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Prior for Item Scale Hyperparameters
in Hierarchical 3PNO IRT Models
Yanyan Sheng*
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The half-t family has been suggested for the scale hyperparameter in Bayesian

hierarchical modeling. Two parameters define a half-t distribution: the scale s and the

degree-of-freedom ν. When s is set at a finite value that is slightly larger than the

actual standard deviation of the parameters, the half-t prior density can be vaguely

informative. This paper focused on such densities, and applied them to the hierarchical

three-parameter item response theory (IRT) model. Monte Carlo simulations were carried

out to investigate the performance of such specifications in parameter recovery and

model comparisons under situations where the actual variability of item parameters

varied, and results suggest that the half-t family does offer advantages over the

commonly adopted uniform or inverse-gamma prior density by allowing the variability

for item parameters to be either very small or large. A real data example is also provided

to further illustrate this.

Keywords: item response theory, Gibbs sampling, three-parameter models, hyperprior, scale hyperparameter,

half-t, half-Cauchy, half-normal

1. INTRODUCTION

With current enhanced computational technology and the emergence of Markov chain Monte
Carlo (MCMC) simulation techniques (e.g., Chib and Greenberg, 1995), the methodology for
parameter estimation with item response theory (IRT)models has rapidly moved to a fully Bayesian
approach. One of the many advantages that this approach offers in the simultaneous estimation of
both item and person parameters is the flexibility of setting prior distributions formodel parameters
or hyperparameters. The existing literature in Bayesian statistics (Gelman et al., 2003) offers two
general options in specifying prior distributions by choosing between fully informative priors using
application-specific information and non-informative priors. Each of these is adopted depending
on the availability of prior information. However, when prior information is desired but not readily
available, neither would provide a common solution for various actual situations. The problem
with the former, in particular, is that misspecification tends to result in biased estimates and hence
incorrect inferences (e.g., Mislevy, 1986). This paper focuses on something in the middle, namely,
a somewhat informative prior distribution that can be used in a wide range of applications.

The fully Bayesian estimation procedure has been developed for the three-parameter
normal ogive (3PNO; Lord, 1980) model by Sahu (2002; see also Johnson and Albert,
1999) generalizing the approach for the two-parameter model by Albert (1992). The
procedure has been further implemented in some applications, e.g., Béguin and Glas
(2001) and Glas and Meijer (2003). However, this specification where the hyperparameters
take specific values causes problems when prior distributions for the item slope
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and intercept parameters are not strongly informative.
Specifically, studies have shown that improper non-informative
prior densities for the item slope and intercept parameters
result in an undefined posterior distribution, which gives rise
to unstable parameter estimates (Sheng, 2008, 2010). Even with
proper non-informative prior densities, the procedure either
fails to converge or requires an enormous number of iterations
for the Markov chain to reach convergence (Sheng, 2010). Sheng
(2013) shows that if one specifies prior distributions for the
hyperparameters of the item parameters, instead of setting values
for them, the problem can be resolved. This type of hierarchical
modeling allows a more objective approach to inference by
estimating the parameters of prior distributions from data rather
than specifying them using subjective information.

Research on the effect of prior distributions for
hyperparameters in Bayesian hierarchical models advises caution
in choosing a prior distribution for the scale hyperparameter,
as certain specifications of the hyperpriors may cause problems
in inference (Brown and Draper, 2006; Gelman, 2006). In the
Bayesian literature and software, various non-informative prior
distributions have been suggested for the variance parameter
in hierarchical linear models, including an improper uniform
prior on σ (Gelman et al., 2003), an improper uniform prior
on log(σ ), and a conjugate inverse-gamma (0.001, 0.001) prior
(Spiegelhalter et al., 1994, 2003). Gelman (2006), however, in an
attempt to illustrate the performance of these prior distributions
for σ near zero, which is where classical and Bayesian inferences
differ the most (see Brown and Draper, 2006), pointed out
problems with the latter two, especially with the inverse-gamma
family of non-informative prior distributions. As Gelman (2006)
stated, the problem with the uniform prior distribution on
log(σ ) is that it results in an improper posterior distribution
(p. 521), and the problem with the inverse-gamma family is that
inferences are sensitive to the choice of the hyperparameters
when low values of σ are possible (p. 522). With respect to
the proper non-informative prior, he recommended the use
of a half-t family, which is inherently conjugate (see Gelman,
2006, for a detailed illustration) and is preferred over other
parametric family for the hyperprior distributions because
flat-tailed distributions allow for robust inference (Berger and
Berliner, 1986). When the scale of the half-t distribution is set
to a finite value that is slightly larger than the actual variability
of the parameters, the resulting prior density can be vaguely
informative.

In view of the above, the purpose of this study is to
develop Bayesian hierarchical 3PNO IRTmodels with such half-t
densities being the item scale hyperpriors and further investigate
their performance in estimating model parameters as well as in
providing model-data fit under different test situations where the
actual variability of item parameter varies.

The remainder of the paper is organized as follows. Section
2 describes the hierarchical 3PNO IRT model and the Gibbs
sampling procedure where half-t hyperpriors are assumed for
the scale parameters for item slopes and intercepts. Then, two
simulation studies were carried out to evaluate the performance
of this model specification in parameter recovery as well as to
compare it with other model specifications with uniform or

inverse-gamma prior densities. The methodology and results
of these simulation studies are presented in Sections 3 and
4, respectively. Section 5 gives an example where the model
specification under investigation is implemented on a subset of
College Basic Academic Subjects Examination (CBASE; Osterlind,
1997) English data. Finally, a few summary remarks are provided
in Section 6.

2. MODEL AND THE GIBBS SAMPLING
PROCEDURE

Before the study is further described, the hierarchical 3PNO
model is briefly illustrated. Suppose a test consists of k binary
response items (e.g., multiple-choice items), each measuring a
single unified latent trait, θ . Let y =

[

yij
]

n×k
denote a matrix of n

responses to the k items where yij = 1 (yij = 0) if the i-th person
answers the j-th item correctly (incorrectly) for i = 1, . . . , n and
j = 1, . . . , k.

The probability of person i obtaining a correct response to
item j can be defined as

P(yij = 1|θi,αj,βj, γj) = γj + (1− γj)8(αjθi − βj), 0 ≤ γj < 1
(1)

for the 3PNO IRT model, where 8 denotes the normal CDF, θi
is a scalar latent trait parameter, αj is a scalar slope parameter
describing the item discrimination, βj is the intercept parameter
associated with item difficulty, and γj is a pseudo-chance-level
parameter indicating that the probability of correct response is
< zero even for those with very low trait levels. This model is
applicable for objective items, such as multiple-choice or true-or-
false items where an item is too difficult for some examinees.

To implement Gibbs sampling to the 3PNO model defined
in (1), two latent variables, Z and W, are introduced such that
Zij ∼ N(ηij, 1) (Albert, 1992; Tanner and Wong, 1987), where
ηij = αjθi − βj, and Wij = 1 (Wij = 0) if person i knows (does
not know) the correct answer to item j with a probability density
function

P(Wij = wij|ηij) = 8(ηij)
wij (1− 8(ηij))

1−wij . (2)

Prior densities p(θ), p(ξ ) and p(γ ) can be assumed for θi, ξ j
and γj, respectively, where ξ j = (αj,βj)′. Here we focus on the
normal conjugate priors for ξ j so that αj ∼ N(0,∞)(µα , σ 2

α ),

βj ∼ N(µβ , σ 2
β ). Further, with hyperpriors assumed for the

hyperparameters µα , µβ , σ 2
α , σ

2
β , the joint posterior distribution

of (θ , ξ , γ ,W,Z,µξ ,6ξ ) is hence

p(θ , ξ , γ ,W,Z,µξ ,6ξ |y) ∝ f (y|W, γ )p(W|Z)p(Z|θ , ξ )p(θ)

p(ξ |µξ ,6ξ )p(γ )p(µξ )p(6ξ ),

(3)

where µξ = (µα ,µβ )′, 6ξ = diag(σ 2
α , σ

2
β ), and f (y|W, γ ) =

∏ ∏

p
yij
ij (1− pij)1−yij is the likelihood function, with pij being

the model probability function as defined in (1). Assume a
normal prior for θi, a conjugate Beta prior for γj so that θi ∼

N(µ, σ 2), γj ∼ Beta(d, t), and conditionally conjugate half-t prior
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distributions for σα and σβ with mean 0, degrees-of-freedom
ν and scale s, where ν and s are chosen to provide minimal
prior information to constrain the scale hyperparameters to
lie in a reasonable range. Hence, with the prior distributions
specified this way, the full conditional distributions of all
the parameters can be derived in closed forms through a
multiplicative reparameterization following Knape et al. (2008)
and updated iteratively using the Gibbs sampler (see the
Appendix in Supplementary Material).

The half-t distribution considered for σα and σβ takes the
form

p(σ ) ∝

(

1+
1

ν

(σ

s

)2
)− ν+1

2

(4)

(Gelman, 2006). Setting ν = 1 results in a special case of half-
Cauchy, which has a broad peak at zero and can be weakly
informative if s takes large but finite values. On the other
hand, setting the scale s to infinity corresponds to a flat prior
distribution, setting the degrees of freedom ν to 100 corresponds
to a half-normal distribution, which can be non-informative but
proper if the scale s is set to a high value, such as 100. Here, in the
study, we considered a half-normal, a half-Cauchy, and a half-t
distribution with 4 degrees of freedom (ν = 4).

3. METHODOLOGY OF MONTE CARLO
SIMULATIONS

In order to evaluate the performance of the hierarchical
3PNO model as described in Section 2, two simulation studies
were conducted where it was compared with other model
specifications in parameter recovery and/or model comparisons.

3.1. Simulation Study 1
In the IRT literature, it is well accepted that when prior
information is not readily available, large data sizes are
needed to estimate IRT parameters (e.g., Swaminathan and
Gifford, 1983), as Bayesian estimation with a flat prior is
equivalent to a maximum likelihood estimation, and that the
accuracy of item (person) parameter estimates is related to
the number of subjects (items) (e.g., Natesan et al., 2016;
Sheng, 2010). Hence, in this simulation study, we evaluated
the effect of sample size, test length, actual variability of
item slope and intercept parameters on the accuracy with
which model parameters are estimated considering a half-
normal, a non-informative uniform or an inverse gamma
prior.

Item responses for k items (k = 10, 20, and 40) and n
individuals (n = 100, 300, 500, and 1000) were generated
according to the 3PNO model, as defined in (1). Ability
parameters were generated as samples from a standard normal
distribution, pseudo-chance-level parameters were generated
from a uniform distribution, γj ∼ U(0.05, 0.4), and item
slope and intercept parameters were generated as samples from
uniform distributions so that

• Sim1: αj ∼ U(0, 2), βj ∼ U(−1, 1);
• Sim2: αj ∼ U(0, 2), βj ∼ U(−0.5, 0.5); and

• Sim3: αj ∼ U(0.5, 1.5), βj ∼ U(−1, 1).

When implementing the MCMC procedure, a diffuse prior were
assumed for γj, µα and µβ so that γj ∼ Beta(1, 1), p(µα) ∝ 1
and p(µβ ) ∝ 1. In addition, three ways of setting the prior
distributions for αj and βj were considered such that both had

1. non-informative prior distributions that are uniform on σ , i.e.,
p(σ 2

α ) ∝ 1/σα and p(σ 2
β ) ∝ 1/σβ ;

2. inverse-gamma (0.001, 0.001) prior distributions;
3. half-t prior distributions with 100 degrees of freedom, which

are in practice equivalent to a half-normal.

It is noted that although the inverse-gamma (0.001, 0.001) prior
density was not suggested by Gelman (2006), it was considered
in this study because of its popularity (see e.g., Xu et al., 2009;
O’Brien et al., 2015). With each of the prior specifications
considered, the Gibbs sampling procedure was implemented
where 10,000–50,000 iterations were obtained with the first half
set as burn-in.

3.2. Simulation Study 2
In the first simulation study, only two levels of variability
(i.e., σ 2

α,β = 0.083 and σ 2
α,β = 0.333), and three

different hyperpriors (one uniform, one inverse-gamma and
one half-normal) were considered. Given that the range
for item intercept parameters (βj) is generally wider than
[−1, 1] in practice, it would be interesting to see how
the weakly informative half-t family performs when the
variance for β goes beyond 1. Hence, a second simulation
study was conducted where two factors were manipulated,
namely, actual variability of the item intercept parameters
and specifications of prior distributions for the item scale
hyperparameters.

Item responses for 20 items and 1000 individuals were
generated according to the 3PNOmodel, as defined in (1). Ability
parameters were generated as samples from a standard normal
distribution, item slope and pseudo-chance-level parameters
were generated from uniform distributions, αj ∼ U(0, 2) and
γj ∼ U(0.05, 0.4), and item intercept parameters were generated
as samples from uniform distributions so that

• Sim1: β ∼ U(−0.5, 0.5);
• Sim2: β ∼ U(−1, 1);
• Sim3: β ∼ U(−2, 2); and
• Sim4: β ∼ U(−4, 4).

It is noted that in the four simulations, the uniform distributions
from which the intercept parameters were sampled from have
an increasingly large σβ ranging from 0.29−2.31 (with the
corresponding variance ranging from 0.083−5.333).

In addition, six ways of setting the prior distributions for σ 2
α

and σ 2
β were considered such that both had

1. non-informative prior distributions that are uniform on σ , i.e.,
p(σ 2

α ) ∝ 1/σα and p(σ 2
β ) ∝ 1/σβ ;

2. non-informative inverse-gamma (0.001, 0.001) prior
distributions for σ 2;

3. informative inverse-gamma (3, 2) prior distributions for σ 2;
4. weakly informative half-Cauchy prior distributions for σ ;
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5. weakly informative half-t prior distributions for σ with
ν = 100, which in practice are equivalent to half-normal
distributions;

6. weakly informative half-t prior distributions for σ with ν = 4.

The Gibbs sampling procedure was implemented where 20,000
iterations were obtained with the first 10,000 as burn-in.

3.3. Evaluation Criteria
For both simulation studies, convergence was evaluated using the
Gelman-Rubin R (Gelman and Rubin, 1992) statistic. The usual
practice is using multiple Markov chains from different starting
points. Alternatively, a single chain can be divided into sub-
chains so that convergence is assessed by comparing the between
and within sub-chain variance (Fox, 2007). Since a single chain
is less wasteful in the number of iterations needed, the latter
approach was adopted. For each Markov chain, the initial values
were set to be αj = 1, βj = 0, and γj = 0.2 for all items j and
θi = 0 for all persons i. After discarding the burn-in samples,
the chain was then separated into five sub-chains of equal length
and the R statistic was calculated following the procedure by
Gelman and Rubin (1992). Convergence can also be monitored
visually using time series graphs of the simulated sequence, such
as the trace plot, the running mean plot, and the autocorrelation
plot shown in Figure 1 for one item. It is observed that for this
item, the autocorrelations between successive parameter draws
became negligible at lags > 600, suggesting burn-in for a single
chain should not take longer than that (Geyer, 1992). Indeed,
the trace plot and the running mean plot both suggest possible
convergence within 10,000 iterations. Inspection of such plots
has, however, been criticized for being unreliable and unwieldy
in the presence of a large number of model parameters (Gelman
et al., 2003; Nylander et al., 2008). The R statistic obtained from
using a single chain was hence the major approach for assessing
convergence in this study.

For each simulated scenario, 25 replications, as recommended
by Harwell et al. (1996), were conducted to avoid erroneous
results in estimation due to sampling error. The accuracy of
item/person parameter estimates was evaluated using the root
mean square error (RMSE) and bias. Let τ denote the true value
of a parameter (e.g., αj, βj, γj, or θi) and tr its estimate in the rth
replication (r = 1, . . . ,R). The RMSE is defined as

RMSEτ =

√

∑R
r = 1(tr − τ )2

R
, (5)

and the bias is defined as

biasτ =

∑R
r = 1(tr − τ )

R
. (6)

These quantities were averaged over items/persons to provide
summary indices.

In simulation study 2 where six model specifications were
compared, the adequacy of the fit of the hierarchical 3PNO
model with a given prior density on the simulated data was
evaluated using Bayesian deviance. It should be noted that
this measure provides a model comparison criterion. Hence,

it evaluates the fit of a model in a relative, not absolute,
sense. The Bayesian deviance information criterion (DIC) was
introduced by Spiegelhalter et al. (2002) who generalized the
classical information criteria (e.g., AIC, BIC) to one that is based
on the posterior distribution of the deviance. This criterion is
defined as DIC = D̄ + pD, where D̄ = E[−2 log Lϑ |y(y|ϑ)]
is the posterior expectation of the deviance (with L being the
likelihood function), and pD = Eϑ |y(D) − D[Eϑ |y(ϑ)] =

D̄ − D(ϑ̄) is the effective number of parameters (Carlin and
Louis, 2000). In addition, let D(ϑ̄) = −2 log[Lϑ |y(y|ϑ̄)],
where ϑ̄ is the posterior mean. To compute Bayesian DIC,
MCMC samples of the parameters, ϑ (1), . . . ,ϑ (G), can be drawn
from the Gibbs sampler, then D̄ is approximated as D̄ =
1
G [−2 log

∏G
g = 1 L(y|ϑ

(g))]. Generally more complicated models
tend to provide better fit. Hence, penalizing for the number of
parameters makes DIC a more reasonable measure to use. In this
study, the Bayesian deviance estimate was obtained after each
implementation and averaged across the 25 replications for each
model specification.

4. SIMULATION RESULTS

The results of the two simulation studies are presented in this
section and described as follows.

4.1. Simulation Study 1
Each implementation of the Gibbs sampler gave rise to Gelman-
Rubin R statistics close to 1, indicating possible convergence of
the Markov chains within the simulated number of iterations.
Hence, the posterior estimates were obtained as the posterior
expectations of the Gibbs samples and the average RMSE and bias
values for αj, βj, γj, and θi are summarized in Tables 1–4. A close
examination of these values leads to the following observations:

1. In Sim1 where the actual variances for α and β were both
0.333, the half-normal distribution performed relatively less
well in recovering item and person parameters than the
uniform or inverse-gamma distributions when data sizes (n×
k) were < 10, 000, although it has to be noted that this
distribution consistently resulted in smaller bias in estimating
α regardless of sample size or test length. The uniform
prior density performed similarly as the inverse-gamma prior
density, with a slight advantage for data with small sample
sizes (i.e., n = 100) especially where k = 10.

2. Sim2 differed from Sim1 in that the actual variance for
β decreased to 0.083, a value closer to zero. Hence, we
focus on the results in recovering β here. From Table 2,
it is obvious that the half-normal distribution consistently
performed better in recovering β than the uniform or inverse-
gamma distribution when k < 40 or with large sample sizes
(n > 300) when k = 40. Between the two non-informative
priors, the uniform prior density performed less well than the
inverse-gamma (0.001, 0.001) prior density.

3. Similar to Sim2, Sim3 differed from Sim1 in the actual
variance for α being reduced to 0.083, and consequently, the
results in recovering α are discussed here. It is noted from
Table 1 that the half-normal distribution consistently resulted
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FIGURE 1 | Trace plots (top), running mean plots (middle) and autocorrelation plots (bottom) of α, β and γ for one item assuming a half-normal prior distribution

for σα and σβ [n = 1000, k = 10, chain-length = 20, 000, item slopes and intercepts were generated from αj ∼ U(0, 2) and βj ∼ U(−1, 1)].

in smaller RMSE and bias and hence performed better than the
non-informative uniform or inverse-gamma family of prior
distributions (except for the situations where n < 500 and
k = 40). The uniform prior density tended to result in larger
RMSE or bias than the inverse-gamma (0.001, 0.001) prior
when k < 40.

4. It is interesting to note that the half-normal prior density
consistently resulted in smaller bias in estimating α in all the
simulated conditions.

5. Further, it is noted that the benefit of using a half-normal prior
in Sim2 or Sim3 where it resulted in smaller RMSE and bias in
estimating β or α was not reflected in estimating θ unless the
data size was over 12, 000 in Sim2 or unless k ≥ 20 in Sim3.

From these observations, it is hence noted that the half-normal
prior outperforms the uniform or inverse-gamma family of prior
distributions in estimating the corresponding parameters in the
hierarchical 3PNO model when the variability for item slope or
intercept parameters is close to zero. Further, the inverse-gamma
(0.001, 0.001) prior tends to perform better in parameter recovery
than the uniform prior when the respective item parameters
have a small variance. This can be explained by the fact that
the non-informative uniform prior density is flat and hence
does not restrict σ away from large values, whereas inverse-
gamma (0.001, 0.001) and half-normal distributions have a
peak around zero and do perform such shrinkage for variances
near zero. It is further noted that the estimation error and
bias in estimating item parameters (α, β , or γ ) reduce with
the increase of sample sizes, and that the error and bias in
estimating person parameters (θ) reduce with the increase of
test lengths. This is consistent with findings from other studies
(e.g., Swaminathan and Gifford, 1983; Sheng, 2010; Natesan et al.,
2016).

4.2. Simulation Study 2
Each implementation of the Gibbs sampler gave rise to Gelman-
Rubin R statistics close to 1, indicating possible convergence
within 20,000 iterations. Hence, the posterior estimates were
obtained as the posterior expectations of the Gibbs samples
and the average RMSE and bias values for αj, βj, and γj are
summarized in Table 5. A close examination of these values leads
to the following observations:

1. In all four simulations where the actual variability for the
intercept parameters (σβ ) ranged between 0.29−2.31, the
three weakly informative half-t prior densities, namely, the
half-Cauchy, the half-normal and the half-t with 4 degrees
of freedom had consistently smaller RMSE if not bias in
recovering item and person parameters, and in particular
in recovering βj, compared with the other three prior
distributions.

2. It is noted that in Sim2 where σβ was about 0.5, the
three weakly informative half-t densities had more bias in
estimating β and γ than the two non-informative prior
densities. When σβ moved further away from 0.5 (i.e., toward
0 in Sim1 or toward 2.5 in Sim4), their advantages over
other model specifications became more obvious in that they
resulted in much smaller average RMSE and bias values.

3. Among the three weakly informative half-t densities, the
half-normal resulted in relatively smaller RMSE and bias in
recovering item and person parameters in Sim1, but larger
RMSE and bias in Sim2, Sim3, and Sim4.

4. Between the two non-informative priors, the inverse-gamma
(0.001, 0.001) prior distribution performed slightly better in
estimating β and γ in Sim1, but worse in estimating other
parameters or in other situations. This is consistent with
findings from the first simulation study.
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TABLE 1 | Average RMSE and bias for recovering slope (α) parameters in

the hierarchical 3PNO model with the three prior specifications under the

three test length, four sample size and three actual variance conditions.

RMSE bias

n uniform inv-g half-n uniform inv-g half-n

Sim1: α ∼ U(0, 2),β ∼ U(−1, 1)

k = 10 100 0.3213 0.3737 0.2686 0.3544 0.3810 0.0959

300 0.1103 0.1082 0.1422 0.0976 0.0889 0.0704

500 0.0865 0.0868 0.1271 0.1046 0.0957 0.0656

1000 0.0780 0.0764 0.0964 0.0814 0.0716 0.0481

k = 20 100 0.1656 0.1665 0.1766 0.0617 0.0604 0.0589

300 0.1142 0.1157 0.1029 0.0737 0.0768 0.0613

500 0.0831 0.0843 0.0634 0.0627 0.0673 0.0285

1000 0.0705 0.0721 0.0521 0.0535 0.0568 0.0432

k = 40 100 0.2238 0.2253 0.1401 0.1834 0.1852 0.0584

300 0.1863 0.1877 0.0840 0.2017 0.2034 0.0441

500 0.1604 0.1624 0.0550 0.2034 0.2071 0.0390

1000 0.1339 0.1358 0.0366 0.1890 0.1915 0.0372

Sim2: α ∼ U(0, 2),β ∼ U(−0.5, 0.5)

k = 10 100 0.2690 0.2350 0.2491 0.3179 0.2743 0.0668

300 0.0962 0.0929 0.0724 0.1625 0.1492 0.0361

500 0.0687 0.0709 0.0517 0.1257 0.1227 0.0255

1000 0.0534 0.0542 0.0539 0.0577 0.0518 0.0282

k = 20 100 0.1558 0.1565 0.1503 0.0784 0.0746 0.0546

300 0.0901 0.0914 0.0641 0.0401 0.0420 0.0357

500 0.0775 0.0787 0.0500 0.0614 0.0656 0.0335

1000 0.0502 0.0508 0.0319 0.0528 0.0550 0.0282

k = 40 100 0.2094 0.2112 0.1313 0.1623 0.1655 0.1020

300 0.1500 0.1511 0.0547 0.1918 0.1938 0.0373

500 0.1372 0.1381 0.0449 0.1876 0.1877 0.0413

1000 0.1141 0.1151 0.0254 0.1842 0.1857 0.0300

Sim3: α ∼ U(0.5, 1.5),β ∼ U(−1, 1)

k = 10 100 0.3572 0.3359 0.1882 0.5038 0.4847 0.2929

300 0.1237 0.1230 0.0860 0.2159 0.2145 0.0890

500 0.0785 0.0745 0.0725 0.1658 0.1603 0.0749

1000 0.0634 0.0650 0.0537 0.1128 0.1092 0.0452

k = 20 100 0.1042 0.1063 0.0852 0.1780 0.1789 0.0905

300 0.0715 0.0709 0.0675 0.1080 0.1061 0.0771

500 0.0516 0.0511 0.0506 0.0820 0.0797 0.0679

1000 0.0430 0.0426 0.0348 0.0440 0.0439 0.0421

k = 40 100 0.0687 0.0688 0.0763 0.0506 0.0501 0.0590

300 0.0499 0.0500 0.0531 0.0371 0.0366 0.0599

500 0.0506 0.0507 0.0404 0.0418 0.0436 0.0391

1000 0.0420 0.0419 0.0250 0.0400 0.0390 0.0261

inv-g, inverse-gamma; half-n, half-normal.

5. In Sim1 where σβ was close to 0, the informative inverse-
gamma (3, 2) prior distribution was correctly specified with
little bias and hence had small RMSE in recovering βj.
However, when σβ moved further away from 0, it became less
appropriate, and consequently resulted in an obviously larger
bias and RMSE in recovering especially item parameters.

TABLE 2 | Average RMSE and bias for recovering intercept (β) parameters

in the hierarchical 3PNO model with the three prior specifications under

the three test length, four sample size and three actual variance

conditions.

RMSE bias

n uniform inv-g half-n uniform inv-g half-n

Sim1: α ∼ U(0, 2),β ∼ U(−1, 1)

k = 10 100 0.4967 0.6177 0.4233 0.5017 0.5509 0.3778

300 0.2153 0.2088 0.2642 0.2329 0.2208 0.2231

500 0.1960 0.1939 0.2532 0.2096 0.2011 0.2015

1000 0.1599 0.1580 0.1757 0.1550 0.1436 0.1179

k = 20 100 0.3474 0.3458 0.4409 0.3528 0.3504 0.3864

300 0.1906 0.1874 0.2047 0.1832 0.1781 0.2074

500 0.1325 0.1334 0.1307 0.1188 0.1188 0.1466

1000 0.1590 0.1590 0.1545 0.1331 0.1312 0.1602

k = 40 100 0.3184 0.3189 0.3748 0.2940 0.2942 0.3645

300 0.2283 0.2288 0.2042 0.1818 0.1818 0.2185

500 0.1852 0.1846 0.1228 0.1281 0.1240 0.1383

1000 0.1550 0.1555 0.1162 0.0955 0.0946 0.1243

Sim2: α ∼ U(0, 2),β ∼ U(−0.5, 0.5)

k = 10 100 0.3842 0.3199 0.1581 0.4892 0.4443 0.2364

300 0.2073 0.1995 0.0884 0.2937 0.2816 0.1186

500 0.1573 0.1580 0.0892 0.2281 0.2282 0.1225

1000 0.1108 0.1050 0.0600 0.1631 0.1563 0.0711

k = 20 100 0.1621 0.1589 0.1436 0.2864 0.2823 0.2325

300 0.0956 0.0937 0.0894 0.1724 0.1673 0.1475

500 0.0889 0.0861 0.0714 0.1341 0.1316 0.1115

1000 0.0536 0.0554 0.0400 0.0782 0.0792 0.0573

k = 40 100 0.1192 0.1188 0.1448 0.2338 0.2304 0.2508

300 0.0634 0.0633 0.0788 0.0831 0.0834 0.1295

500 0.0617 0.0620 0.0616 0.0650 0.0664 0.0920

1000 0.0507 0.0506 0.0388 0.0485 0.0490 0.0593

Sim3: α ∼ U(0.5, 1.5),β ∼ U(−1, 1)

k = 10 100 0.4323 0.4214 0.6113 0.4942 0.4832 0.5111

300 0.1668 0.1702 0.2306 0.2299 0.2343 0.2255

500 0.0966 0.0961 0.1539 0.1595 0.1560 0.1658

1000 0.0756 0.0790 0.0879 0.0882 0.0859 0.0794

k = 20 100 0.3288 0.3351 0.4090 0.3854 0.3864 0.3921

300 0.1613 0.1635 0.1348 0.1932 0.1940 0.1898

500 0.1192 0.1206 0.0999 0.1394 0.1395 0.1461

1000 0.0765 0.0773 0.0567 0.0684 0.0699 0.0761

k = 40 100 0.3336 0.3331 0.2748 0.3281 0.3260 0.2882

300 0.1999 0.2039 0.1074 0.1863 0.1930 0.1494

500 0.1585 0.1591 0.0748 0.1346 0.1335 0.0966

1000 0.1158 0.1162 0.0429 0.0827 0.0835 0.0505

inv-g, inverse-gamma; half-n, half-normal.

From these observations, it is noted that the weakly informative
half-t family works well in a wider range of situations than the
non-informative or the informative prior densities in recovering
the 3PNO model item parameters. Specifically, when the actual
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TABLE 3 | Average RMSE and bias for recovering guessing (γ ) parameters

in the hierarchical 3PNO model with the three prior specifications under

the three test length, four sample size and three actual variance

conditions.

RMSE bias

n uniform inv-g half-n uniform inv-g half-n

Sim1: α ∼ U(0, 2),β ∼ U(−1, 1)

k = 10 100 0.0357 0.0371 0.0407 0.0990 0.1026 0.0964

300 0.0306 0.0304 0.0359 0.0848 0.0826 0.0831

500 0.0294 0.0290 0.0338 0.0752 0.0733 0.0701

1000 0.0278 0.0271 0.0289 0.0712 0.0677 0.0608

k = 20 100 0.0443 0.0444 0.0509 0.1111 0.1110 0.1192

300 0.0301 0.0300 0.0306 0.0664 0.0652 0.0730

500 0.0244 0.0245 0.0239 0.0539 0.0536 0.0631

1000 0.0305 0.0305 0.0284 0.0659 0.0651 0.0728

k = 40 100 0.0346 0.0346 0.0356 0.0796 0.0794 0.0881

300 0.0329 0.0330 0.0300 0.0557 0.0557 0.0688

500 0.0271 0.0270 0.0207 0.0386 0.0379 0.0497

1000 0.0273 0.0273 0.0210 0.0372 0.0368 0.0493

Sim2: α ∼ U(0, 2),β ∼ U(−0.5, 0.5)

k = 10 100 0.0298 0.0286 0.0227 0.1128 0.1082 0.0740

300 0.0220 0.0217 0.0148 0.0855 0.0831 0.0425

500 0.0190 0.0190 0.0159 0.0718 0.0716 0.0452

1000 0.0158 0.0157 0.0125 0.0553 0.0534 0.0301

k = 20 100 0.0195 0.0193 0.0186 0.0786 0.0776 0.0641

300 0.0158 0.0158 0.0153 0.0599 0.0588 0.0508

500 0.0155 0.0151 0.0130 0.0458 0.0450 0.0373

1000 0.0098 0.0102 0.0080 0.0335 0.0341 0.0264

k = 40 100 0.0161 0.0160 0.0172 0.0477 0.0469 0.0498

300 0.0117 0.0117 0.0119 0.0206 0.0208 0.0324

500 0.0117 0.0118 0.0108 0.0204 0.0206 0.0296

1000 0.0103 0.0103 0.0076 0.0153 0.0153 0.0190

Sim3: α ∼ U(0.5, 1.5),β ∼ U(−1, 1)

k = 10 100 0.0397 0.0394 0.0557 0.1301 0.1287 0.1505

300 0.0254 0.0258 0.0318 0.0825 0.0838 0.0812

500 0.0164 0.0162 0.0227 0.0605 0.0596 0.0604

1000 0.0160 0.0169 0.0182 0.0480 0.0482 0.0445

k = 20 100 0.0374 0.0377 0.0441 0.1129 0.1132 0.1207

300 0.0235 0.0236 0.0196 0.0698 0.0700 0.0664

500 0.0220 0.0221 0.0181 0.0641 0.0639 0.0613

1000 0.0157 0.0157 0.0118 0.0418 0.0420 0.0382

k = 40 100 0.0359 0.0359 0.0328 0.0908 0.0905 0.0874

300 0.0246 0.0248 0.0164 0.0541 0.0551 0.0505

500 0.0223 0.0224 0.0129 0.0465 0.0463 0.0399

1000 0.0178 0.0179 0.0089 0.0330 0.0336 0.0253

inv-g, inverse-gamma; half-n, half-normal.

scale hyperparameter is close to 0, the non-informative prior
density does not work well compared with informative or
weakly informative prior densities, as prior information helps to
restrict σβ away from large values. Even with prior information,

TABLE 4 | Average RMSE and bias for recovering person parameters (θ ) in

the hierarchical 3PNO model with the three prior specifications under the

three test length, four sample size and three actual variance conditions.

RMSE bias

n uniform inv-g half-n uniform inv-g half-n

Sim1: α ∼ U(0, 2),β ∼ U(−1, 1)

k = 10 0100 0.3618 0.3626 0.3951 0.1188 0.1208 0.1257

300 0.3240 0.3239 0.3331 0.1011 0.1009 0.1041

500 0.3045 0.3047 0.3098 0.0952 0.0950 0.0959

1000 0.3003 0.3005 0.3024 0.0908 0.0909 0.0902

k = 20 100 0.2239 0.2239 0.2403 0.0989 0.0981 0.1208

300 0.2072 0.2071 0.2079 0.0882 0.0882 0.0857

500 0.1919 0.1922 0.1895 0.0733 0.0737 0.0706

1000 0.1945 0.1947 0.1927 0.0703 0.0706 0.0686

k = 40 100 0.1827 0.1827 0.1774 0.1450 0.1468 0.1553

300 0.1648 0.1650 0.1412 0.1196 0.1201 0.0766

500 0.1483 0.1485 0.1236 0.1140 0.1132 0.0602

1000 0.1430 0.1434 0.1263 0.0858 0.0865 0.0562

Sim2: α ∼ U(0, 2),β ∼ U(−0.5, 0.5)

k = 10 100 0.3309 0.3309 0.3480 0.0971 0.0976 0.1031

300 0.3225 0.3220 0.3274 0.0941 0.0937 0.0981

500 0.3050 0.3051 0.3073 0.0844 0.0846 0.0851

1000 0.3001 0.3000 0.3015 0.0857 0.0858 0.0866

k = 20 100 0.2122 0.2122 0.2200 0.0712 0.0714 0.0871

300 0.2036 0.2038 0.2063 0.0786 0.0787 0.0864

500 0.1932 0.1932 0.1950 0.0728 0.0728 0.0771

1000 0.1885 0.1885 0.1879 0.0653 0.0655 0.0652

k = 40 100 0.1685 0.1691 0.1696 0.1303 0.1300 0.1553

300 0.1429 0.1435 0.1341 0.0804 0.0812 0.0796

500 0.1384 0.1384 0.1287 0.0709 0.0710 0.0613

1000 0.1365 0.1370 0.1269 0.0643 0.0647 0.0568

Sim3: α ∼ U(0.5, 1.5),β ∼ U(−1, 1)

k = 10 100 0.3341 0.3337 0.3562 0.1101 0.1115 0.1139

300 0.3035 0.3034 0.3090 0.0883 0.0879 0.0909

500 0.2924 0.2923 0.2979 0.0915 0.0912 0.0916

1000 0.2933 0.2934 0.2944 0.0857 0.0859 0.0864

k = 20 100 0.1983 0.1989 0.2068 0.0771 0.0772 0.0759

300 0.1920 0.1918 0.1886 0.0760 0.0762 0.0691

500 0.1877 0.1878 0.1867 0.0679 0.0682 0.0664

1000 0.1796 0.1798 0.1779 0.0677 0.0680 0.0667

k = 40 100 0.1434 0.1427 0.1302 0.0989 0.0979 0.0729

300 0.1367 0.1374 0.1224 0.0992 0.1014 0.0553

500 0.1272 0.1276 0.1155 0.0840 0.0840 0.0540

1000 0.1200 0.1199 0.1120 0.0695 0.0692 0.0532

inv-g, inverse-gamma; half-n, half-normal.

the informative inverse-gamma (3,2) prior density does not
outperform the weakly informative half-t distribution because
the latter has a better behavior near 0. Figure 2 graphically
illustrates this point. The non-informative inverse-gamma prior
distribution, in general, is not recommended for large σ values
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TABLE 5 | Average RMSE and bias for recovering item and person

parameters in the hierarchical 3PNO model with the six prior

specifications (n = 1000,k = 20).

RMSE bias

priorαβ Sim1 Sim2 Sim3 Sim4 Sim1 Sim2 Sim3 Sim4

α 1 0.0550 0.0709 0.1609 0.3455 0.0493 0.0774 0.0868 0.2735

2 0.0566 0.0730 0.1612 0.3502 0.0515 0.0798 0.0904 0.2810

3 0.1011 0.1198 0.1950 0.3825 0.1450 0.1432 0.1566 0.3528

4 0.0388 0.0487 0.0967 0.1588 0.0407 0.0550 0.0843 0.0654

5 0.0365 0.0524 0.1016 0.2054 0.0265 0.0419 0.0392 0.1241

6 0.0407 0.0489 0.0936 0.1620 0.0405 0.0500 0.0796 0.0550

β 1 0.0625 0.1302 0.6378 4.0725 0.0744 0.0987 0.1819 0.4088

2 0.0607 0.1316 0.6450 4.0914 0.0727 0.0997 0.1836 0.4067

3 0.0514 0.1655 0.8096 4.5642 0.0327 0.1007 0.2275 0.4900

4 0.0453 0.1206 0.3886 1.2150 0.0569 0.1334 0.2348 0.2623

5 0.0451 0.1230 0.3687 2.0226 0.0467 0.1126 0.1905 0.2543

6 0.0482 0.1200 0.3653 1.2272 0.0569 0.1242 0.2276 0.2413

γ 1 0.0099 0.0235 0.0793 0.1666 0.0278 0.0445 0.0988 0.1811

2 0.0096 0.0238 0.0798 0.1672 0.0267 0.0449 0.0994 0.1806

3 0.0093 0.0275 0.0889 0.1779 0.0139 0.0426 0.1069 0.1940

4 0.0075 0.0198 0.0493 0.0774 0.0241 0.0503 0.0915 0.1289

5 0.0078 0.0218 0.0560 0.1002 0.0211 0.0479 0.0926 0.1361

6 0.0079 0.0199 0.0489 0.0784 0.0242 0.0481 0.0910 0.1286

θ 1 0.2007 0.2010 0.2266 0.3273 0.0722 0.0731 0.0883 0.0973

2 0.2009 0.2011 0.2274 0.3280 0.0722 0.0733 0.0890 0.0974

3 0.2032 0.2078 0.2408 0.3521 0.0739 0.0802 0.1017 0.1034

4 0.2003 0.1978 0.2097 0.2812 0.0716 0.0706 0.0707 0.0809

5 0.2004 0.1987 0.2106 0.2865 0.0718 0.0711 0.0713 0.0814

6 0.2004 0.1976 0.2095 0.2822 0.0718 0.0706 0.0709 0.0812

Sim1, β ∼ U(−0.5, 0.5); Sim2, β ∼ U(−1, 1); Sim3, β ∼ U(−2, 2); Sim4, β ∼ U(−4, 4).

because it is not non-informative for these values (see Figure 2).
On the other hand, prior information has to be correctly
specified, as misspecification leads to large bias and hence large
estimation error, e.g., the actual σβ in Sim4 was clearly not in
the range of the inverse-gamma (3, 2) distribution (see Figure 2).
When comparing among the three half-t distributions, the half-
Cauchy is more likely to allow for occasionally large values
than the half-t density with 4 degrees of freedom, or the half-
normal, which has the smallest tail (see Figure 2). Hence, if it
is known a priori that the scale hyperparameter might be far
away from 0, a half-Cauchy or a half-t distribution with a small
degrees of freedom is suggested. Otherwise, a half-normal may be
considered.

In addition to parameter recovery, the model comparison
results in each simulation were averaged over the 25 replications
and are summarized in Table 6, which shows the averaged
estimates for the posterior expectation of the deviance (D̄), the
deviance of the posterior expectation [D(ϑ̄)] values, the effective
number of parameters (pD), and the Bayesian DIC, respectively.
The model with the half-Cauchy or half-t prior density shows
consistently smaller D̄, D(ϑ̄), and DIC than those with other

prior specifications. Since small deviance values indicate better
model fit, models with such prior distributions for the scale
hyperparameters are shown to provide a better description of the
simulated data when the actual σβ was especially larger than 0.29,
even after penalizing for model complexities, i.e., the effective
number of parameters.

After a close examination and comparison of the values shown
in the table, a few remarks can be drawn from these results:

• In all four simulations where σβ ranged between 0.29−2.31,
Bayesian deviances consistently preferred the models with
half-t prior densities, whose deviance values were increasingly
smaller compared with other model specifications when σβ

became larger.
• The two non-informative priors performed similarly in

describing the simulated data according to Bayesian DIC,
which was slightly larger for the model with the inverse-
gamma (0.001, 0.001) prior.

• In all the simulated scenarios, the model with the informative
inverse-gamma (3,2) prior distribution had consistently the
largest average deviance values and hence is not preferred. One
may further note that as σβ moved further away from 0, the
difference in deviances between this model specification and
others was increasingly larger.

• Among the three half-t distributions considered, the Bayesian
deviance measures did not favor the half-normal prior density.

• It is interesting to note that when σβ was small with values
of e.g., 0−0.6, models with half-t prior densities tended to
have smaller effective number of parameters (pD) than those
with non-informative prior densities. The opposite is true for
situations where σβ was over 1.

In summary, the results in parameter recovery and model
comparisons using Bayesian deviances suggest that the
hierarchical 3PNO model with weakly informative half-
t densities for the item scale hyperparameters does show
advantages compared with those with non-informative or
informative prior distributions in various test situations where
the actual variability ranges from small to large values. When the
actual variability of item parameters is not close to 0, the half-
Cauchy or the half-t with small degrees of freedom is preferred
over the half-normal distribution because of its flexibility in
allowing for occasional large variability.

5. AN EXAMPLE WITH CBASE DATA

As an illustration, the hierarchical 3PNO model with the weakly
informative half-t hyperpior was implemented to a subset of
CBASE English subject data, and further compared with the other
model specifications in describing the data.

5.1. Method
The overall CBASE exam contains 25 multiple-choice items on
English reading/literature. The data used in this study were
from college students who took the LP form of CBASE in years
2001 and 2002. After removing those who attempted the exam
multiple times and removing missing responses, a sample of
1,200 examinees was randomly selected. To assess the model
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FIGURE 2 | Prior density functions for the slope and intercept standard deviation parameters: (a) uniform prior distribution on σα (or σβ ), (b) inverse-gamma

(0.001, 0.001) prior distribution on σ2
α (or σ2

β
), (c) inverse-gamma (3, 2) prior distribution on σ2

α (or σ2
α ), (d) half-Cauchy prior distribution for σα (or σβ ), (e) half-t prior

distribution for σα (or σβ ) with 4 degrees of freedom, and (f) half-normal prior distribution for σα (or σβ ). It is noted that the half-t distributions are on a different scale

compared to the previous three densities.

goodness-of-fit, hierarchical 3PNO models with the three half-t
prior distributions were compared with each other and further
compared with those with uniform and inverse-gamma prior
densities described in Section 4.

5.2. Results
Each of the six model specifications was implemented to the
CBASE English data using the Gibbs sampling procedure,
where 20,000 iterations were obtained with the first 10,000
set as burn-in. The Gelman-Rubin R statistics were used to
assess convergence and they were found to be around or close
to 1, suggesting that stationarity had been reached within
the simulated Markov chains for the model. The Bayesian
deviance estimates were subsequently obtained for each model
specification and the results are summarized in Table 7. Among
the six model specifications considered, the ones with half-t
and half-Cauchy prior densities had the smallest DIC and/or
expected posterior deviance (D̄) values. Therefore, the 3PNO
model with a half-t or half-Cauchy hyperprior provided the best
description of the data compared with othermodel specifications,
even after penalizing for a large effective number of parameters
(e.g., pD = 987.24 for the half-t, and pD = 993.80 for
the half-Cauchy). On the other hand, with slightly larger
deviances, the model with an informative inverse-gamma (3, 2)
hyperprior described the data less adequately than those with

other prior specifications. The relatively small differences in
deviances suggested the actual variability might be close to 0.
Furthermore, the model with a half-normal or half-t hyperprior
had a larger pD than that with a non-informative prior density.
Given the findings from the second simulation study in Section
4, this indicated that the actual standard deviation for the item
slope and/or intercept parameters with the data was not larger
than 1.

6. CONCLUDING REMARKS

The half-t family offers a good alternative parametric family
for the prior distribution of scale hyperparameters in Bayesian
hierarchical modeling. This paper adopts it as the hyperprior
for item scale parameters in the hierarchical 3PNO IRT
model, with the focus being on the weakly informative half-t
distributions. Their utility in parameter estimation and model
comparison has been explored and the results show that they
do offer advantages over the commonly adopted uniform or
inverse-gamma prior density by allowing the variability for
item slope and/or intercept parameters to be either very small
or large. The weakly informative half-t, and especially the
weakly informative half-Cauchy density provides certain level
of prior information while it still allows occasional large values.
Hence, it overcomes problems resulting from using either a
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TABLE 6 | Average Bayesian deviance estimates for the hierarchical 3PNO

model with the six prior specifications under four simulated scenarios

(n = 1000,k = 20).

priorαβ D̄ D(ϑ̄ ) pD DIC

Sim1 1 21441.66 20595.02 846.65 22288.31

2 21444.21 20597.86 846.34 22290.55

3 21499.50 20651.26 848.23 22347.73

4 21420.74 20589.93 830.81 22251.54

5 21434.56 20598.11 836.45 22271.01

6 21421.36 20589.28 832.08 22253.44

Sim2 1 20793.37 19947.51 845.86 21639.23

2 20795.94 19950.44 845.50 21641.43

3 20881.40 20045.02 836.39 21717.79

4 20730.70 19888.92 841.78 21572.48

5 20752.65 19906.82 845.83 21598.49

6 20731.41 19888.26 843.15 21574.56

Sim3 1 18543.51 17741.73 801.79 19345.30

2 18547.95 17746.12 801.82 19349.77

3 18686.54 17908.49 778.04 19464.58

4 18310.29 17473.68 836.60 19146.89

5 18347.90 17514.27 833.63 19181.54

6 18313.22 17477.57 835.65 19148.87

Sim4 1 15932.74 15262.86 669.88 16602.62

2 15940.13 15270.32 669.82 16609.95

3 16109.74 15489.93 619.81 16729.55

4 15510.46 14766.48 743.98 16254.44

5 15581.47 14850.04 731.43 16312.89

6 15512.23 14773.10 739.13 16251.36

Sim1, β ∼ U(−0.5, 0.5); Sim2, β ∼ U(−1, 1); Sim3, β ∼ U(−2, 2); Sim4, β ∼ U(−4, 4)

non-informative or an informative prior density when prior
information is desired but not readily available. Consequently,
the flat-tailed half-t distributions are applicable in a wide range
of applications and are recommended. In particular, when
prior information is not readily available but non-informative
priors are not desired, the use of a half-Cauchy distribution
is recommended with the scale set to a finite value that
is higher than the actual standard deviation. It has to be
noted that this paper only focuses on weakly informative half-
t distributions. One may set the scale of the distribution to
be large, e.g., s = 100, to make it non-informative. For a
non-informative but proper prior distribution, a half-normal
with the scale s set to a high value, such as 100 should be
considered.

The use of the half-t prior density for the slope/intercept
scale hyperparameter has also an effect on estimating person
parameters in 3PNO models. Based on results from the
first simulation study, we can see that it tends to result in
smaller bias and error in estimating them for data sizes >

10,000. For small data sizes, the use of half-normal prior
for item scale hyperparameters may not be suggested over

TABLE 7 | Bayesian deviance estimates for the six prior specifications

with the CBASE data.

priorαβ D̄ D(ϑ̄ ) pD DIC

1 33639.68 32648.78 990.90 34630.58

2 33638.82 32649.49 989.33 34628.15

3 33696.66 32728.93 967.73 34664.40

4 33627.67 32633.87 993.80 34621.47

5 33646.64 32659.98 986.66 34633.31

6 33632.35 32645.11 987.24 34619.59

the uniform or inverse-gamma (0.001, 0.001) prior if the
focus is primarily on estimating person ability parameters.
One may need to further explore the use of other half-
t prior densities, such as the half-Cauchy, under these
conditions. It would also be interesting to find out the
reason why manipulating the hyperpriors for item parameters
has such an effect on estimating person parameters in the
hierarchical 3PNO model, and/or investigate the effect of
different (hyper)priors for person parameters in estimating the
model.

Further, results and hence conclusion of the second simulation
study are based on tests with k = 20 and n = 1000. Although
it is believed that similar results can be obtained with other test
lengths (e.g., k = 10 or k > 20) and/or larger sample sizes
(n > 1000), additional studies are needed to confirm this and
to further investigate the use of half-Cauchy or other half-t prior
densities for item scale hyperparameters in smaller sample size
conditions (e.g., n < 500).

In this study, due to the computational expense of MCMC
procedures, only 25 replications were adopted and hence the
simulation results are based on a limited number of replications.
Future studies shall follow the procedure illustrated by Koehler
et al. (2009) to ensure the adequacy of the number of
replications. Alternatively, one may consider using variational
Bayes as suggested by Natesan et al. (2016) given its improved
computational efficiency and equivalent estimation accuracy
when compared with MCMC. In addition, only certain prior
or hyperprior densities for item slope and intercept scale
hyperparameters were investigated in this paper. Future research
may include more prior specifications or adopt non-conjugate
priors for them. Finally, in this study, only Bayesian deviance
was used to evaluate individual models. Given that DIC may
be limited in that it is not invariant to parameterization and
sometimes can produce unrealistic results, further studies can
adopt other methods for model comparisons, such as Bayes
factors (Kass and Raftery, 1995) or posterior predictive model
checking (Rubin, 1984).
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