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A common situation in the evaluation of intervention programs is the researcher’s

possibility to rely on two waves of data only (i.e., pretest and posttest), which profoundly

impacts on his/her choice about the possible statistical analyses to be conducted.

Indeed, the evaluation of intervention programs based on a pretest-posttest design has

been usually carried out by using classic statistical tests, such as family-wise ANOVA

analyses, which are strongly limited by exclusively analyzing the intervention effects at

the group level. In this article, we showed how second order multiple group latent

curve modeling (SO-MG-LCM) could represent a useful methodological tool to have a

more realistic and informative assessment of intervention programs with two waves of

data. We offered a practical step-by-step guide to properly implement this methodology,

and we outlined the advantages of the LCM approach over classic ANOVA analyses.

Furthermore, we also provided a real-data example by re-analyzing the implementation

of the Young Prosocial Animation, a universal intervention program aimed at promoting

prosociality among youth. In conclusion, albeit there are previous studies that pointed

to the usefulness of MG-LCM to evaluate intervention programs (Muthén and Curran,

1997; Curran and Muthén, 1999), no previous study showed that it is possible to use

this approach even in pretest-posttest (i.e., with only two time points) designs. Given

the advantages of latent variable analyses in examining differences in interindividual and

intraindividual changes (McArdle, 2009), the methodological and substantive implications

of our proposed approach are discussed.

Keywords: experimental design, pretest-posttest, intervention, multiple group latent curve model, second order

latent curve model, structural equation modeling, latent variables

INTRODUCTION

Evaluating intervention programs is at the core of many educational and clinical psychologists’
research agenda (Malti et al., 2016; Achenbach, 2017). From a methodological perspective,
collecting data from several points in time (usually T ≥ 3) is important to test the long-term
strength of intervention effects once the treatment is completed, such as in classic designs including
pretest, posttest, and follow up assessments (Roberts and Ilardi, 2003). However, several factors
could hinder the researcher’s capacity to collect data at follow-up assessments, in particular the lack
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of funds, participants’ poor level of monitoring compliance,
participants’ relocation in different areas, etc. Accordingly, the
use of the less advantageous pretest-posttest design (i.e., before
and after the intervention) often represents a widely used
methodological choice in the psychological intervention field.
Indeed, from a literature research on the database PsycINFO
using the following string “intervention AND pretest AND
posttest AND follow-up” limited to abstract section and with
a publication date from January 2006 to December 2016, we
obtained 260 documents. When we changed “AND follow-up”
with “NOT follow-up” the results were 1,544 (see Appendix A to
replicate these literature search strategies).

A further matter of concern arises from the statistical
approaches commonly used for evaluating intervention
programs in pretest-posttest design, mostly ANOVA-family
analyses, which heavily rely on statistical assumptions
(e.g., normality, homogeneity of variance, independence of
observations, absence of measurement error, and so on) rarely
met in psychological research (Schmider et al., 2010; Nimon,
2012).

However, all is not lost and some analytical tools are available
to help researchers better assess the efficacy of programs based
on a pretest-posttest design (see McArdle, 2009). The goal of
this article is to offer a formal presentation of a latent curve
model approach (LCM; Muthén and Curran, 1997) to analyze
intervention effects with only two waves of data. After a brief
overview of the advantageous of the LCM framework over classic
ANOVA analyses, a step-by-step application of the LCM on real
pretest-posttest intervention data is provided.

EVALUATION APPROACHES: OBSERVED
VARIABLES VS. LATENT VARIABLES

Broadly speaking, approaches to intervention evaluation can
be distinguished into two categories: (1) approaches using
observed variables and (2) approaches using latent variables.
The first category includes widely used parametric tests such
as Student’s t, repeated measures analysis of variance (RM-
ANOVA), analysis of covariance (ANCOVA), and ordinary least-
squares regression (see Tabachnick and Fidell, 2013). However,
despite their broad use, observed variable approaches suffer
from several limitations, many of them ingenerated by the
strong underlying statistical assumptions that must be satisfied.
A first series of assumption underlying classic parametric tests
is that the data being analyzed are normally distributed and
have equal population variances (also called homogeneity of
variance or homoscedasticity assumption). Normality assumption
is not always met in real data, especially when the variables
targeted by the treatment program are infrequent behaviors
(i.e., externalizing conducts) or clinical syndromes (Micceri,
1989). Likewise, homoschedasticy assumption is rarely met in
randomized control trial as a result of the experimental variable
causing differences in variability between groups (Grissom
and Kim, 2012). Violation of normality and homoscedasticity
assumptions can compromise the results of classic parametric
tests, in particular on rates of Type-I (Tabachnick and Fidell,

2013) and Type-II error (Wilcox, 1998). Furthermore, the
inability to deal with measurement error can also lower the
accuracy of inferences based on regression and ANOVA-family
techniques which assume that the variables are measured without
errors. However, the presence of some degree of measurement
error is a common situation in psychological research where
the focus is often on not directly observable constructs such as
depression, self-esteem, or intelligence. Finally, observed variable
approaches assume (without testing it) that the measurement
structure of the construct under investigation is invariant
across groups and/or time (Meredith and Teresi, 2006; Millsap,
2011). Thus, lack of satisfied statistical assumptions and/or
uncontrolled unreliability can lead to the under or overestimation
of the true relations among the constructs analyzed (for a
detailed discussion of these issues, see Cole and Preacher,
2014).

On the other side, latent variable approaches refer to the
class of techniques termed under the label structural equation
modeling (SEM; Bollen, 1989) such as confirmatory factor
analysis (CFA; Brown, 2015) and mean and covariance structures
analysis (MACS; Little, 1997). Although a complete overview of
the benefits of SEM is beyond the scope of the present work
(for a thorough discussion, see Little, 2013; Kline, 2016), it is
worthwhile mentioning here those advantages that directly relate
to the evaluation of intervention programs. First, SEM can easily
accommodate the lack of normality in the data. Indeed, several
estimation methods with standard errors robust to non-normal
data are available and easy-to-use in many popular statistical
programs (e.g., MLM, MLR, WLSMV, etc. in Mplus; Muthén
and Muthén, 1998–2012). Second, SEM explicitly accounts for
measurement error by separating the common variance among
the indicators of a given construct (i.e., the latent variable) from
their residual variances (which include both measurement error
and unique sources of variability). Third, if multiple items from
a scale are used to assess a construct, SEM allows the researcher
to evaluate to what extent the measurement structure (i.e., factor
loadings, item intercepts, residual variances, etc.) of such scale
is equivalent across groups (e.g., intervention group vs. control
group) and/or over time (i.e., pretest and posttest); this issue is
known as measurement invariance (MI) and, despite its crucial
importance for properly interpreting psychological findings, is
rarely tested in psychological research (for an overview see
Millsap, 2011; Brown, 2015). Finally, different competitive SEMs
can be evaluated and compared according to their goodness of
fit (Kline, 2016). Many SEM programs, indeed, print in their
output a series of fit indexes that help the researcher assess
whether the hypothesized model is consistent with the data
or not. In sum, when multiple indicators of the constructs of
interest are available (e.g., multiple items from one scale, different
informants, multiple methods, etc.), latent variables approaches
offer many advantages and, therefore, they should be preferred
over manifest variable approaches (Little et al., 2009). Moreover,
when a construct is measured using a single psychometric
measure, there are still ways to incorporate the individuals’
scores in the analyses as latent variables, and thus reduce
the impact of measurement unreliability (Cole and Preacher,
2014).
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LATENT CURVE MODELS

Among latent variable models of change, latent curve models
(LCMs; Meredith and Tisak, 1990), represent a useful and
versatile tool to model stability and change in the outcomes
targeted by an intervention program (Muthén and Curran, 1997;
Curran and Muthén, 1999). Specifically, in LCM individual
differences in the rate of change can be flexibly modeled through
the use of two continuous random latent variables: The intercept
(which usually represents the level of the outcome of interest at
the pretest) and the slope (i.e., the mean-level change over time
from the pretest to the posttest). In detail, both the intercept and
the slope have amean (i.e., the average initial level and the average
rate of change, respectively) and a variance (i.e., the amount of
inter-individual variability around the average initial level and the
average rate of change). Importantly, if both the mean and the
variance of the latent slope of the outcome y in the intervention
group are statistically significant (whereas they are not significant
in the control group), that means that there was not only an
average effect of the intervention, but also some participants were
differently affected by the program (Muthén and Curran, 1997).
Hence, the assumption that participants respond to the treatment
in the same way (as in ANOVA-family analyses) can be easily
relaxed in LCM. Indeed, although individual differences may also
be present in the ANOVAdesign, change occurs at the group level
and, therefore, everyone is impacted in the same fashion after the
exposure to the treatment condition.

As discussed by Muthén and Curran (1997), the LCM
approach is particular useful for evaluating intervention effects
when it is conducted within a multiple group framework
(i.e., MG-LCM), namely when the intercept and the slope of
the outcome of interest are simultaneously estimated in the
intervention and control group. Indeed, as illustrate in our
example, the MG-LCM allows the research to test if both the
mean and the variability of the outcome y at the pretest are similar
across intervention and control groups, as well as if the mean rate
of change and its inter-individual variability are similar between
the two groups. Therefore, the MG-LCM provides information
about the efficacy of an intervention program in terms of both (1)
its average (i.e., group-level) effect and (2) participants’ sensitivity
to differently respond to the treatment condition.

However, a standard MG-LCM cannot be empirically
identified with two waves of data (Bollen and Curran, 2006).
Yet, the use of multiple indicators (at least 2) for each construct
of interest could represent a possible solution to overcome this
problem by allowing the estimation of the intercept and slope as
second-order latent variables (McArdle, 2009; Geiser et al., 2013;
Bishop et al., 2015). Interestingly, although second-order LCMs
are becoming increasingly common in psychological research
due to their higher statistical power to detect changes over time
in the variables of interest (Geiser et al., 2013), their use in
the evaluation of intervention programs is still less frequent.
In the next section, we present a formal overview of a second-
order MG-LCM approach, we describe the possible models of
change that can be tested to assess intervention effects in pretest-
posttest design, and we show an application of the model to real
data.

IDENTIFICATION OF A TWO-TIME POINT
LATENT CURVE MODEL USING PARALLEL
INDICATORS

When only two points in time are available, it is possible to
estimate two LCMs: A No-Change Model (see Figure 1 Panel A)
and a Latent Change Model (see Figure 1 Panel B). In the
following, we described in details the statistical underpinnings of
both these models.

Latent Change Model
A two-time points latent change model implies two latent means
(κk), two latent factor variances (ζk), plus the covariance between
the intercept and slope factor (8k). This results in a total of
5+T model parameters, where T are the error variances for
(yk) when allowing VAR(∈k) to change over time. In the case
of a two waves of data (i.e., T = 2), this latent change model
has 7 parameters to estimate from a total of (2) (3)/2+2 =

5 identified means, variances, and covariances of the observed
variables. Hence, two waves of data are insufficient to estimate
this model. However, this latent change model can be just-
identified (i.e., zero degrees of freedom [df]) by constraining the
residual variances of the observed variables to be 0. This last
constraint should be considered structural and thus included
in all two-time points latent change model. In this latter case,
the variances of the latent variables (i.e., the latent intercept
representing the starting level, and the latent change score) are
equivalent to those of the observed variables. Thus, when fallible
variables are used, this impedes to separate true scores from their
error/residual terms.

A possible way to allow this latent change model to be over-
identified (i.e., df ≥ 1) is by assuming the availability of at
least two observed indicators of the construct of interest at
each time point (i.e., T1 and T2). Possible examples include
the presence of two informants rating the same behavior
(e.g., caregivers and teachers), two scales assessing the same
construct, etc. However, even if the construct of interest is
assessed by only one single scale, it should be noted that
psychological instruments are often composed by several items.
Hence, as noted by Steyer et al. (1997), it is possible to
randomly partitioning the items composing the scale into two
(or more) parcels that can be treated as parallel forms. By
imposing appropriate constraints on the loadings (i.e., λk = 1),
the intercepts (τk = 0), within factor residuals (εk = ε), and
by fixing to 0 the residual variances of the first-order latent
variables ηk (ζk = 0), the model can be specified as a first-order
measurement model plus a second-order latent change model
(see Figure 1 Panel B). Given previous constraints of loadings,
intercepts, and first order factor residual variances, this model
is over-identified because we have (4) (5)/2+4 = 14 observed
variances, covariances, and means. Of course, when three or
more indicators are available, identification issues cease to be a
problem. In this paper, we restricted our attention to the two
parallel indicators case to address the more basic situation that
a researcher can encounter in the evaluation of a two time-point
intervention. Yet, our procedure can be easily extended to cases
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FIGURE 1 | Second Order Latent Curve Models with parallel indicators (i.e., residual variances of observed indicators are equal within the same latent

variable: ε1 within η1and ε2 within η2). All the intercepts of the observed indicators (Y) and endogenous latent variables (η) are fixed to 0 (not reported in figure). In

model A, the residual variances of η1 and η2 (ζ1 and ζ2, respectively) are freely estimated, whereas in Model B they are fixed to 0. ξ1, intercept; ξ2, slope; κ1, mean of

intercept; κ2, mean of slope; φ1, variance of intercept; φ2, variance of slope; φ12, covariance between intercept and slope; η1, latent variable at T1; η2, latent variable

at T2; Y, observed indicator of η; ε, residual variance/covariance of observed indicators.

in which three or more indicators are available at each time
point.

Specification
More formally, and under usual assumptions (Meredith and
Tisak, 1990), the measurement model for the above two times
latent change model in group k becomes:

yk = τky + 3k
y ηk + ∈k, (1)

where yk is a mp x 1 random vector that contains the observed
scores, {ykit}, for the ith variable at time t, i ∈ {1,2,.., p}, and t ∈

{1,2,.., m}. The intercepts are contained in the mp x 1 vector τky ,

3k
y is a mp x mq matrix of factor loadings, ηk is a mq x 1 vector

of factor scores, and the unobserved error random vectors ∈k is
amp x 1 vector. The population vector mean, µk

y , and covariance

matrix,
∑k

y , or Means and Covariance Structure (MACS) are:

µk
y = τ ky + 3k

yµη
k and

∑k

y
= 3k

y

∑k

η
3k′

y + θkε , (2)

where µk
η is a vector of latent factors means,

∑k
η is the modeled

covariance matrix, and θkε is a mp × mp matrix of observed

variable residual covariances. For each column, fixing an element
of 3k

y to 1, and an element of τky to 0, identifies the model.
By imposing increasingly restrictive constraints on elements of
matrix3y and τy, the above two-indicator two-time pointsmodel
can be identified.

The general equations for the structural part of a second order
(SO) multiple group (MG) model are:

ηk = Ŵk ξk + ζk, (3)

where Ŵk is a mp x qr matrix containing second order factor
coefficients, ξk is a qr× 1 vector of second-order latent variables,
and ζk is a mq x 1 vector containing latent variable disturbance
scores. Note that q is the number of latent factors and that r is the
number of latent curves for each latent factor.

The population mean vector, µk
η, and covariance matrix,

∑k
η,

based on (3) are

µk
η = Ŵkκk and

∑k

η
= Ŵk8kŴk′ + ψk, (4)

where 8k is a r x r covariance of the latent variables, and 9k

is a mq × mq latent variable residual covariance matrix. In the
current application, what makes the difference in two models is
the way in which matrices Ŵk and 8k are specified.
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Application of the SO-MG-LCM to
Intervention Studies Using a
Pretest-Posttest Design
The application of the above two-times LCM to the evaluation
of an intervention is straightforward. Usually, in intervention
studies, individuals are randomly assigned to two different
groups. The first group (G1) is exposed to an intervention that
takes place somewhere after the initial time point. The second
group (G2), also called the control group, does not receive
any direct experimental manipulation. In light of the random
assignment, G1 and G2 can be viewed as two equivalent groups
drawn by the same population and the effect of the intervention
may be ascertained by comparing individuals’ changes from T1
to T2 across these two groups.

Following Muthén and Curran (1997), an intercept factor
should be modeled in both groups. However, only in the
intervention group an additional latent change factor should be
added. This factor is aimed at capturing the degree of change that
is specific to the treatment group. Whereas, the absolute value
for the latent mean of this factor can be interpreted as the change
determined by the intervention in the intervention group,
a significant variance indicates a meaningful heterogeneity
in responding to the treatment. In this model αky is a vector
containing freely estimating mean values for the intercept (i.e.,
ξ1), and the slope (i.e., ξ2). Ŵk

y is thus a 2 x 2 matrix, containing

basis coefficients, determined in

[

1
1

]

for the intercept (i.e., ξ1)

and

[

0
1

]

for the slope (i.e., ξ2). 8k is a 2 x 2 matrix containing

variances and covariance for the two latent factors representing
the intercept and the slope.

Given randomization, restricting the parameters of the
intercept to be equal across the control and treatment
populations is warranted in a randomized intervention study.
Yet, baseline differences can be introduced in field studies where
randomization is not possible or, simply, the randomization
failed during the course of the study (Cook and Campbell,
1979). In such cases, the equality constraints related to
the mean or to the variance of the intercept can be
relaxed.

The influence of participants’ initial status on the effect of the
treatment in the intervention group can also be incorporated in
themodel (Cronbach and Snow, 1977;Muthén and Curran, 1997;
Curran and Muthén, 1999) by regressing the latent change factor
onto the intercept factor, so that the mean and variance of the
latent change factor in the intervention group are expressed as a
function of the initial status. Accordingly, this analysis captures
to what extent inter-individual initial differences on the targeted
outcome can predispose participants to differently respond to the
treatment delivered.

Sequence of Models
We suggest a four-step approach to intervention evaluation.
By comparing the relative fit of each model, researchers can
have important information to assess the efficacy of their
intervention.

Model 1: No-Change Model
A no-change model is specified for both intervention group
(henceforth G1) and for control group (henceforth G2). As a
first step, indeed, a researcher may assume that the intervention
has not produced any meaningful effect, and therefore a no-
changemodel (or strict stability model) should be simultaneously
estimated in both the intervention and control group. In its more
general version, the no-change model includes only a second-
order intercept factor which represents the participants’ initial
level. Importantly, both the mean and variance of the second-
order intercept factor are freely estimated across groups (see
Figure 1 Panel A). More formally, in this model, 8k is a qr
x qr covariance matrix of the latent variables, and Ŵk is a mq
x qr matrix, containing for each latent variable, a set of basis
coefficients for the latent curves.

Model 2: Latent Change Model in the Intervention

Group
In this model, a slope growth factor is estimated in the
intervention group only. As previously detailed, this additional
latent factor is aimed at capturing any possible change in the
intervention group. According to our premises, this model
represents the “target” model, attesting a significant intervention
effect in G1 but not in G2. Model 1 is then compared with Model
2 and changes in fit indexes between the two models are used
to evaluate the need of this further latent factor (see section
Statistical Analysis).

Model 3: Latent Change Model in Both the

Intervention and Control Group
In model 3, a latent change model is estimated simultaneously
in both G1 and G2. The fit of Model 2 is compared with the fit
of Model 3 and changes in fit indexes between the two models
are used to evaluate the need of this further latent factor in
the control group. From a conceptual point of view, the goal
of Model 3 is twofold because it allows the researcher: (a) to
rule out the eventuality of “contaminations effects” between the
intervention and control group (Cook and Campbell, 1979);
(b) to assess a possible, normative mean-level change in the
control group (i.e., a change that cannot be attributed to the
treatment delivered). In reference to (b), indeed, it should be
noted that some variables may show a normative developmental
increase during the period of the intervention. For instance, a
consistent part of the literature has identified an overall increase
in empathic capacities during early childhood (for an overview,
see Eisenberg et al., 2015). Hence, researchers aimed at increasing
empathy-related responding in young children may find that
both the intervention and control group actually improved in
their empathic response. In this situation, both the mean and
variance of the latent slope should be constrained to equality
across groups to mitigate the risk of confounding intervention
effects with the normative development of the construct (for
an alternative approach when more than two time points are
available, see Muthén and Curran, 1997; Curran and Muthén,
1999). Importantly, the tenability of these constraints can be
easily tested through a delta chi square test (1χ2) between the
chi squares of the constrained model vs. unconstrained model.
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A significant 1χ2 (usually p < 0.05) indicates that the two
models are not statistically equivalent, and the unconstrained
model should be preferred. On the contrary, a non-significant
1χ2 (usually p > 0.05) indicates that the two models are
statistically equivalent, and the constrained model (i.e., the more
parsimonious model) should be preferred.

Model 4: Sensitivity Model
After having identified the best fitting model, the parameters of
the intercept (i.e., mean and variance) should be constrained
to equality across groups. This sensitivity analysis is crucial to
ensure that both groups started with an equivalent initial status
on the targeted behavior which is an important assumption
in intervention programs. In line with previous analyses, the
plausibility of initial status can be easily tested through the 1χ2

test. Indeed, given randomization, it seems likely to assume
that participants in both groups are characterized by similar or
identical starting levels, and the groups have the same variability.
These assumptions lead to a constrained no-change no-group
difference model. This model is the same as the previous one,
except that κk = κ, or in our situation κ1 = κ2. Moreover, in our
situation, r= 1, q= 1,m= 2, and hence,8k =8 is a scalar, Ŵk =

12, and 9k = 9I2 for each of the kth population.
In the next section, the above sequence of models has been

applied to the evaluation of a universal intervention program
aimed to improve students’ prosociality. We presented results
from every step implied by the above methodology, and we
offered a set of Mplus syntaxes to allow researchers estimate the
above models in their dataset.

THE YOUNG PROSOCIAL ANIMATION
PROGRAM

The Young Prosocial Animation (YPA; Zuffianò et al., 2012)
is a universal intervention program (Greenberg et al., 2001) to
sensitize adolescents to prosocial and empathic values (Zuffianò
et al., 2012).

In detail, the YPA tries to valorize: (a) the status of people
who behave prosocially, (b) the similarity between the “model”
and the participants, and (c) the outcomes related to prosocial
actions. Following Bandura’s (1977) concept of modeling, in fact,
people are more likely to engage in those behaviors they value
and if the model is perceived as similar and with an admired
status. The main idea is that valuing these three aspects could
foster a prosocial sensitization among the participants (Zuffianò
et al., 2012). In other terms, the goal is to promote the cognitive
and emotional aspects of prosociality, in order to strengthen
attitudes to act and think in a “prosocial way.” The expected
change, therefore, is at the level of the personal dispositions
in terms of an increased receptiveness and propensity for
prosocial thinking (i.e., both the ability to take the point of
view and to be empathetic rather than directly affecting the
behaviors acted out by the individuals, as well as the ability
to produce ideas and solutions that can help other people;
Zuffianò et al., 2012). Due to its characteristics, YPA can be
conceived as a first phase of prosocial sensitization on which

implementing programs more appropriately direct to increase
prosocial behavior (e.g., CEPIDEA program; Caprara et al.,
2014). YPA aims to achieve this goal through a guided discussion
following the viewing of some prosocial scenes selected from
the film “Pay It Forward”1. After viewing each scene, a trained
researcher, using a standard protocol guides a discussion among
the participants highlighting: (i) the type of prosocial action
(e.g., consoling, helping, etc.); (ii) the benefits for the actor and
the target of the prosocial action; (iii) possible benefits of the
prosocial action extended to the context (e.g., other persons,
the more broad community, etc.); (iv) requirements of the actor
to behave prosocially (e.g., being empathetic, bravery, etc.); (v)
the similarity between the participant and the actor of the
prosocial behavior; (vi) the thoughts and the feelings experienced
during the viewing of the scene. The researcher has to complete
the intervention within 12 sessions (1 h per session, once a
week).

For didactic purposes, in the present study we re-analyzed
data from an implementation of the YPA in three schools located
in a small city in the South of Italy (see Zuffianò et al., 2012 for
details).

Hypotheses
We expected Model 2 (a latent change model in the intervention
group and a no-change model in the control group) to be the best
fitting model. Indeed, from a developmental point of view, we
had no reason to expect adolescents showing a normative change
in prosociality after such a short period of time (Eisenberg et al.,
2015). In line with the goal of the YPA, we hypothesized an small-
medium increase in prosociality in the intervention group. We
also expected that both groups did not differ at T1 in absolute
level of prosocial behaviors, ensuring that both intervention
and control group were equivalent. Finally, we explored the
influence of participants’ initial status on the treatment effect,
a scenario in which those participants with lower initial
level of prosociality benefitted more from attending the YPA
session.

METHODS

Design
The study followed a quasi-experimental design, with both the
intervention and control groups assessed at two different time
points: Before (Time 1) YPA intervention and 6 months after
(Time 2). Twelve classrooms from three schools (one middle
school and two high schools) participated in the study during the
school year 2008–2009. Each school has ensured the participation
of 4 classes that were randomly assigned to intervention and
control group (two classes to intervention group and two classes
to control group).2 In total, six classes were part of intervention
group and six classes of control group. The students from the

1Directed by Leder (2000).
2Importantly, although classrooms were randomized across the two conditions

(i.e., intervention group and control group), the selection of the four classrooms

in each school was not random (i.e., each classroom in school X did not have the

same probability to participate in the YPA). In detail, participating classrooms were

chosen according to the interest in the project showed by the head teachers.
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middle school were in the eighth grade (third year of secondary
school in Italy), whereas the students from the two high schools
were in the ninth (first year of high school in Italy) and tenth
grade (second year of high school in Italy).

Participants
The YPA program was implemented in a city in the South of
Italy. A total amount of 250 students participated in the study:
137 students (51.8% males) were assigned to the intervention
group and 113 (54% males) to the control group. At T2 students
were 113 in the intervention group (retention rate = 82.5%) and
91 in the control group (retention rate = 80.5%). Little’s test
of missingness at random showed a non-significant chi-squared
value [χ2

(2) = 4.698, p = 0.10]; this means that missingness at

posttest is not affected by the levels of prosociality at pretest. The
mean age was 14.2 (SD = 1.09) in intervention group, and 15.2
(SD= 1.76) in control group. Considering socioeconomic status,
the 56.8% of families in intervention group and the 60.0% in
control group were one-income families. The professions mostly
represented in the two groups were the “worker” among the
fathers (the 36.4% in intervention group and the 27.9% in control
group) and the “housewife” among the mothers (the 56.0% in the
intervention group and the 55.2% in the control group). Parent’s
school level was approximately the same between the two groups:
Most of parents in the intervention group (43.5%) and in the
control group (44.7%) had a middle school degree.

Measures
Prosociality
Participants rated their prosociality on a 16-item scale (5-
point Likert scale: 1 = never/almost never true; 5 = almost
always/always true) that assesses the degree of engagement in
actions aimed at sharing, helping, taking care of others’ needs,
and empathizing with their feelings (e.g., “I try to help others”
and “I try to console people who are sad”). The alpha reliability
coefficient was 0.88 at T1 and 0.87 at T2. The scale has been
validated on a large sample of respondents (Caprara et al., 2005)
and has been found to moderately correlate (r > 0.50) with
other-ratings of prosociality (Caprara et al., 2012).

Statistical Analysis
All the preceding models were estimated by maximum likelihood
(ML) using Mplus program 7 (Muthén andMuthén, 1998–2012).
Missing data were handled using full information maximum
likelihood (FIML) estimation, which draws on all available data
to estimate model parameters without imputing missing values
(Enders, 2010). To evaluate the goodness of fit, we relied on
different criteria. First we evaluated the values assumed by the
χ2 likelihood ratio statistic for the overall group. Given that
we were interested in the relative fit of the above presented
differentmodels of change withinG1 andG2, we investigated also
the contribution offered by each group to the overall χ2 value.
The idea was to have a more careful indication of the impact
of including the latent change factor in a specific group. We
also investigated the values of the Comparative Fit Index (CFI),
the Tucker Lewis Fit Index (TLI), the Root Mean Square Error
of Approximation (RMSEA) with associated 90% confidence

intervals, and the Root Mean Square Residuals Standardized
(SRMR). We accepted CFI and TLI values >0.90, RMSEA values
<0.08, and SRMR <0.08 (see Kline, 2016). Last, we used the
Akaike Information Criteria (AIC; Burnham and Anderson,
2004). AIC rewards goodness of fit and includes a penalty that
is an increasing function of the number of parameters estimated.
Burnham and Anderson (2004) recommend rescaling all the
observed AIC values before selecting the best fitting model
according to the following formula: 1i = AICi-AICmin, where
AICmin is the minimum of the observed AIC values (among
competing models). Practical guidelines suggest that a model
which differs less than 1i= 2 from the best fitting model (which
has 1i = 0) in a specific dataset is said to be “strongly supported
by evidence”; if the difference lies between 4 ≤ and ≤ 7 there
is considerably less support, whereas models with 1i > 10 have
essentially no support.

RESULTS

We created two parallel forms of the prosociality scale by
following the procedure described in Little et al. (2002, p. 166).
In Table 1 we reported zero-order correlations, mean, standard
deviation, reliability, skewness, and kurtosis for each parallel
form. Cronbach’s alphas were good (≥0.74), and correlations
were all significant at p < 0.001. Indices of skewness and
kurtosis for each parallel form in both groups did not exceed
the value of |0.61|, therefore the univariate distribution of all
the eight variables (4 variables for 2 groups) did not show
substantial deviations from normal distribution (Curran et al.,
1996). In order to check multivariate normality assumptions,
we computed the Mardia’s two-sided multivariate test of fit for
skewness and kurtosis. Given the well-known tendency of this
coefficient to easily reject H0, we set alpha level at 0.001 (in
this regard, see Mecklin and Mundfrom, 2005; Villasenor Alva
and Estrada, 2009). Results of Mardia’s two-sided multivariate
test of fit for skewness and kurtosis showed p-value of 0.010
and 0.030 respectively. Therefore, the study variables showed an
acceptable, even if not perfect, multivariate normality. Given the
modest deviation from the normality assumption we decided to
use Maximum Likelihood as the estimation method.

Evaluating the Impact of the Intervention
In Table 2 we reported the fit indexes for the three alternative
models (see Appendices B1–B4 for annotated Mplus syntaxes
for each of these). As hypothesized, Model 2 (see also Figure 2)
was the best fitting model. Trajectories of Prosociality for
intervention and control group separately are plotted in Figure 3.
The contribution of each group to overall chi-squared values
highlighted how the lack of the slope factor in the intervention
group results in a substantial misfit. On the contrary, adding a
slope factor to control group did not significantly change the
overall fit of the model [1χ2

(1) = 0.765, p = 0.381]. Of interest,

the intercept mean and variance were equal across groups (see
Table 2, Model 4) suggesting the equivalence of G1 and G2 at T1.

In Figure 2 we reported all the parameters of the best fitting
model, for both groups. The slope factor of intervention group
has significant variance (ϕ2 = 0.28, p < 0.001) and a positive
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and significant mean (κ2 = 0.19, p < 0.01). Accordingly, we
investigated the presence of the influence of the initial status on
the treatment effect by regressing the slope onto the intercept
in the intervention group. Note that this latter model has the
same fit of Model 2; however, by implementing a slope instead
of a covariance, allows to control the effect of the individuals’
initial status on their subsequent change. The significant effect

TABLE 1 | Descriptive statistics and zero-order correlations for each

group separately (N = 250).

(1) (2) (3) (4) n

G1 (INTERVENTION GROUP)

(1) Pr1_T1 0.80 137

(2) Pr2_T1 0.81 0.80 137

(3) Pr1_T2 0.51 0.52 0.74 113

(4) Pr2_T2 0.48 0.59 0.78 0.79 113

M 3.44 3.49 3.62 3.71 −

SD 0.75 0.72 0.60 0.62 −

Sk −0.51 −0.60 −0.34 −0.61 −

Ku −0.06 0.43 −0.13 0.02 −

G2 (CONTROL GROUP)

(1) Pr1_T1 0.77 113

(2) Pr2_T1 0.76 0.76 113

(3) Pr1_T2 0.74 0.67 0.75 91

(4) Pr2_T2 0.65 0.73 0.78 0.75 91

M 3.42 3.49 3.49 3.55 −

SD 0.70 0.71 0.65 0.64 −

Sk −0.39 −0.55 −0.27 −0.41 −

Ku −0.12 −0.01 −0.44 −0.49 −

Pr1_T1, Parallel form 1 of the Prosociality scale at Time 1; Pr2_T1, Parallel form 2 of

the Prosociality scale at Time 1; Pr1_T2, Parallel form 1 of the Prosociality scale at Time

2; Pr2_T2, Parallel form 2 of the Prosociality scale at Time 2; M, mean; SD, standard

deviation; Sk, skewness; Ku, kurtosis; n, number of subjects for each parallel form in each

group.

Italicized numbers in diagonal are reliability coefficients (Cronbach’s α).

All correlations were significant at p ≤ 0.001.

of the intercept (i.e., β = –0.62, p < 0.001) on the slope (R2

= 0.38) indicated that participants who were less prosocial at
the beginning increased steeper in their prosociality after the
intervention.

DISCUSSION

Data collected in intervention programs are often limited to
two points in time, namely before and after the delivery
of the treatment (i.e., pretest and posttest). When analyzing
intervention programs with two waves of data, researchers so
far have mostly relied on ANOVA-family techniques which are
flawed by requiring strong statistical assumptions and assuming
that participants are affected in the same fashion by the
intervention. Although a general, average effect of the program is
often plausible and theoretically sounded, neglecting individual
variability in responding to the treatment delivered can lead to
partial or incorrect conclusions. In this article, we illustrated
how latent variable models can help overcome these issues
and provide the researcher with a clear model-building strategy
to evaluate intervention programs based on a pretest-posttest
design. To this aim, we outlined a sequence of four steps to
be followed which correspond to substantive research questions
(e.g., efficacy of the intervention, normative development, etc.).
In particular, Model 1, Model 2, and Model 3 included a different
combinations of no-change and latent change models in both
the intervention and control group (see Table 2). These first
three models are crucial to identify the best fitting trajectory
of the targeted behavior across the two groups. Next, Model 4
was aimed at ascertaining if the intervention and control group
were equivalent on their initial status (both in terms of average
starting level and inter-individual differences) or if, vice-versa,
this similarity assumption should be relaxed.

Importantly, even if the intervention and control group differ
in their initial level, this should not prevent the researcher
to investigate the presence of moderation effects—such as a
treatment-initial status interaction—if this is in line with the

TABLE 2 | Goodness-of-fit indices for the tested models.

NFP χ2(df) χ2G1(df) χ2G2(df) CFI TLI RMSEA [90% CI] SRMR AIC (1AIC)

Model 1 (G1 = A; G2 = A) 16 22.826(12)* 18.779(6)** 4.047(6)n.s. 0.981 0.981 0.085 [0.026,0.138] 0.081 1318.690(9.68)

Model 2 (G1 = B; G2 = A) 17 11.143(11)n.s. 7.096(5)n.s. 4.047(6)n.s. 1.00 1.00 0.010 [0.000,0.095] 0.047 1309.007(0)

Model 3 (G1 = B; G2 = B) 18 10.378(10)n.s. 7.096(5)n.s. 3.282(5)n.s. 0.999 0.999 0.017 [0.000,0.099] 0.045 1310.242(1.24)

NFP χ2(df) χ2G1(df) χ2G2(df) CFI TLI RMSEA [90% CI] SRMR 1χ
2(1df) of M4

vs. M2

Model 4 15 13.279(13)n.s. 7.920(6)n.s. 5.359(7)n.s. 1.00 1.00 0.013 [0.000,0.090] 0.160 2.136(2)n.s.

G1, intervention group; G2, control group; A, no-change model; B, latent change model; NFP, Number of Free Parameters; df, degrees of freedom; χ2G1, contribution of G1 to the overall

chi-square value; χ2G2, contribution of G2 to the overall chi-square value; CFI, Comparative Fit Index; TLI, Tucker-Lewis Index; RMSEA, Root Mean Square Error of Approximation; CI,

confidence intervals; SRMR, Standardized Root Mean Square Residual; AIC, Akaike’s Information Criterion.

∆AIC = Difference in AIC between the best fitting model (i.e., Model 2; highlighted in bold) and each model.

Model 4 = Model 2 with mean and variance of intercepts constrained to be equal across groups.

The full Mplus syntaxes for these models were reported in Appendices.
n.s. p > 0.05; *p < 0.05; **p < 0.01.
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FIGURE 2 | Best fitting Second Order Multiple Group Latent Curve Model with parameter estimates for both groups. Parameters in bold were fixed. This

model has parallel indicators (i.e., residual variances of observed indicators are equal within the same latent variable, in each group). All the intercepts of the observed

indicators (Y) and endogenous latent variables (η) are fixed to 0 (not reported in figure). G1, intervention group; G2, control group; ξ1, intercept of prosociality; ξ2,

slope of prosociality; η1, prosociality at T1; η2, prosociality at T2; Y, observed indicator of prosociality; ε, residual variance of observed indicator. n.s. p > 0.05; *p <

0.05; **p < 0.01; ***p < 0.001.

FIGURE 3 | Trajectories of prosocial behavior for intervention group

(G1) and control group (G2) in the best fitting model (Model 2 in

Table 2).

researcher’s hypotheses. One of the major advantage of the
proposed approach, indeed, is the possibility to model the
intervention effect as a random latent variable (i.e., the second-
order latent slope) characterized by both a mean (i.e., the average
change) and a variance (i.e., the degree of variability around

the average effect). As already emphasized by Muthén and
Curran (1997), a statistically significant variance indicates the
presence of systematic individual differences in responding to the
intervention program. Accordingly, the latent slope identified in
the intervention group can be regressed onto the latent intercept
in order to examine if participants with different initial values on
the targeted behavior were differently affected by the program.
Importantly, the analysis of the interaction effects does not need
to be limited to the treatment-initial status interaction but can
also include other external variables as moderators (e.g., sex, SES,
IQ, behavioral problems, etc.; see Caprara et al., 2014).

To complement our formal presentation of the LCM
procedure, we provided a real data example by re-analyzing
the efficacy of the YPA, a universal intervention program
aimed to promote prosociality in youths (Zuffianò et al.,
2012). Our four-step analysis indicated that participants in
the intervention group showed a small yet significant increase
in their prosociality after 6 months, whereas students in the
control group did not show any significant change (see Model
1, Model 2, and Model 3 in Table 2). Furthermore, participants
in the intervention and control group did not differ in their
initial levels of prosociality (Model 4), thereby ensuring the
comparability of the two groups. These results replicated those
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reported by Zuffianò et al. (2012) and further attested to
the effectiveness of the YPA in promoting prosociality among
adolescents. Importantly, our results also indicated that there
was a significant variability among participants in responding
to the YPA program, as indicated by the significant variance
of the latent slope. Accordingly, we explored the possibility of
a treatment-initial status interaction. The significant prediction
of the slope by the intercept indicated that, after 6 months,
those participants showing lower initial levels of prosociality were
more responsive to the intervention delivered. On the contrary,
participants who were already prosocial at the pretest remained
overall stable in their high level of prosociality. Although this
effect was not hypothesized a priori, we can speculate that less
prosocial participants were more receptive to the content of the
program because they appreciated more than their (prosocial)
counterparts the discussion about the importance and benefits of
prosociality, topics that, very likely, were relatively new for them.
However, it is important to remark that the goal of the YPA was
to merely sensitize youth to prosocial and empathic values and
not to change their actual behaviors. Accordingly, our findings
cannot be interpreted as an increase in prosocial conducts among
less prosocial participants. Future studies are needed to examine
to what extent the introduction of the YPA in more intensive
school-based intervention programs (see Caprara et al., 2014)
could represent a further strength to promote concrete prosocial
behaviors.

LIMITATIONS AND CONCLUSIONS

Albeit the advantages of the proposed LCM approach, several
limitations should be acknowledged. First of all, the use of
a second order LCM with two available time points requires
that the construct is measured by more than one observed
indicators. As such, this technique cannot be used for single-
item measures (e.g., Lucas and Donnellan, 2012). Second, as
any structural equation model, our SO-MG-LCM makes the
strong assumption that the specified model should be true in
the population. An assumption that is likely to be violated
in empirical studies. Moreover, it requires to be empirically
identified, and thus an entire set of constraints that leave aside
substantive considerations. Third, in this paper, we restricted our
attention to the two parallel indicators case to address the more
basic situation that a researcher can encounter in the evaluation
of a two time-point intervention. Our aimwas indeed to confront
researchers with the more restrictive case, in terms of model
identification. The case in which only two observed indicators are
available is indeed, in our opinion, one of the more intimidating
for researchers. Moreover, when a scale is composed of a long
set of items or the target construct is a second order-construct
loaded by two indicators (e.g., as in the case of psychological
resilience; see Alessandri et al., 2012), and the sample size is
not optimal (in terms of the ratio estimated parameters/available
subjects) it makes sense to conduct measurement invariance test
as a preliminary step, “before” testing the intervention effect, and
then use the approach described above to be parsimonious and
maximize statistical power. In these circumstances, the interest is

indeed on estimating the LCM, and the invariance of indicators
likely represent a prerequisite. Measurement invariance issues
should never be undervalued by researchers. Instead, they should
be routinely evaluated in preliminary research phases, and,
when it is possible, incorporated in the measurement model
specification phase. Finally, although intervention programs with
two time points can still offer useful indications, the use of three
(and possibly more) points in time provides the researcher with
a stronger evidence to assess the actual efficacy of the program
at different follow-up. Hence, the methodology described in this
paper should be conceived as a support to take the best of pretest-
posttest studies and not as an encouragement to collect only two-
wave data. Fourth, SEM techniques usually require the use of
relatively larger samples compared to classic ANOVA analyses.
Therefore, our procedure may not be suited for the evaluation of
intervention programs based on small samples. Although several
rules of thumb have been proposed in the past for conducting
SEM (e.g., N > 100), we encourage the use of Monte Carlo
simulation studies for accurately planning the minimum sample
size before starting the data collection (Bandalos and Leite, 2013;
Wolf et al., 2013).

Despite these limitations, we believe that our LCM approach
could represent a useful and easy-to-usemethodology that should
be in the toolbox of psychologists and prevention scientists.
Several factors, often uncontrollable, can oblige the researcher to
collect data from only two points in time. In front of this (less
optimal) scenario, all is not lost and researchers should be aware
that more accurate and informative analytical techniques than
ANOVA are available to assess intervention programs based on
a pretest-posttest design.
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