogn. 41, 385–394. doi: 10.1037/xan0000079

Livesey, E., Lee, J., and Shone, L. (2013). “The relationship between blocking and
inference in causal learning,” in Proceedings of the 35th Annual Meeting of the
Cognitive Science Society (COGSCI 2013), eds M. Knauff, M. Pauen, N. Sebanz,
and I. Wachsmuth (Austin, TX: Cognitive Science Society).

Livesey, E. J., and Boakes, R. A. (2004). Outcome additivity, elemental processing
and blocking in human causality judgements. Q. J. Exp. Psychol. 57B, 361–379.
doi: 10.1080/02724990444000005

Livesey, E. J., and Costa, D. S. J. (2014). Automaticity and conscious control in
single and choice response time versions of the Perruchet effect. Q. J. Exp.
Psychol. 67, 646–664. doi: 10.1080/17470218.2013.824014

Livesey, E. J., and Harris, J. A. (2008). What are flexible representations?
commentary on Melchers, Shanks and Lachnit. Behav. Process. 77, 437–439.
doi: 10.1016/j.beproc.2007.09.006

Livesey, E. J., and Harris, J. A. (2009). Is there room for simple links in a
propositional mind? (Commentary on Mitchell et al.). Behav. Brain Sci. 32,
212–213. doi: 10.1017/S0140525X09001010

Livesey, E. J., Thorwart, A., and Harris, J. A. (2011). Comparing positive and
negative patterning in human learning. Q. J. Exp. Psychol. 64, 2316–2333. doi:
10.1080/17470218.2011.605153

Lovibond, P. F., Been, S. L., Mitchell, C. J., Bouton, M. E., and Frohardt, R. (2003).
Forward and backward blocking of causal judgment is enhanced by additivity
of effect magnitude. Mem. Cogn. 31, 133–142. doi: 10.3758/BF03196088

Luque, D., Cobos, P. L., and López, F. J. (2008). Interference between cues requires
a causal scenario: favorable evidence for causal reasoning models in learning
processes. Learn. Mot. 39, 196–208. doi: 10.1016/j.lmot.2007.10.001

Luque, D., Flores, A., and Vadillo, M. A. (2013). Revisiting the role of within-
compound associations in cue-interaction phenomena. Learn. behav. 41, 61–76.
doi: 10.3758/s13420-012-0085-3

Mackintosh, N. J. (1975). A theory of attention: variations in the associability of
stimuli with reinforcement. Psychol. Rev. 82, 276–298. doi: 10.1037/h0076778

Mackintosh, N. J. (1976). Overshadowing and stimulus intensity. Anim. Learn.
Behav. 4, 186–192. doi: 10.3758/BF03214033

Maes, E., Filippo, G. D., Inkster, A. B., Lea, S. E. G., Houwer, J. D., D’Hooge, R., et al.
(2015). Feature- versus rule-based generalization in rats, pigeons and humans.
Anim. Cogn. 18, 1267–1284. doi: 10.1007/s10071-015-0895-8

Matute, H. (1996). Illusion of control: detecting response-outcome independence
in analytic but not in naturalistic conditions. Psychol. Sci. 7, 289–293. doi:
10.1111/j.1467-9280.1996.tb00376.x

Matute, H., Arcediano, F., and Miller, R. R. (1996). Test question modulates cue
competition between causes and between effects. J. Exp. Psychol. Learn. Mem.
Cogn. 22, 182–196. doi: 10.1037/0278-7393.22.1.182

McLaren, I. P. L., and Mackintosh, N. J. (2000). An elemental model of associative
learning: I. Latent inhibition and perceptual learning. Anim. Learn. Behav. 28,
211–246. doi: 10.3758/BF03200258

McLaren, I. P. L., and Mackintosh, N. J. (2002). Associative learning and elemental
representation: II. Generalization and discrimination. Anim. Learn. Behav. 30,
177–200. doi: 10.3758/BF03192828

Melchers, K. G., Shanks, D. R., and Lachnit, H. (2008). Stimulus coding in human
associative learning: flexible representations of parts and wholes. Behav. Process.
77, 413–427. doi: 10.1016/j.beproc.2007.09.013

Mitchell, C. J., De Houwer, J., and Lovibond, P. F. (2009). The propositional nature
of human associative learning. Behav. Brain Sci. 32, 183–198. doi: 10.1017/
S0140525X09000855

Mitchell, C. J., Griffiths, O., Seeto, J., and Lovibond, P. F. (2012). Attentional
mechanisms in learned predictiveness. J. Exp. Psychol. Anim. Behav. Process.
38, 191–202. doi: 10.1037/a0027385

Mitchell, C. J., and Lovibond, P. F. (2002). Backward and forward blocking
in human electrodermal conditioning: blocking requires an assumption

Frontiers in Psychology | www.frontiersin.org 14 December 2016 | Volume 7 | Article 2024

https://doi.org/10.1371/journal.pone.0046203
https://doi.org/10.1371/journal.pone.0046203
https://doi.org/10.3389/fpsyg.2014.01305
https://doi.org/10.1037/xlm0000335
https://doi.org/10.3758/s13423-016-1063-0
https://doi.org/10.3758/s13423-016-1063-0
https://doi.org/10.3758/LB.37.1.1
https://doi.org/10.1080/02724980143000578
https://doi.org/10.1080/02724980143000578
https://doi.org/10.1080/14640748408401502
https://doi.org/10.1080/17470218.2014.979212
https://doi.org/10.1080/17470218.2014.979212
https://doi.org/10.1016/j.tics.2015.07.009
https://doi.org/10.1037/0097-7403.34.4.494
https://doi.org/10.1037/0033-295X.113.3.584
https://doi.org/10.1037/0097-7403.34.1.144
https://doi.org/10.3758/LB.38.1.1
https://doi.org/10.1017/S0048577201393125
https://doi.org/10.1016/S0301-0511(01)00067-9
https://doi.org/10.1037/h0059999
https://doi.org/10.1037/bul0000064
https://doi.org/10.1371/journal.pone.0049899
https://doi.org/10.1037/xan0000079
https://doi.org/10.1080/02724990444000005
https://doi.org/10.1080/17470218.2013.824014
https://doi.org/10.1016/j.beproc.2007.09.006
https://doi.org/10.1017/S0140525X09001010
https://doi.org/10.1080/17470218.2011.605153
https://doi.org/10.1080/17470218.2011.605153
https://doi.org/10.3758/BF03196088
https://doi.org/10.1016/j.lmot.2007.10.001
https://doi.org/10.3758/s13420-012-0085-3
https://doi.org/10.1037/h0076778
https://doi.org/10.3758/BF03214033
https://doi.org/10.1007/s10071-015-0895-8
https://doi.org/10.1111/j.1467-9280.1996.tb00376.x
https://doi.org/10.1111/j.1467-9280.1996.tb00376.x
https://doi.org/10.1037/0278-7393.22.1.182
https://doi.org/10.3758/BF03200258
https://doi.org/10.3758/BF03192828
https://doi.org/10.1016/j.beproc.2007.09.013
https://doi.org/10.1017/S0140525X09000855
https://doi.org/10.1017/S0140525X09000855
https://doi.org/10.1037/a0027385
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-02024 December 24, 2016 Time: 16:0 # 15

Thorwart and Livesey Associative and Non-associative Knowledge

of outcome additivity. Q. J. Exp. Psychol. 55B, 311–329. doi: 10.1080/
02724990244000025

Mitchell, C. J., Lovibond, P. F., and Condoleon, M. (2005). Evidence for deductive
reasoning in blocking of causal judgments. Learn. Mot. 36, 77–87. doi: 10.1016/
j.lmot.2004.09.001

Mitchell, C. J., Wardle, S. G., Lovibond, P. F., Weidemann, G., and Chang, B. P. I.
(2010). Do reaction times in the Perruchet effect reflect variations in the
strength of an associative link? J. Exp. Psychol. Learn. Mem. Cogn. 36, 567–572.
doi: 10.1037/a0018433

Morís, J., Cobos, P. L., Luque, D., and López, F. J. (2014). Associative repetition
priming as a measure of human contingency learning: evidence of forward and
backward blocking. J. Exp. Psychol. Gen. 143, 77–93. doi: 10.1037/a0030919

Myers, K., Vogel, E., Shin, J., and Wagner, A. (2001). A comparison of the Rescorla-
Wagner and Pearce models in a negative patterning and a summation problem.
Anim. Learn. Behav. 29, 36–45. doi: 10.3758/BF03192814

Pavlov, I. P. (1927). Conditioned Reflexes: An Investigation of the Physiological
Activity of the Cerebral Cortex. Oxford: Oxford University Press.

Pearce, J. M. (2002). Evaluation and development of a connectionist theory of
configural learning. Anim. Learn. Behav. 30, 73–95. doi: 10.3758/BF03192911

Pearce, J. M., and Hall, G. (1980). A model for Pavlovian learning: variations in the
effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87,
532–552. doi: 10.1037/0033-295X.87.6.532

Perruchet, P. (1985). A pitfall for the expectancy theory of human eyelid
conditioning. Pavlov. J. Biol. Sci. 20, 163–170.

Perruchet, P. (2015). Dissociating conscious expectancies from automatic link
formation in associative learning: a review on the so-called Perruchet effect.
J. Exp. Psychol. Anim. Learn. Cogn. 41, 105–127. doi: 10.1037/xan0000060

Redhead, E. S., and Pearce, J. M. (1995). Stimulus salience and negative patterning.
Q. J. Exp. Psychol. 48, 67–83.

Rescorla, R. A., and Wagner, A. R. (1972). “A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement,” in
Classical Conditioning II: Current Research and Theory, eds A. H. Black, and
W. F. Prokasy (New York, NY: Appleton Century Crofts), 64–99. doi: 10.1037/
a0030892

Shanks, D. R. (2007). Associationism and cognition: human contingency learning
at 25. Q. J. Exp. Psychol. 60, 291–309. doi: 10.1080/17470210601000581

Shanks, D. R., and Darby, R. J. (1998). Feature- and rule-based generalization in
human associative learning. J. Exp. Psychol. Anim. Behav. Process. 24, 405–415.

Shanks, D. R., and Lopez, F. (1996). Causal order does not affect cue selection in
human associative learning. Mem. Cogn. 24, 511–522. doi: 10.3758/BF03200939

Shone, L. T., Harris, I. M., and Livesey, E. J. (2015). Automaticity and cognitive
control in the learned predictiveness effect. J. Exp. Psychol. Anim. Learn. Cogn.
41, 18–31. doi: 10.1037/xan0000047

Soto, F. A., Vogel, E. H., Castillo, R. D., and Wagner, A. R. (2009). Generality of
the summation effect in human causal learning. Q. J. Exp. Psychol. 62, 877–889.
doi: 10.1080/17470210802373688

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., and Janak,
P. H. (2013). A causal link between prediction errors, dopamine neurons and
learning. Nat. Neurosci. 16, 966–973. doi: 10.1038/nn.3413

Sternberg, D. A., and McClelland, J. L. (2012). Two mechanisms of human
contingency learning. Psychol. Sci. 23, 59–68. doi: 10.1177/0956797611429577

Sutherland, N. S., and Mackintosh, N. J. (1971). Mechanisms of Animal
Discrimination Learning. New York, NY: Academic Press.

Thorwart, A., and Lachnit, H. (2009). Symmetrical generalization decrements:
configural stimulus processing in human contingency learning. Learn. Behav.
37, 107–115. doi: 10.3758/LB.37.1.107

Thorwart, A., and Lachnit, H. (2010). Generalization decrements: further support
for flexibility in stimulus processing. Learn. Behav. 38, 367–373. doi: 10.3758/
LB.38.4.367

Thorwart, A., Livesey, E. J., and Harris, J. A. (2012). Normalization between
stimulus elements in a model of Pavlovian conditioning: showjumping on
an elemental horse. Learn. Behav. 40, 334–346. doi: 10.3758/s13420-012-
0073-7

Thorwart, A., Uengoer, M., Livesey, E. J., and Harris, J. A. (2016). Summation
effects in human learning: evidence from patterning discriminations in goal-
tracking. Q. J. Exp. Psychol. doi: 10.1080/17470218.2016.1184290 [Epub ahead
of print].

Vadillo, M. A., Konstantinidis, E., and Shanks, D. R. (2016). Underpowered
samples, false negatives, and unconscious learning. Psychonomic Bull. Rev. 23,
87–102. doi: 10.3758/s13423-015-0892-6

Vadillo, M. A., and Matute, H. M. (2007). Predictions and causal estimations are
not supported by the same associative structure. Q. J. Exp. Psychol. 60, 433–447.
doi: 10.1080/17470210601002520

Vadillo, M. A., Miller, R. R., and Matute, H. M. (2005). Causal and predictive-value
judgments, but not predictions, are based on cue–outcome contingency. Learn.
Behav. 33, 172–183. doi: 10.3758/BF03196061

Wagner, A. R., and Brandon, S. E. (2001). “A componential theory of Pavlovian
conditioning,” in Handbook of Contemporary Learning Theories, eds R. R.
Mowrer and S. B. Klien (Mahwah, NJ: Erlbaum), 23–64.

Waldmann, M. R. (2000). Competition among causes but not effects in predictive
and diagnostic learning. J. Exp. Psychol. Learn. Mem. Cogn. 26, 53–76. doi:
10.1037/0278-7393.26.1.53

Waldmann, M. R. (2001). Predictive versus diagnostic causal learning: evidence
from an overshadowing paradigm. Psychonomic Bull. Rev. 8, 600–608. doi:
10.3758/BF03196196

Waldmann, M. R., and Holyoak, K. J. (1992). Predictive and diagnostic learning
within causal models: asymmetries in cue competition. J. Exp. Psychol. Gen. 121,
222–236. doi: 10.1037/0096-3445.121.2.222

Weidemann, G., McAndrew, A., Livesey, E. J., and McLaren, I. P. L. (2016).
Evidence for multiple processes contributing to the Perruchet effect: Response
priming and associative learning. J. Exp. Psychol. Anim. Learn. Cogn. 42,
366–379.

Weidemann, G., Tangen, J. M., Lovibond, P. F., and Mitchell, C. J. (2009). Is
Perruchet’s dissociation between eyeblink conditioned responding and outcome
expectancy evidence for two learning systems? J. Exp. Psychol. Anim. Behav.
Process. 35, 169–176. doi: 10.1037/a0013294

Wills, A. J., Barrasin, T. J., and McLaren, I. P. L. (2011a). “Working memory
capacity and generalization in predictive learning,” in Proceedings of the
33rd Annual Conference of the Cognitive Science Society, eds L. Carlson,
C. Hölscher, and T. Shipley (Austin, TX: Cognitive Science Society),
3205–3210.

Wills, A. J., Graham, S., Koh, Z., McLaren, I. P. L., and Rolland, M. D. (2011b).
Effects of concurrent load on feature- and rule-based generalization in human
contingency learning. J. Exp. Psychol. Anim. Behav. Process. 37, 308–316. doi:
10.1037/a0023120

Yarritu, I., Matute, H., and Vadillo, M. A. (2014). Illusion of control: the role of
personal involvement. Exp. Psychol. 61, 38–47. doi: 10.1027/1618-3169/a000225

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Thorwart and Livesey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 15 December 2016 | Volume 7 | Article 2024

https://doi.org/10.1080/02724990244000025
https://doi.org/10.1080/02724990244000025
https://doi.org/10.1016/j.lmot.2004.09.001
https://doi.org/10.1016/j.lmot.2004.09.001
https://doi.org/10.1037/a0018433
https://doi.org/10.1037/a0030919
https://doi.org/10.3758/BF03192814
https://doi.org/10.3758/BF03192911
https://doi.org/10.1037/0033-295X.87.6.532
https://doi.org/10.1037/xan0000060
https://doi.org/10.1037/a0030892
https://doi.org/10.1037/a0030892
https://doi.org/10.1080/17470210601000581
https://doi.org/10.3758/BF03200939
https://doi.org/10.1037/xan0000047
https://doi.org/10.1080/17470210802373688
https://doi.org/10.1038/nn.3413
https://doi.org/10.1177/0956797611429577
https://doi.org/10.3758/LB.37.1.107
https://doi.org/10.3758/LB.38.4.367
https://doi.org/10.3758/LB.38.4.367
https://doi.org/10.3758/s13420-012-0073-7
https://doi.org/10.3758/s13420-012-0073-7
https://doi.org/10.1080/17470218.2016.1184290
https://doi.org/10.3758/s13423-015-0892-6
https://doi.org/10.1080/17470210601002520
https://doi.org/10.3758/BF03196061
https://doi.org/10.1037/0278-7393.26.1.53
https://doi.org/10.1037/0278-7393.26.1.53
https://doi.org/10.3758/BF03196196
https://doi.org/10.3758/BF03196196
https://doi.org/10.1037/0096-3445.121.2.222
https://doi.org/10.1037/a0013294
https://doi.org/10.1037/a0023120
https://doi.org/10.1037/a0023120
https://doi.org/10.1027/1618-3169/a000225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

	Three Ways That Non-associative Knowledge May Affect Associative Learning Processes
	Introduction
	Expectancy And Judgment In Human Causal Learning
	Associative And Non-Associative Knowledge: A Working Definition
	Blocking In Human Causal Learning And Its Associative Explanation
	Some Known Effects Of Non-Associative Knowledge
	How Might Non-Associative Knowledge Influence An Associative Network?
	Non-associative Knowledge May Change the Inputs to an Associative Network
	Non-associative Knowledge May Change How Associative Outputs Translate to Beliefs and Behavior
	Non-associative Knowledge May Influence Association Formation Directly

	Issues, Limitations, And Future Directions
	Conclusion
	Author Contributions
	Funding
	References


