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Research has consistently revealed enhanced neural activation corresponding to
attended cues coupled with suppression to unattended cues. This attention effect
depends both on the spatial features of stimuli and internal task goals. However,
a large majority of research supporting this effect involves circumscribed tasks that
possess few ecologically relevant characteristics. By comparison, natural scenes have
the potential to engage an evolved attention system, which may be characterized by
supplemental neural processing and integration compared to mechanisms engaged
during reduced experimental paradigms. Here, we describe recent animal and human
studies of naturalistic scene viewing to highlight the specific impact of social and
affective processes on the neural mechanisms of attention modulation.
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THE FUNDAMENTAL ATTENTION NETWORK

Attention to the surrounding environment allows us to achieve our internally directed goals.
Neuronal activation within early visual regions, such as the inferotemporal cortex (IT) and
V4, corresponding to attended stimuli is often enhanced while neuronal activity in these areas
corresponding to distracting information is suppressed, in part through the influence of regions
such as the frontal eye fields (FEFs) and inferior parietal sulci (IPS; Kastner and Ungerleider, 2000;
Baluch and Itti, 2011; Carrasco, 2011; Chelazzi et al., 2011). Classically, perceptually salient or
unexpected stimuli can involuntarily draw attention in an exogenous, “bottom–up” (BU) fashion
(Yantis and Jonides, 1990; Theeuwes, 1992, 2004). In contrast, “top–down” (TD), attention reflects
how we voluntarily select items in the environment that merit re-orienting (Posner, 1980; Connor
et al., 2004). These two processes may be characterized by different neural mechanisms using
networks that ultimately converge and influence one another, and the convergence of BU and TD
attention can be described as one, or several, priority maps where stimuli compete for attentional
resources (Kusunoki et al., 2000; Bisley and Goldberg, 2010), resulting in one environmental
item that draws attention in a “winner take all” fashion. It is important to note that a complex
environmental event, as discussed below, may act on both attentional systems and that the
activation of these processes is not, necessarily, binary; engagement of endogenous and exogenous
attention may lie on a continuum, with specific events assigning different weights to each.

Through learning we establish expectations and rules about the nature of objects within our
environment, such that incoming visual information is continuously compared against these
expectancies (Summerfield and De Lange, 2014). In this way, we can predictively focus on
subsets of the local context and shift attention rapidly should something unexpected occur.
Feedforward processing of visual information is monitored via constant feedback from frontal

Frontiers in Psychology | www.frontiersin.org 1 February 2017 | Volume 8 | Article 226

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
https://doi.org/10.3389/fpsyg.2017.00226
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2017.00226
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2017.00226&domain=pdf&date_stamp=2017-02-20
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00226/abstract
http://loop.frontiersin.org/people/48612/overview
http://loop.frontiersin.org/people/10967/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00226 February 16, 2017 Time: 16:38 # 2

Frank and Sabatinelli Motivated Attention in Naturalistic Scenes

cortex (Miller and Cohen, 2001; Barbas et al., 2011). One such
processing stream involves the prefrontal cortex (PFC), which
maintains functional connections with FEFs that modulate
saccade planning, which in turn projects to the IPS for
planning attentional deployment, and continues to primary
and secondary visual-processing regions V1 and V2 (Corbetta
et al., 2008; Corbetta and Shulman, 2011; Spreng et al., 2013).
Additionally, the orbitofrontal cortex (OFC) innervates thalamus
and amygdala (Cavada et al., 2000), potentially reflecting
affective regulatory functions, which in turn project to ventral
visual regions IT, V4, and primary visual cortex for object
discrimination (Freese and Amaral, 2005; Tomasi and Volkow,
2011). These regional linkages may enable prior experience to
enhance the efficiency and speed of perceptual processing.

Studies of visual attention often involve cue stimuli with
little complexity; typically consisting of only a few shapes with
solid colors, or motion contrasts on a fixed, blank background
(Posner and Cohen, 1984; Wolfe and Horowitz, 2004). While
these studies are tractable and extremely valuable in exploring
the essential nature of visual attention, they do not resemble the
intricacy of naturalistic scenes we encounter in life. To develop
a more ecologically representative model of attention processing,
it is useful to consider how stimuli that represent realistic daily
experiences may affect attentional deployment.

While expectation clearly directs our attentional spotlight
in sparse experimental paradigms, we are also interested in
how attention circuits differ when processing natural scenes,
as contextual cuing incorporates prior experience to expedite
visual search (Le-Hoa Võ and Wolfe, 2015). Here, we review
recent studies of naturalistic input to the attention process,
such as environmental complexity, social stimuli, and affective
stimuli. Additionally, we briefly discuss limitations of naturalistic
experimental techniques and posit several research problems
regarding our understanding of the primate attention network.

NATURALISTIC ATTENTION

Humans are exceptionally skilled at rapid detection of other,
potentially dangerous, animals in the natural environment.
When participants are given prior instruction, scalp event-
related potentials (ERPs) can differentiate briefly presented
(<25ms) natural scenes containing animals from comparable
scenes containing no animals within 150 ms of stimulus onset
(Thorpe et al., 1996; Codispoti et al., 2006). Individuals are
also able to discriminate peripheral naturalistic images during
cognitively demanding tasks. Additionally, this ability does not
extend to artificial, but visually salient, stimuli (Li et al., 2002).
The efficiency of search concerning natural scenes is, therefore,
likely a reflection of our expertise in navigating the world.

Prior exposure with the environment can inform our search
strategy to determine where in space to deploy attention. For
instance, when searching for a human in an urban context,
individuals will first fixate on areas in which humans are typically
found; searchers will look for people on a sidewalk before
they look on a roof (Ehinger et al., 2009). In the laboratory,
individuals will also use prior memory of a novel scene to speed

search, engaging both frontoparietal attention mechanisms and
the hippocampus (Summerfield et al., 2006). Real-world search is
also relatively resistant to the number of distractors. Wolfe et al.
(2011) conducted a study in which individuals were asked to find
a particular object (e.g., a lamp) located within a natural scene
(e.g., a living room) or within a search array (various objects
randomly situated on a blank surface). When the target was
placed within a natural scene, each additional searchable item
added approximately 5 ms to the total search time. However,
when targets were placed in an artificial array, each additional
distractor added approximately 40 ms to search time. In other
words, individuals were much better at disregarding distractors
that were logically placed within a natural scene, thus speeding
search for the target. Additionally, natural objects placed in
locations and orientations typically viewed in the environment
reduce cognitive competition compared to items positioned in
novel ways (Kaiser et al., 2014). These data demonstrate the
considerable impact of context clues in real-world search. Scene
context, supported by prior experience, appears to guide TD
attention via multiple brain regions, including hippocampus,
parahippocampal and occipital place areas, retrosplenial cortex,
and IPS (Dilks et al., 2013; Preston et al., 2013; Peelen and
Kastner, 2014). In this way, canonical late-stage visual and
memory systems are integrated with the attention network,
providing regions such as the FEF and IPS with information to
significantly modulate visual search.

As we navigate the world, our attentional focus must be
continually updated to attain the current goal while inhibiting
past goals. In this way, the ventral visual cortex has been shown
to be actively suppressed when attending to previous relevant
(but now irrelevant) stimuli (Seidl et al., 2012). The ability to
rapidly attend to a searched-for object in the environment is
influenced by neural preparatory activity from visual regions
such as IT. One study has demonstrated that when a person
anticipates the presentation of a human in a natural scene, this
foreknowledge will enhance IT activation and predict the speed
at which the target will be identified. Importantly, this enhanced
activity occurs even if no scene is presented, reflecting the
preparatory nature of IT in scene perception (Peelen and Kastner,
2011). These data suggest that previous knowledge primes the
IT resulting in a more successful search. Additionally, prior
knowledge that is no longer useful, and can thus interfere with
the task, must be suppressed.

Taken together, the use of naturalistic stimuli in studies
of visual search enables a more evolutionarily meaningful
examination of attentional processing and its modulation.
Attention is also highly efficient when searching quotidian scenes;
context derived from experience allows more refined search
that directs our focus toward goal-related target areas. The
additional information from more realistic stimuli improves
visual search and attentional capture by incorporating additional
brain regions involved in facial recognition, irrespective of
emotion, (e.g., fusiform face area (FFA)), scene representation
(e.g., parahippocampal place area, occipital place area, and
retrosplenium), and object location (e.g., parietal cortex). Thus,
as we move away from highly controlled laboratory tasks and
take a more ecologically valid approach, we may then consider
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FIGURE 1 | Emotional and spatial foreknowledge enhances target detection speed. (A) Participants view central cue that may provide emotional information,
spatial information, or both about an upcoming target. Participants were instructed to detect the direction of a tilted face among three vertical faces. (B) Cues could
provide spatial information about the location of an upcoming target, indicated by an arrow, or no information, indicated by a diamond. Cues could also provide
emotional information about the face of the upcoming target by the color red, indicating an angry face; the color green, indicating a neutral face; or provide no
emotional information, indicated by black symbols. (C) Mean response time (RT) of valid (cue-directed attention toward target), uninformative (cue did not direct
spatial attention), and invalid trials (cue-directed attention away from target). (D) Mean RT of negative, uninformative, and neutral emotional cues when target facial
expressions were either negative or neutral. Asterisks indicate statistically significant differences (p < 0.05). Adapted with permission from Mohanty et al. (2009).

the interaction of other neural systems, such as those involved in
affective processing, while investigating their effects on attention.

EMOTIONAL IMPACT ON ATTENTION

Although previous experience with contextual cues and episodic
memory help guide TD attention, the presence of emotionally
evocative cues in a scene has the potential to bias both
endogenous and exogenous re-orienting. The attention-grabbing
nature of an affectively arousing stimulus is of course a result of
natural selection, as rapid orientation to a potentially dangerous
(or life sustaining) object will enhance an organism’s likelihood
of survival (Lang et al., 1997). Even a weak association of
reward can enhance attentional capture by colored singletons
in relatively circumscribed laboratory paradigms (Kristjánsson
et al., 2010). The communicative value of emotionally expressive
faces also modulate attention, as monkeys and humans are
faster to attend to threatening images of conspecifics than non-
threatening ones (Bethell et al., 2012; Lacreuse et al., 2013;
Carretie, 2014). Moreover, averted gaze of conspecifics can be
more arousing than viewer-directed gaze, signaling an important

environmental stimulus outside of view (Hoffman et al., 2007).
Similarly, humans are faster to locate angry face targets, as
opposed to happy faces, among neutral stimuli within search
arrays of various set sizes (Fox et al., 2000; Eastwood et al.,
2001; Tipples et al., 2002). Affective attentional capture has also
been illustrated in an emotion-induced attentional blink, where
targets are less often detected following an emotional stimulus
than a neutral stimulus (Anderson and Phelps, 2001; Keil and
Ihssen, 2004; Most et al., 2005; Keil et al., 2006; Arnell et al.,
2007). Thus, in situations in which perceptual information is
often missed, both emotionally arousing faces and scenes are
effective at exogenously capturing attention and are more likely to
undergo further visual processing. Taken together, these are but
a few illustrations of how affectively arousing stimuli reflexively
modulate visual attention.

While emotional attention research has often focused on the
ability of an arousing object to redirect attention without explicit
instruction, other work has also shown that affective stimuli
can modulate goal-directed TD processing. Using a modified
Posner paradigm, Mohanty et al. (2009) employed emotionally
arousing and non-arousing faces as targets (Figure 1). They
then manipulated both the spatial location and emotional
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FIGURE 2 | Simplified diagram of major attention network nodes with the inclusion of affectively modulated regions in a human brain. Blue nodes
denote cortical regions and green nodes denote subcortical nuclei. The dashed oval is subdivided into three thalamic nuclei. Amyg, amygdala; FEF, frontal eye field;
IT, inferotemporal cortex; LGN, lateral geniculate nucleus; IPS, intraparietal sulcus; OFC, orbitofrontal cortex; Pulv, pulvinar nucleus; TRN, thalamic reticular nucleus.

valence of targets, and both valid spatial cues (arrow direction)
and valid emotional cues (arrow color) were displayed to
independently speed target detection. Within the emotional
cue condition, aversive cues enhanced attention, while both
uninformative and neutral cues resulted in no attentional
benefit. In fact, uninformative and neutral cues shared similar
reaction times. Imaging results indicated enhanced activation in
regions including FEF, IPS, and IT in response to spatial cues,
while emotional cues additionally evoked amygdala activation.
Additive spatial- and emotion-driven effects were found in FEF,
IPS, and IT, and functional connectivity between amygdala
and IT also increased during emotionally-cued stimuli. These
data suggest that the amygdala provides input to an attention
network, enhancing our ability to detect affectively arousing
targets. Therefore, a set of affective regions, in addition
to areas facilitating memory retrieval (e.g., hippocampus),
integrate with attention structures commonly identified in
controlled experimental paradigms to allow for more efficient and
environmentally adaptive behavior.

Current visual attention network maps (Thompson and
Bichot, 2005; Corbetta et al., 2008; Noudoost et al., 2010; Peelen
and Kastner, 2014) typically include only canonical visual-
processing regions within the dorsal and ventral pathways.
In a common attention network model (Pessoa and Adolphs,
2010), the majority of visual stimuli project to primary
visual cortex (while some information is sent directly to the
superior colliculus). BU processing occurs as visual information
progresses throughout the ventral pathway into V2, V4, IT
cortex, and synapses on thalamic nuclei such as the medial

dorsal nucleus, thalamic reticular nucleus, and pulvinar nucleus
that project diffusely throughout the cortex. BU processing also
occurs as visual information progresses from V1 along the dorsal
pathway to the parietal cortex and FEFs. Meanwhile, PFC exerts
TD control over thalamic nuclei and FEF. It is likely that
subcortical regions including amygdala modulate BU processing
via the current re-entrant model by synapsing onto early
ventral visual regions while influencing TD processing through
connections with OFC. Due to the ability of emotional stimuli
to both exogenously capture and endogenously guide attention,
emotionally evocative aspects of stimuli may be incorporated to
provide a more accurate picture of an evolved attention system.
Structures such as the amygdala have previously been shown
to feed into ventral visual cortex creating a re-entrant loop of
emotionally enhanced perceptual processing (Amaral and Price,
1984; Freese and Amaral, 2005; Sabatinelli et al., 2009; Sabatinelli
et al., 2014), influencing early BU visual attention regions.
The amygdala also transacts with regions that influence TD
attention such as orbitofrontal and cingulate cortex (Ghashghaei
et al., 2007; Pessoa and Adolphs, 2010; Salzman and Fusi,
2010; Saalmann and Kastner, 2011), and may exert control over
both TD and BU systems via thalamic connectivity (Pessoa
and Adolphs, 2010; Saalmann and Kastner, 2011). Finally, since
PFC can attenuate amygdala activity (Rosenkranz and Grace,
2001), TD attention processing originating in OFC may indirectly
suppress the effects of emotionally weighted BU attention via
amygdala circuitry. Therefore, the interconnected nature of the
amygdala allows it to emotionally “tag” stimuli through a variety
of neural pathways, and ultimately contributes to the likelihood
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of orienting to any stimulus in the environment (Figure 2).
Thus, the inclusion of amygdala and other subcortical structures
including regions of the thalamus (Rudrauf et al., 2008; Frank
and Sabatinelli, 2014), may serve to refine circuit maps modeling
naturalistic visual attention processing. While here we focus
particularly on amygdala, this is only one region in a network;
other regions likely contribute to affectively modulated attention
processing in real-world contexts.

The explicit incorporation of emotion into attention
models may also foster greater clinical translation using
affective attention tasks to assess emotion-based disorders. For
instance, patients with generalized anxiety disorder exhibit
stronger emotional attentional blink to threatening stimuli
compared to healthy controls (Olatunji et al., 2011). More
recently, researchers using emotion-modulated attentional
blink tasks have found that soldiers with post-traumatic
stress disorder (PTSD) display stronger attentional capture by
combat images than do healthy controls or peers not suffering
from PTSD (Olatunji et al., 2013). Future attention studies
involving the use of real-world stimuli may benefit clinical
populations through potential cognitive and neurophysiological
attentional redirection techniques, in addition to aiding
clinicians with the identification of affective attention
biomarkers.

CONCLUSION

During naturalistic viewing, attentional deployment to a region
of space depends not only on internal goals and the physical
impact of light on the retina, but also the context of
the scene and experience with the targets involved in the
current task. Moreover, the emotional relevance of items
in our visual field also impacts attention allocation across
exogenous and endogenous pathways. Evolution has resulted
in neural mechanisms to discriminate a variety of emotional
stimuli, and the guidance of attention by these stimuli likely
contributed to human survival; humans can rapidly attend
to potential threats or life-sustaining comestibles. Recently,
naturalistic attention has been conceptualized as templates to
help predict how and where attention will be deployed within
our natural world (Peelen and Kastner, 2014). Within this
burgeoning area of work, few models explicitly incorporate
emotional relevance of targets (Pessoa, 2010). Furthermore,
of those studying affective attention, many employ expressive
faces, absent of context. It is also true that emotional stimuli
can influence both TD and BU attention systems. In fact,
some authors have argued that dividing attention into TD
and BU divisions is overly simplistic and a third category,
namely selection history, should be added (Awh et al., 2012).
This point is particularly salient considering affective stimuli
can possess both learned and evolved response tendencies.
However, it may be the case that the level of TD or BU
engagement is dependent on the particular task at hand;

context may determine which system is engaged by emotional
stimuli.

While the use of naturalistic stimuli will likely open new
avenues of research, there are limitations to this methodology.
For instance, the perceptual characteristics of scene stimuli,
such as image complexity, depth of field, spatial frequency
distribution can heavily influence neural activity and act as
a confounding variable in an experimental paradigm (Bradley
et al., 2007). When addressing the emotional modulation
of brain activity, one should recognize that control of
hedonic scene content is advantageous (Lang et al., 2008),
considering arousal and pleasantness vary across picture
categories. As technology advances and virtual reality scene
presentation becomes more prevalent, it is possible that more
researchers will take advantage of this capability to add another
level of ecological validity to their experimental paradigms
(Iaria et al., 2008; Nardo et al., 2011). However, this may
come at a cost, since a greater number of uncontrolled
variables are likely to emerge as an experiment approaches
approximating the natural world. It should also be noted
that when evaluating emotional attention in non-human
primate data, it is often difficult to disentangle attention
and emotion, as an animal’s behavior is inherently shaped
through reward (Maunsell, 2004). Thus, any conclusions that
attempt to differentiate attention and emotion should be
taken with caution due to this behavior–reward association,
and the inherently intertwined nature of their evolutionary
origin.

While social stimuli are powerful cues, as the faces of
our peers are effective at communicating dangers and desires,
emotion is multi-faceted and there are countless open questions
regarding the impact of naturalistic affective stimuli on attention.
For example, how do naturalistic affective stimuli differentially
modulate BU and TD attention? How do context and individual
differences modulate the impact of appetitive and aversive
scene processing? What are the limits of TD control on
emotional attention? Are variations in these limits associated
with disorders of emotion? Multiple studies have demonstrated
that a subject’s emotional state influences endogenous attention,
speeding reorienting to affective stimuli (Garner et al., 2006;
Bar-Haim et al., 2007; Vogt et al., 2011); how does attention-
modulation by heightened emotional arousal compare to
attention-modulation by declarative knowledge of the upcoming
stimulus? These and other questions may be clarified by
naturalistic scene research of attentional processing in the real
world.
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