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Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the
prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement
learning algorithm. This phasic signal is thought to contain information about the
quantitative value of reward, which transfers to the reward-predictive cue after learning.
This is argued to endow the reward-predictive cue with the value inherent in the reward,
motivating behavior toward cues signaling the presence of reward. Yet theoretical and
empirical research has implicated prediction-error signaling in learning that extends far
beyond a transfer of quantitative value to a reward-predictive cue. Here, we review
the research which demonstrates the complexity of how dopaminergic prediction
errors facilitate learning. After briefly discussing the literature demonstrating that phasic
dopaminergic signals can act in the manner described by Sutton and Barto (1981), we
consider how these signals may also influence attentional processing across multiple
attentional systems in distinct brain circuits. Then, we discuss how prediction errors
encode and promote the development of context-specific associations between cues
and rewards. Finally, we consider recent evidence that shows dopaminergic activity
contains information about causal relationships between cues and rewards that reflect
information garnered from rich associative models of the world that can be adapted
in the absence of direct experience. In discussing this research we hope to support
the expansion of how dopaminergic prediction errors are thought to contribute to the
learning process beyond the traditional concept of transferring quantitative value.

Keywords: prediction error, attention, associative learning, dopamine, model-based learning

INTRODUCTION

The discovery that midbrain dopaminergic neurons exhibit a strong phasic response to an
unexpected reward which subsequently transfers back to a cue which predicts its occurrence has
been revolutionary for behavioral neuroscience (Schultz, 1997; Schultz et al., 1997). This was in part
because this pattern of firing mimics the teaching signal predicted to underlie learning in models
of reinforcement learning (Bush and Mosteller, 1951; Rescorla and Wagner, 1972; Mackintosh,
1975; Pearce and Hall, 1980; Sutton and Barto, 1981). The key concept in these learning models
is that learning about reward-predictive cues is regulated by prediction error. When a subject
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experiences a reward that they did not anticipate in the presence
of a cue, a prediction error is elicited to drive learning so that the
antecedent cue comes to motivate behavior directed toward the
outcome. This prediction error is generally conceptualized as a
quantitative discrepancy between the outcome expected when the
cue was presented, and the outcome that was actually experienced
(Bush and Mosteller, 1951; Rescorla and Wagner, 1972; Sutton
and Barto, 1981). In essence, when an individual first encounters
a cue followed by an unexpected reward, there is a large
discrepancy between what is expected and what actually occurs,
producing a large prediction error. However, when an individual
learns that a particular cue reliably predicts a motivationally-
significant event, there is little error as the discrepancy between
what is expected and what actually occurred is diminished. Thus
the prediction error functions to drive learning about reward-
predictive cues and facilitate more accurate predictions about
future rewards.

As the field now stands, phasic activity of midbrain dopamine
neurons is considered to represent the prediction error that
drives learning as described by the Sutton and Barto (1981)
model-free reinforcement learning algorithm. This algorithm
explicitly conceptualizes the discrepancies between the expected
and delivered outcome as reflecting differences in predicted value,
and computes the resultant prediction errors over consecutive
time steps during a trial. As a result, the value signal usually
produced by reward transfers temporally back to events that
reliably precede reward delivery. This effectively endows a cue
that predicts reward with the value inherent in the reward itself,
rather than just registering when the reward has occurred. In
this manner, Sutton and Barto’s (1981) model-free reinforcement
learning algorithm explicitly states that the quantitative value
inherent in reward transfers back to the antecedent cue predicting
its delivery. That is, the predictive cue becomes endowed with
the scalar value of the reward rather than explicitly predicting the
identity of the outcome which follows cue presentation.

However, thinking about firing from dopaminergic neurons
as reflecting a quantitative value signal is limited and does not
allow this phasic signal to influence many other complex forms of
learning. Firstly, we do not associate all cues with the rewards that
they precede. Rather, we select particular cues to learn about on
the basis of how well they have predicted that particular reward,
or any reward in the past. Such a tendency is encapsulated in
models of selective attention in associative theory (Mackintosh,
1975; Pearce and Hall, 1980), where attention directed toward a
cue will vary by virtue of its ability to predict reward in the past.
But in these models of selective attention, attentional signals are
critically influenced by prediction error. That is, the prediction-
error signal explicitly informs the change in attention directed
toward a cue. Secondly, humans and animals are also capable of
inferring associations between cues and rewards in the absence
of direct experience. For example, if a cue has been established as
predictive of a particular reward and that reward is then devalued
outside of the experimental context, the subject will change how
they respond to the cue on their next encounter with the cue. This
is despite never directly experiencing the now devalued outcome
in the presence of the cue. Such learning is typically referred to
as ‘model-based’ and is not under the control of the Sutton and

Barto (1981) error signal which relies on cached values drawn
from direct experiences with cues and outcomes (Dickinson
and Balleine, 2002; Berridge, 2012; Dayan and Berridge, 2014).
However, recent evidence has begun to suggest that phasic
dopamine signals in the midbrain may incorporate model-based
information (Bromberg-Martin et al., 2010c; Daw et al., 2011;
Hong and Hikosaka, 2011; Aitken et al., 2016; Cone et al.,
2016; Sadacca et al., 2016). Such evidence suggests that the
dopaminergic error signal may not exist completely apart from
these other more complex learning mechanisms.

Here we review empirical studies that challenge and expand on
how the dopamine prediction error incorporates and influences
learning at associative and circuit levels. In doing so, we will
first briefly review the neural correlates of the bidirectional
prediction-error signal contained in phasic activity in midbrain
dopamine neurons. Then, we will move onto a discussion of how
this signal may support a change in attention across multiple
attentional systems in distinct brain circuits. Finally, we will
review recent evidence that suggests the information contained in
the phasic dopamine signal extends beyond that conceptualized
by a model-free account. In particular, midbrain dopamine
signals appear to reflect information about causal relationships
between cues and outcomes in a manner that extends beyond
simply encoding the value of a reward predicted by a cue.
Such research expands the currently narrow view of how phasic
dopamine activity can influence the learning process.

REWARD PREDICTION ERROR SIGNALS

At the core of the Sutton and Barto (1981) model-free
reinforcement learning algorithm is the concept that prediction
error drives learning about cues and the outcomes they predict.
That is, if an individual experiences an outcome they did not
expect when a cue is presented, a teaching signal will be elicited
to update expectations and reduce that prediction error. As a
reward in this context is conceptualized as containing an inherent
quantitative value, it is this quantitative value that is thought to
be transferred to the predictive cue. Effectively, this is argued
to endow that predictive cue with the scalar expectation of the
upcoming reward. Furthermore, this algorithm proposes that
prediction error is bidirectional. Thus, it can drive increases
or decreases in learning via signaling a positive or negative
prediction error, respectively. A positive prediction error will be
elicited when a cue predicts a reward that was more valuable
than expected. Here, this signal will act to increase the value
attributed to the antecedent cue. However, if an outcome is less
valuable than expected on the basis of the expectation elicited by
the antecedent cue, a negative prediction error will be elicited and
the prediction-error signal will act to reduce the value held by the
cue. Essentially, this allows the prediction-error teaching signal
to regulate both increases and decreases in the value attributed to
predictive cues as a function of the quantitative difference in the
reward expected relative to that delivered.

Electrophysiological studies in rodents and non-human
primates have demonstrated very convincingly that phasic
dopaminergic activity can correlate with the prediction error
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FIGURE 1 | Dopamine neural correlates follow the laws of prediction error as formalized in Sutton and Barto’s (1981) model-free reinforcement
learning algorithm. According to Sutton and Barto (1981) prediction errors are generated by the quantitative difference between the value of the reward delivered
and the value attributed to the reward-predictive cue. Phasic activity of dopaminergic neurons in the VTA can be interpreted as conforming with these predictions.
This schematic diagram represents dopamine activity during different Pavlovian conditioning paradigms. Activity is represented by the black lines aligned to a cue
(e.g., light or tone, on the left) and reward (e.g., a juice drop, on the right). The dotted lines refer to changes in associative strength. (A) Pavlovian conditioning: A
reward elicits a positive prediction error when the reward is unexpected, thus an error is made in prediction (Stage I). Dopamine neurons exhibit firing upon the
reward delivery. However, with repeated cue-reward pairings this dopamine signal transfers to the reward-predictive cue and diminishes to the reward (Stage II)
(Hollerman and Schultz, 1998). As this cue is now predictive of reward, there is a reduction in prediction error at the time of reward and motivated behavior directed
toward the predictive cue increases. (B) Blocking: a critical aspect of the Sutton and Barto (1981) model is that the learning (or value) about the reward must be
shared amongst all present cues. This is referred to in learning theory as a summed-error term (Rescorla and Wagner, 1972). This concept is well illustrated by the
blocking phenomenon. For example, during Stage I a light cue is trained to predict reward and with training comes to elicit a dopamine signal (Waelti et al., 2001).
When a second auditory cue (tone) is presented simultaneously with the light cue and the same quantity of reward is delivered during Stage II, no prediction error is
elicited as the reward is already expected and no dopamine signal is exhibited. Behaviorally, learning about the novel tone cue is said to be blocked, and when the
cues are presented alone at Test the light cue maintains associative strength but the blocked tone cue does not gain any associative strength. (C) Over-expectation:
Two different cues (light and tone) that have been separately trained to predict a particular quantity of reward come to each elicit a dopamine prediction-error signal
after multiple cue-reward pairings in Stage I. During Stage II, the two cues are then presented as a simultaneous compound, followed by reward given to each trial
type during Stage I. This generates a negative prediction error, as the reward is less than the summed expectation of each cue. In this example dopamine signaling is
suppressed in response to the over-expected reward not being delivered. This negative prediction error drives a reduction in associative strength so that both cues
lose half their associative value when presented alone at Test, assuming these cues are matched for salience (e.g., Chang et al., 2016).

contained in Sutton and Barto’s (1981) model (Figure 1). These
neurons show a phasic increase in activity when an unexpected
reward is delivered (Ljungberg et al., 1992; Mirenowicz and
Schultz, 1994, 1996) or a reward is delivered that was better
than expected (Bayer and Glimcher, 2005) (Figure 1A). Further,
the magnitude of phasic activity correlates with the size of the
unexpected reward (Hollerman and Schultz, 1998; Fiorillo et al.,

2003; Roesch et al., 2007; Stauffer et al., 2014; Eshel et al., 2016) in
a manner that reflects the value of the reward (Lak et al., 2014),
value of the future action (Morris et al., 2006) or value of the
choice (Roesch et al., 2007), as assessed by the agent’s approach
behavior toward to reward-predictive cue. That is, the firing of
dopamine neurons changes in response to unexpected rewards
or reward-predictive cues in a manner that appears to reflect
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the subjective value of those rewards. Additionally, the firing of
dopaminergic neurons in the midbrain is suppressed when an
expected reward is omitted or is worse than expected (Tobler
et al., 2003; Brischoux et al., 2009; Matsumoto and Hikosaka,
2009; Lammel et al., 2011, 2014; Cohen et al., 2012). Finally,
dopamine neurons also show a slow reduction of firing to the
reward over successive cue-reward pairings as the cue comes to
reliably predict the reward (Hollerman and Schultz, 1998). That
is, the now expected reward elicits minimal phasic excitation
when it is presented after the cue, where this activity instead
shifts to presentation of the cue itself (see Figure 1A). Thus
there is a wealth of empirical evidence that can be interpreted as
supporting the idea that dopaminergic prediction-error signals
comply with those predicted by Sutton and Barto’s (1981) model-
free reinforcement learning algorithm.

Another critical aspect of Sutton and Barto’s (1981) model
is that associative strength (or value) afforded by the reward
must be shared amongst all present cues, referred to as a
summed-error term. The presence of this summed-error term
allowed earlier models (Rescorla and Wagner, 1972) to account
for circumstances when cues are presented simultaneously
and compete to become associated with the same outcome,
as demonstrated in the blocking procedure (see Figure 1B).
In one example (Waelti et al., 2001), monkeys first received
presentations of cue A paired with a juice reward. In the
second phase of training, novel cue X was introduced and
presented simultaneously with cue A to form a compound AX,
where presentation of cue AX was followed with the same
juice reward as the first stage of training. During this second
phase, monkeys also received a completely novel compound
BY followed by the same juice reward. Here, as cue A had
already become predictive of reward, there was no error in
prediction when compound AX was presented and no associative
strength accrued to cue X. On the other hand, as cue BY had
never been paired with reward, both cues gained associative
strength, sharing the value inherent in the juice reward. Thus
when monkeys were tested with cue X and Y they responded
more to cue Y as reward was only expected when cue Y was
presented. This blocking effect illustrates how prediction error
regulates learning by prioritizing cues that have already come
to predict reward (Kamin, 1968), allocating less value to a novel
cue which does not provide additional information about reward
delivery. Thus, prediction errors regulate learning in a manner
that produces causal relationships between a cue and the outcome
it predicts.

Importantly, midbrain dopaminergic neurons also adhere
to the principal of a summed-error term inherent in these
models. Specifically, in the blocking design illustrated above (see
Figure 1B), Waelti et al. (2001) recorded putative dopaminergic
neurons during this task. As previously demonstrated
dopaminergic neurons increased firing to cue A during the
initial phase of training. Then, across the second phase of
training dopaminergic neurons maintained similar firing rates to
presentations of compound cue AX. Further, dopamine neurons
also increased firing rate to the novel compound cue BY across
this phase. Critically, in a non-reinforced test where cue X and
Y were presented individually without reward, dopaminergic

neurons showed robust phasic responses toward cue Y but
no response to the blocked cue X, mimicking the behavioral
response seen in the blocking paradigm. As cue X and Y were
matched for physical salience and paired with an equivalent
reward, any difference in the dopaminergic response to these
cues could only be attributed to a difference in the summed
prediction error, in line with that described by Sutton and Barto
(1981).

Until very recently evidence suggesting that phasic activity
in midbrain dopamine neurons mimics the scalar prediction
error described in Sutton and Barto (1981) has been largely,
if not entirely, correlative (Schultz et al., 1997; Roesch et al.,
2007; Niv and Schoenbaum, 2008; Iordanova, 2009; Keiflin and
Janak, 2015; Holland and Schiffino, 2016; Schultz, 2016). This is
because it was difficult to directly manipulate dopamine neurons
with the temporal precision and specificity required to directly
test this hypothesis. However, the combination of a temporally
specific optogenetic approach in addition to the cell type
specific transgenic rodent lines has made it easier to manipulate
dopamine neurons in a causal manner (Margolis et al., 2006;
Lammel et al., 2008; Tsai et al., 2009; Witten et al., 2011; Cohen
et al., 2012). This has been hugely advantageous to the study
of how prediction-error signals causally influence the learning
process. Using transgenic animals expressing Cre recombinase
under the control of tyrosine hydroxylase promoter (i.e., Th::Cre
lines), a precursor enzyme for dopamine, Cre-dependent viral-
vectors injected in to the midbrain can be used to induce
expression of the light-sensitive channelrhodopsin-2 (ChR2) or
halorhodopsin (NpHR) to selectively activate or inhibit neurons
expressing tyrosine hydroxylase (TH+ neurons), respectively.
This has afforded neuroscientists the capacity to manipulate
dopaminergic neurons in a temporally specific manner that
mimics positive or negative prediction errors and assess their
causal contribution to the learning process (Steinberg et al., 2013;
Chang et al., 2016; Stauffer et al., 2016).

Using this technique, Steinberg et al. (2013) have causally
demonstrated that stimulation of dopaminergic neurons in the
midbrain can mimic a positive prediction error to drive learning.
Steinberg et al. (2013) injected TH-Cre rats with ChR2 in the
ventral tegmental area (VTA) and implanted optical fibers aimed
at VTA. This allowed phasic stimulation of TH+ neurons in
the VTA to mimic the phasic activity typically seen with an
unexpected reward and drive excitatory learning. In order to
test that these signals do in fact drive learning about reward-
predictive cues, they used a blocking procedure, similar to that
described above (Waelti et al., 2001; Figure 1B). Rats were first
presented with cue A that signaled food reward. In a second
phase of training, compound cue AX was paired with the same
reward. No prediction-error signal should be elicited by the
compound cue AX when the reward was presented in the second
phase. Therefore, rats would exhibit little learning about cue
X as the reward had already been predicted by cue A during
training in the first phase of learning. When Steinberg et al.
(2013) activated TH+ neurons to artificially mimic a positive
prediction error during reward receipt following presentation of
the compound cue AX, they found an increase in responding to
the usually blocked cue, X, in the subsequent probe test. This
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result suggests that activating dopaminergic neurons in the VTA
mimics a positive prediction error to causally drive learning about
the usually blocked cue, X.

If dopamine neurons truly reflect bidirectional prediction
errors, it would be expected that briefly silencing their activity
would produce a negative prediction error and drive down the
ability of a cue to predict reward. In order to determine whether
silencing dopaminergic neurons in the VTA could function as
negative prediction errors in this manner, Chang et al. (2016)
briefly silenced these neurons during a modified version of an
over-expectation task (for a simplified illustration see Figure 1C).
In the standard over-expectation task, the first phase of learning
in over-expectation requires that rats learn about two cues (A and
B) that independently predict the same magnitude of reward
(e.g., one food pellet). During a second phase of learning these
two cues are presented as compound AB followed by the same
reward. Because cues A and B independently predict the same
magnitude of reward, when AB is presented in compound, rats
expect delivery of twice the amount of reward (e.g., two food
pellets). As rats only receive one food pellet, a negative prediction
error is elicited and the associative strength of both cues A and B
decreases. However, in a modified version of the over-expectation
task, Chang et al. (2016) presented rats with the compound
cue AB in the second stage of learning with the expected two
food pellets. This change effectively blocks over-expectation from
occurring. Against this backdrop, they briefly suppressed TH+

neurons in the VTA during presentation of the reward in AB
compound phase of learning. This manipulation decreased the
ability of cues A and B to elicit a motivational response in the
following probe test, just like what would usually be seen in the
traditional over-expectation procedure. Thus Chang et al. (2016)
found that transiently suppressing firing of TH+ neurons was
sufficient to mimic a negative prediction error. Together, these
studies confirm that phasic dopamine can serve as a bidirectional
prediction error to causally drive learning.

It is worth briefly noting here that the blocking effect described
above has been interpreted as reflecting a performance deficit
rather than the result of less learning accruing to the blocked cue
X (Miller and Matzel, 1988; Arcediano et al., 2004). According to
the comparator hypothesis (Miller and Matzel, 1988), responding
to a conditioned cue is in part the result of the strength of the
direct association between this cue and the outcome. However,
it is also inversely related to the associative strength of any other
cue that is presented within a session (i.e., the comparator cue).
In this sense, reduced responding to the blocked cue X at test is
argued to be the result of increased associative strength that has
already accrued to the comparator cue A during the initial phase
of conditioning. The evidence in favor of a performance account
of blocking is contradictory (Miller and Matzel, 1988; Blaisdell
et al., 1999), however, in some instances it has been shown that
responding to the blocked cue, X, can be recovered by massive
extinction of the comparator cue A which is consistent with the
comparative hypothesis (Blaisdell et al., 1999). This research may
have consequences for how we interpret VTA DA signals during
the blocking task. Specifically, it raises the possibility that the
reduced response of dopamine neurons to the blocked cue during
the extinction test may reflect the signal used for responding

to the blocked cue as predicted by the performance account,
rather than the direct association between the blocked cue and
the outcome. In this manner, this signal could comprise the
quantitative combination of the direct association between the
blocked cue X and the outcome, as well as the inverse of the
associative strength of the comparator cue A. According to this
interpretation, it would not constitute a teaching signal driving
learning but rather a signal which reflects this comparative
process to produce the reduced response. However, the causal
data showing that phasic stimulation of VTA dopamine neurons
unblocks learning about the blocked cue X, which results in an
increased response to the cue in a subsequent extinction test
without stimulation (Steinberg et al., 2013), suggests that these
error signals act to causally influence the learning process rather
than simply reflecting a comparator signal used for performance.

ATTENTION

The VTA resides within a rich neural circuit, sending and
receiving dense projections from subcortical and cortical
regions. Thus it is not surprising that prediction-error signaling
in VTA has important and wide-reaching consequences for
reward processing across distributed brain reward circuits.
For example, prediction-error signaling in VTA influence
downstream processing of attention paid toward cues (Corlett
et al., 2007; Berridge, 2012; Roesch et al., 2012; Holland
and Schiffino, 2016). Interestingly, the manner in which VTA
signaling appears to do this has again been predicted by
associative models many years before neuroscientists were able to
examine these circuits in the way we can today. More interesting
still, the mechanisms by which VTA signaling may facilitate
attentional processing are diverse and mirrors the controversy in
the reinforcement learning literature.

Specifically, a contradiction which has confused under-
graduate psychology students for decades is the opposing
predictions made by the two dominant attentional theories in
associative learning, namely the Mackintosh (1975) and Pearce
and Hall (1980) models. On the one hand, Mackintosh’s (1975)
model of attention argues that attention will be paid to cues in
the environment that are the best predictors of a motivationally
significant event. Yet, the Pearce and Hall (1980) model of
attention predicts the exact opposite- we should attend to cues
when we are uncertain of their consequence. Indeed, there is
strong evidence in humans and other animals for both of
these attentional models which suggests that these contradictory
attentional processes both exist and in fact contribute to
attentional processing.

But each of the attentional strategies proposed by Mackintosh
(1975) and Pearce and Hall (1980) models may be beneficial
in different circumstances. Consider a situation where we have
many cues which predict reward with differing accuracy. Here, it
is more efficient to devote attention toward cues that are the best
predictors to maximize reward, in line with a Mackintosh (1975)
process. However, in a scenario where one or a few cues predict
reward it is not always beneficial to devote a lot of attention
to a cue that always predicts reward when it is not in direct
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competition with another cue. Effectively, you do not need to
pay a lot of attention to a cue when it is the only one available
and attention does not need to bias action selection, in line with
the Pearce and Hall (1980) model of attention. Rather, it becomes
more important to detect changes in the contingency between a
cue and reward to update our knowledge of these relationships.

Evidence for a view where different scenarios recruit different
attentional processes is supported by the fact that findings
consistent with either Mackintosh (1975) or Pearce and Hall
(1980) models tend to be found using different experimental
parameters. Individuals are generally found to attend to the
best predictors of reward when parameters promote high
cue competition (Mackintosh, 1965, 1973, 1976; McLaren and
Mackintosh, 2002; Le Pelley et al., 2011, 2013) whereas effects
suggesting individuals attend more to inconsistent predictors are
generally found in cases where one or few cues are available
(Hall and Pearce, 1979; Wilson et al., 1992; Griffiths et al., 2011;
Esber et al., 2012). In fact, recent models of associative learning
have formalized this concept to predict how attention will change
across learning under these different circumstances, via hybrid
models (LePelley and McLaren, 2004; Pearce and Mackintosh,
2010) or models that reconcile the roles of predictiveness and
uncertainty (Esber and Haselgrove, 2011).

Important to the current discussion is that models of
reinforcement learning utilize prediction errors in two ways
(Pearce and Hall, 1980; Mackintosh, 1975). Firstly, prediction-
error signaling regulates the amount of learning that can occur
on any single cue-reward pairing. That is, the magnitude of
the difference between the expected and experienced reward
will determine how much learning can accrue to the cue in
subsequent trials. However, prediction errors are also argued to
regulate the change in attention devoted to that cue, which will
dictate the rate of learning and, therefore, which cues are learnt
about. In Mackintosh’s (1975) model, attention declines to cues
that result in larger prediction errors and are, therefore, poor
predictors of reward. Here, attention increases toward cues which
results in a smaller prediction error relative to other present cues.
In direct contrast, the Pearce and Hall (1980) model posits that
attention is maintained to a cue that produces larger prediction
errors. According to Pearce and Hall (1980), attention decreases
when prediction errors are small, consequently well-established
predictors will receive less attention.

The neural evidence also favors the presence of both these
dissociable attentional processes. Specifically, evidence suggests
that a Mackintosh-like (Mackintosh, 1975) attentional process
occurs in the prelimbic cortex (PL) in the medial prefrontal cortex
(mPFC) (Sharpe and Killcross, 2014, 2015), while neural activity
in basolateral complex of the amygdala (BLA) reflects a Pearce
and Hall (1980) signal (Roesch et al., 2010, 2012; Esber et al., 2012;
Esber and Holland, 2014). Of course, such opposing attentional
processes do not exist in isolation. It is well-established that VTA
sends out dense projections to both the PL and BLA, providing a
plausible circuit through which prediction-error signaling could
influence attentional signals in these regions (see Figure 2).
The presence of these dissociable neural circuits strengthens
recent attempts to build models of associative learning which
allows prediction error to influence attentional processing in

these different ways (LePelley and McLaren, 2004; Pearce and
Mackintosh, 2010; Esber and Haselgrove, 2011). That is, the
neural evidence supports the idea that prediction error can
regulate not only the amount of learning available on any one
trial but also to influence different types of attentional processing
in distinct circuits. In this section, we will examine the neural
evidence for each of these systems alone and will then review
recent attempts at a reconciliation between these attentional
processes.

As a brief note here, we would acknowledge that we
have focused on reviewing the literature which conceptualizes
attention as a modulator of learning rates. That is, we have
focused on models in which attention directly acts to regulate
the amount of learning that is attributed toward a particular cue
on any one trial. Conceptualizing attention in this manner has
become common place within the associative learning literature,
predominantly driven by studies utilizing rodents (but see: Le
Pelley et al., 2011, 2016). However, there is a wealth of literature
on attention which conceptualizes attention in other ways, mainly
driven by studies in humans and non-human primates. For
example, attention may also be conceptualized as modulating
the bottom-up sensory processing of cues, or as influencing
activation of cue-response associations (to name just a few;
Miller and Cohen, 2001; Hickey et al., 2006). These mechanisms
focus on how cues are processed relative to other present cues
or how cues can influence the ability to elicit an associated
response, but not the ultimate amount of learning that accrues
to the cue itself. While the relationship between attention and
behavior is likely the same across both sets of definitions- where
increases in attention act to increase behavior directed toward a
cue, and decreases in attention the reverse- there are significant
differences in how attention is hypothesized to influence learning
and/or behavior. Given this, it is likely that future integration of
these fields would likely be fruitful in understanding attentional
processing across species (see e.g., Hickey et al., 2006, 2011, 2015;
Jovancevic et al., 2006; Hare et al., 2011; Hickey and Theeuwes,
2011; Lim et al., 2011; Gottlieb, 2012; Gottlieb et al., 2014;
Theeuwes, 2013; Tommasi et al., 2015; Wilschut et al., 2015 for
a more comprehensive review on these attentional theories).

Pearce and Hall (1980) Model of Attention
A sub-nucleus of the amygdala complex, the BLA, is a region that
receives extensive dopaminergic input from midbrain dopamine
neurons (Swanson, 1982) and shows increases in neural activity
when an unexpected event occurs whether it is rewarding or
aversive (Belova et al., 2007, 2008; Herry et al., 2007; Roesch et al.,
2010; Tye et al., 2010; Li et al., 2011; Beyeler et al., 2016). Notably
these signals seem to conform closely to what is predicted for
a Pearce and Hall (1980) attentional signal. Specifically, Roesch
et al. (2010) recorded neurons in the BLA during a task in which
expectations were repeatedly violated. Here, rats were trained
to enter a food well after two odors were presented. One of
these odors predicted that the right well would be reinforced
and the other predicted that the left well would be reinforced.
At the beginning of each training block, the timing and size
of rewards delivered in these wells were manipulated to either
increase or decrease the value of the reward delivered at each
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FIGURE 2 | Theorized neural circuitry of a dopaminergic prediction error projections informing attentional processes. Dopamine prediction-error
signaling (blue solid arrows) regulates the amount of learning that can occur on any one cue-reward pairing. The midbrain, ventral tegmental area and substantia
nigra (VTA/SNc) sends out dense dopaminergic projections to the amygdala, prelimbic cortex (PL) and orbitofrontal cortex (OFC). The amygdala, PL, and OFC have
all been implicated in distinct attentional processes. Specifically, the amygdala has been implicated in attending toward cues which inconsistently predict an
outcome, uncertain predictors, in line with a Pearce and Hall (1980) mechanism. On the other hand, the PL region of the mPFC has been implicated in promoting
attention toward cues which are good predictors of an outcome relative to other reward-predictive cues, as predicted by Mackintosh’s (1975) model of attention.
Further still, neural correlates in the OFC appear to respond to cues which are good and uncertain predictors, where activity in a proportion of these neurons is high
for cues that are consistent predictors of reward yet higher still for cues that are inconsistent predictors of reward (Ogawa et al., 2013) as predicted by Esber and
Haselgrove (2011). Suggesting a role for the OFC in modulating acquired salience. The commonality of these three distinct attentional theories is that they all
propose that prediction errors influence how much attention will be paid toward a cue. The presence of this neural circuit (illustrated above), where the VTA/SNc
sends distinct projections to these three attentional regions provides a plausible circuit whereby prediction errors could influence attentional processing in different
ways. Furthermore the PL, OFC, and amygdala are interconnected in such ways that these regions may integrate attentional information as described in
two-process models (black dashed arrows; see McDonald, 1987, 1991; Vázquez-Borsetti et al., 2009).

well. Roesch et al. (2010) found that a population of neurons
in the BLA responded similarly to both upshifts and downshifts
of reward value. Specifically, these neurons increased their firing
rate when expectations were violated, regardless of whether they
constituted decreases or increases in reward value. This unsigned
or unidirectional error signals are reminiscent of that described
by the Pearce and Hall (1980) model of attention, whereby
attention is enhanced by means of an absolute value prediction
error. In line with an attentional interpretation, this neural signal
was integrated across trials and correlated with greater levels of
orienting toward the predictive cues after changes in reward,
where orienting constitutes a reliable measure of overt attention
in the associative learning literature. Functional inactivation of
the BLA disrupted changes in orienting behavior and reduced
learning to respond to changes in the reward. The findings from

this study suggested that the BLA is critical in driving attention
for learning according to a Pearce and Hall (1980) mechanism.

Notably, Esber et al. (2012) further demonstrated that the
ability of BLA neurons to exhibit this Pearce-Hall signal is
dependent on dopaminergic input from the VTA. Specifically,
Esber et al. (2012) recorded neurons in the BLA of rats with
ipsilateral sham or 6-hydroxydopamine (6-OHDA) lesions of
the VTA during the choice task described above (Roesch et al.,
2010). They found that neurons in the BLA of intact rats again
showed this characteristic increase in activity to either upshift or
downshifts in reward value in this task. However, BLA neurons
in 6-OHDA-lesioned rats failed to show this attentional signal.
Interestingly, despite the deficit in attentional signaling, neurons
of lesioned rats still exhibited a sensitivity to value per se. That
is, neurons in the BLA of lesioned rats continued to respond
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more to cues predicting high magnitude of reward and less to
those predicting lower amounts of reward. This demonstrated
that dopaminergic activity in the VTA is necessary for neurons
in the BLA to exhibit this unsigned prediction error but not
for the ability of this region to encode other characteristic
neuronal signals. Of course, while 6-OHDA lesions suppress
phasic dopamine signaling, these lesions also suppress tonic
dopamine signaling in the VTA. Thus, while it is clear that
dopaminergic input appears to be necessary for neurons in the
BLA to exhibit unsigned attentional signal in a manner described
by the Pearce and Hall (1980) model, future research is necessary
to confirm that relay of phasic VTA DA prediction-error signals
produce an increase in attention toward a cue when expectations
have been violated.

Interestingly, the central nucleus of the amygdala (CeA),
another sub-nucleus of the amygdala complex, has also been
implicated in attentional processes predicted by the Pearce and
Hall (1980) model. Using a serial-conditioning task designed by
Wilson et al. (1992), lesions of the CeA disrupted surprised-
induced increments in attention (Holland and Gallagher, 1993).
Here, two cues were presented as a serial compound, whereby a
light consistently predicted presentation of a tone. On half of the
trials, the serial compound was followed by reward. According
to the Pearce and Hall (1980) model, as the light consistently
predicted the tone, the attention to the light should be low.
In a second phase, one group of rats continued this training.
However, another group now only received the light prior to
the tone on reinforced trials. On non-reinforced trials, the light
was presented alone. That is, in this second group the light no
longer consistently predicted the tone. According the Pearce and
Hall (1980) this surprising omission of the tone should increase
attention paid to light. Consistent with this prediction, sham-
lesioned rats who received the surprising omission of the tone
later showed faster acquisition of responding to the light when
it was paired with a novel outcome than sham-lesioned rats
that had consistent training. This showed that attention to the
light increased as a consequence of the omission of the tone
which facilitated later learning about the light. However, rats
with lesions of the CeA failed to show this faster rate of learning
as a consequence of the surprising omission of the tone. This
demonstrated that the CeA is necessary for surprise-induced
increments in attention, in line with predictions made by the
Pearce and Hall (1980) model of attention.

The role for the CeA in surprise-induced increments in
attention is not dissimilar from the attentional role attributed
to the BLA. That is, both regions have been implicated in
increases in attention as a result of the violation of expectancies
in line with the Pearce and Hall (1980) model. However, while
this attentional process in BLA appears to be the product of
direct dopaminergic projections from the VTA, the CeA does
not receive this input (Pitkanen et al., 2000). Rather, the CeA
receives projections from the substantia nigra (SNc) that appears
to facilitate this attentional process. Specifically, Holland and
Gallagher (1993) demonstrated that disconnection of the SNc
and CeA using ibotenic acid lesions of CeA in one hemisphere
and 6-OHDA lesions of SNc in the opposite hemisphere
prevented increasing attention to the light cue when it no longer

consistently predicted the tone in the serial-conditioning task
described above (Lee et al., 2006). This demonstrates that it
is dopaminergic input from the SNc that facilitates attentional
processing in the CeA, rather than from the VTA, as appears
to be the case in the BLA. This anatomical difference invites
the possibility that the attentional processes taking place in
these regions are fundamentally different. This possibility is
supported by the finding that lesions of the CeA also interfere
with the basic acquisition of a conditioned orienting response to a
reward-predictive cue, whereas BLA lesions do not (Holland and
Gallagher, 1993, 1999). This has led to the argument that CeA
drives behavioral changes resulting from changes in attention
(Holland and Gallagher, 1999; Holland et al., 2001). Thus,
dopamine projections from the SNc to CeA may function to
produce overt behavioral changes in attention to influence rates
of learning rather than modulating the rate at which a cue
becomes associated with an outcome per se, which may be a point
of difference from attentional processing which takes place in the
BLA.

Mackintosh (1975) Model of Attention
In contrast to the role of the CeA and BLA in an attentional
process implicated in the Pearce and Hall (1980) model,
inhibition of activity in the rodent mPFC has been causally
demonstrated to produce deficits in modulating attention toward
cues in a manner akin to that described by Mackintosh’s (1975)
theory of attention (Sharpe and Killcross, 2014, 2015). As would
be expected from a region modulating attention according to
a Mackintosh (1975) attentional process, lesions or inactivation
of the mPFC produce deficits in tasks that promote high
competition between multiple cues. The classic finding is that
mPFC lesions produce impairments in extradimensional set
shifting, where subjects have to attend toward a set of cues
that are established as predictive of reward and disregard other
present, but irrelevant, cues (Birrell and Brown, 2000). Such
effects have more recently been attributed to the PL region
of the mPFC, where a role for this region in attention can
now be explicitly dissociated from a role in error correction
(Sharpe and Killcross, 2014, 2015). For example, PL lesions
do not disrupt expression of the blocking effect but selectively
impair the ability to stop attending toward the redundant blocked
cue (Sharpe and Killcross, 2014). Here, rats received PL lesions
prior to a typical blocking paradigm. In stage I of this task,
rats received pairings of cue A with reward. In stage II cue
A was paired with novel cue B and the same magnitude of
reward. In this same stage, rats were also presented with a
novel compound CD and the same reward. PL lesions did not
affect blocking to cue B relative to cue D, demonstrating an
intact error-correction process dependent on prediction-error
signaling in the VTA. However, after the blocking procedure
these same animals were presented with the blocked cue B and
then presented with reward. In line with a Mackintosh attentional
process, sham-lesioned rats demonstrated slow learning about
cue B, suggesting attention had declined toward this cue as it
was previously a poor predictor of the outcome. However, rats
with PL lesions exhibited faster learning about this cue suggesting
they had not down-regulated attention toward blocked cue B.
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This demonstrates that the PL cortex is necessary to direct a
preferential degree of attention toward predictive cues while not
being necessary to allow learning to be regulated by prediction
error per se.

Interestingly, VTA sends a particularly dense projection to
the PL region (Bentivoglio and Morelli, 2005; Björklund and
Dunnett, 2007). While the causal influence of these signals on
attentional processing are lacking and constitute an interesting
direction for future research, there is considerable evidence that
phasic firing in VTA dopamine neurons directly affects neurons
in the mPFC (Niki and Watanabe, 1979; Tzschentke and Schmidt,
2000; Rushworth et al., 2011). For example, electrophysiological
studies have demonstrated that burst stimulation of VTA
promotes prolonged depolarization of mPFC pyramidal neurons,
constituting a change to an ‘up state’ where the membrane
potential of neurons in this area is brought close to firing
threshold (Lewis and O’Donnell, 2000). Such research may
suggest that phasic firing in VTA may act to enable plasticity
in mPFC circuits, where firing rates tune to cues which are
good predictors of an outcome (Gruber et al., 2010). In line
with this, evidence from electrophysiology (Niki and Watanabe,
1979) and functional magnetic resonance imaging (fMRI) studies
(Rushworth et al., 2011), have shown that activity in mPFC
encodes both the value of the upcoming rewards predicted by
cue presentation as well as a depression in activity during the
omission of an expected reward. This is distinct from activity
seen in the BLA which, as discussed above, exhibits a general
increase in firing in response to both delivery and omission of
expected reward. While the mechanism by which burst firing
in VTA dopamine neurons influence attentional processing in
PL cortex remains to be clarified, the ability of phasic responses
to influence activity in PL cortex suggest that prediction errors
in VTA may influence activity in the PL cortex to produce an
attentional signal in line with that predicted by Mackintosh’s
(1975) model of attention and dissociable from that seen in other
regions of the brain.

It is worth noting here that the neural signal predicted
by Mackintosh’s (1975) model of selective attention is not
as simple as an increase in responding to cues which are
predictive of reinforcement. Indeed, many regions of the brain
show increases in activity to predictive cues. The uniqueness
of Mackintosh’s (1975) predicted attentional signal is perhaps
best illustrated by the model’s predictions in times of cue
competition. Take, for example, the overshadowing paradigm,
whereby an audio–visual compound is presented with reward.
If this compound cue differs in intrinsic salience, after the
first few trials associative strength will decrease toward the less
intrinsically salient element of the compound (a dim visual cue)
as the more intrinsically salient element of the compound (a loud
auditory cue) accrues associative strength more quickly, and this
overshadows the less intrinsically salient element. Unlike most
models of reinforcement learning (Rescorla and Wagner, 1972;
Pearce and Hall, 1980; Sutton and Barto, 1981), Mackintosh’s
(1975) model does not use the summed-error term developed in
the Rescorla and Wagner (1972) model, later adapted by Sutton
and Barto (1981). Instead, learning to predict an outcome need
not be shared by all present cues. Mackintosh’s (1975) model

uses attentional change to explain the decrement in learning
when multiple cues of different intrinsic salience predict the
same outcome. More formally, the change in a cue’s associative
strength is based on that individual cue’s prediction error. Thus
the less intrinsically salient cue is learnt about more slowly and
is, therefore, a less reliable predictor of reward and learning
about this cue stops. In line with a role for the PL cortex in
a Mackintosh (1975) attentional process, inactivation of the PL
cortex specifically impairs overshadowing of the less intrinsically
salient visual cue paired with a shock in a procedure that
promotes this form of overshadowing (Sharpe and Killcross,
2015).

The presence of an individual-error term in the Mackintosh
(1975) model has consequences for the nature of the attentional
signal that may expected in neural regions contributing to
this attentional process. Specifically, Mackintosh’s (1975) model
would predict high attention across the first few trials of
overshadowing to both elements of the compound, with a
selective decrease to the visual element of the compound. This
is despite a relative increase in associative strength attributed to
the visual cue from the start of conditioning. Overshadowing
of one element of the compound is not predicted by models
that utilize a summed-error term (Rescorla and Wagner, 1972;
Sutton and Barto, 1981). Rather, models using a summed-error
term would predict mutual overshadowing to both elements of
the compound. That is, both the salient auditory and less salient
visual cue will accrue less associative strength than they would
if conditioned individually by virtue of sharing the learning
supported by the reward (though the degree to which this occurs
is dependent on intrinsic salience). Further, these models are
not attentional in nature and would therefore not predict that
the signal to either element of the compound would decrease
across learning. Thus a search for a Mackintosh (1975) neural
signal would have to take into account the complexities of the
model rather than just looking for an increase in activity toward
predictive cues.

Unifying Models of Attention: Esber and
Haselgrove (2011)
So far we have reviewed evidence for each attentional process
(Mackintosh, 1975; Pearce and Hall, 1980) as potentially
independent yet interactive processes, in line with several hybrid
or two-process models of attention (LePelley and McLaren,
2004; Pearce and Mackintosh, 2010). However, another model
attempts to reconcile these processes into one mechanism
in which attention is directed by both predictiveness and
uncertainty (Esber and Haselgrove, 2011). Unlike attentional
models where the size of the prediction error regulates the
amount of attention paid to a cue (Mackintosh, 1975; Pearce
and Hall, 1980), the Esber and Haselgrove (2011) model assumes
that acquired salience of a cue will change with how well it
predicts an outcome. At first glance, this sounds similar to
Mackintosh’s (1975) model of attention. Humans and animals
attend to good predictors of reward. However, the Esber and
Haselgrove (2011) model also predicts that the omission of an
expected reward can function as an effective reinforcer. This
is because the frustration caused by omission of an expected
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reward is also a motivationally-potent event. Thus, a cue
that probabilistically predicts both delivery and omission of
expected reward will have increased acquired salience relative
to a cue that consistently predicts reward or omission alone,
as the former now becomes predictive of two outcomes. Thus,
this theory can account for evidence suggesting that humans
and animals attend toward good predictors of an outcome
(Mackintosh, 1975) while also maintaining attention toward cues
which are uncertain predictors of an outcome (Pearce and Hall,
1980).

The critical assumption here is that a cue that is partially
reinforced will acquire higher salience relative to a cue that is
consistently rewarded (Esber and Haselgrove, 2011). Recently,
evidence has emerged showing that some neurons in the orbital
frontal cortex (OFC) show such a pattern of responding in
anticipation of reward following cue presentation (Ogawa et al.,
2013). Most notably, in this study, rats were presented with four
odor cues. Two cues consistently predicted reward (100%) or no
reward (0%), and two cues inconsistently predicted reward (67%,
33%). Here, around half of the reward-anticipatory neurons in
OFC exhibited their highest responding when cues inconsistently
predicted reward (67%, 33%). However, critically, these neurons
also showed higher firing to certain reward (100%) than certain
non-reward (0%), which was near baseline. This pattern- baseline
firing in anticipation of non-reward, and increased firing in
anticipation of certain reward, and still higher firing to uncertain
reward- was perfectly in line with the predictions of the Esber
and Haselgrove (2011) model. Future research should explore
whether the attentional signal described by Esber and Haselgrove
(2011) is pervasive across other systems implicated in attention
which may help to reconcile the apparent contradiction in the
associative world without appealing to a two-process model. If
this is not the case, there are connections between the PL, OFC,
and BLA (McDonald, 1987, 1991; Vázquez-Borsetti et al., 2009)
that may allow integration of multiple competing processes (see
Figure 2).

MORE COMPLEX ASSOCIATIVE
MODELS

The research above describes how prediction errors may regulate
both the rate and amount of learning attributed to a reward-
predictive cue across several dissociable circuits. But this is only
half the story. Our experience with cues in the environment is
often more complex than a discrete cue predicting a rewarding
outcome. For one, our experiences are often different depending
on context. Consider a veteran coming back from war. During
their time at war, they probably formed a strong association
between loud noises and negative consequences. However, when
the veteran returns home it is far more likely the case that a
loud noise signals something innocuous like a slamming door
or misfiring engine. It is important in these circumstances
that an individual has learned (and can recall) context-specific
associations, and does not generalize negative experiences into
neutral contexts (Rougemont-Bücking et al., 2011; VanElzakker
et al., 2014; Sharpe et al., 2015).

Interestingly, dopamine neurons in the VTA can exhibit
context-specific prediction errors that reflect context-specific
learning (Nakahara et al., 2004; Kobayashi and Schultz, 2014).
For example, Nakahara et al. (2004) trained monkeys to expect
reward when presented with a visual cue. Here, one group
of monkeys experienced one set of contingencies (a context-
independent task), and another group were given another set
of contingencies (the context-dependent task). In the ‘context-
independent’ version of the task, the cues were presented with
reward 50% of the time, where reward was delivered according
to a random distribution. In the ‘context-dependent’ version
of the task, the cues were also reinforced 50% of the time,
however, the rate of reinforcement changed depending on the
previous run of reinforcement. Here, if monkeys had experienced
a long run of non-reinforcement across six trials, they were
guaranteed reward on the next trial. So unlike monkeys in the
context-independent task, monkeys in the context-dependent
task should be able to learn when to expect a rewarded trial.
If prediction errors can encode context-dependent information
then dopamine activity on the guaranteed rewarded trial after a
run of six loses should be minimal, despite the trial constituting
an increase in the magnitude of reward that would usually
elicit a large prediction error. Sure enough, with extended
training prediction errors adjusted to the contextual rule and
were modified depending on the prior history of reward. That
is, prediction-error signaling was low on trials where monkeys
anticipated reward after a long run of unrewarded trials but high
when unexpected reward was given before this run of six loses
was over. This demonstrates that VTA dopamine prediction-
error signals are capable of reflecting information garnered from
complex scenarios (Bromberg-Martin et al., 2010a; Takahashi
et al., 2011). Since then, it has also been demonstrated that
prediction errors can also be modulated by visual background
cues (Kobayashi and Schultz, 2014), showing that prediction
errors can adjust to both implicit and explicit contextual cues.

Such a finding is compatible with Sutton and Barto’s
(1981) model-free reinforcement algorithm. This is because this
theoretical account relies on the concept of state. Here, state is
defined as any array of salient observations, either explicit or
implicit, that is associated with a particular prediction about the
value of upcoming rewards. Hence, during conditioning when
a subject experiences presentation of a cue which has been
established as predictive of reward, the cue state accrues the
value inherent in the reward. Thus, delivery of the reward at the
end of cue presentation will not be surprising and a prediction
error will not be signaled. Further, the concept of state need
not be defined only by reference to the temporally predictive
cue. Rather, it can encompass many attributes of the trial. For
example, it could include information about how long it has been
since reinforcement or other sensory cues (e.g., contextual cues)
available on that trial (Nakahara et al., 2004; Redish et al., 2007;
Gershman et al., 2010; Nakahara and Hikosaka, 2012; Nakahara,
2014), basically anything that has been directly experienced as
associated with reward in the past. Thus, the finding that VTA
dopamine prediction-error signals adjust with either implicit
or explicit contextual cues can be easily explained within the
traditional view that the dopamine error system emits a signal
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synonymous with that predicted by model-free algorithms such
as that described in Sutton and Barto (1981). This is because
different expected values can be assigned to a particular state that
are capable of containing information beyond the discrete cue
that predicts reward (Bromberg-Martin et al., 2010c; Hong and
Hikosaka, 2011; Aitken et al., 2016; Cone et al., 2016).

Not only are dopamine prediction errors capable of reflecting
state-specific associations, dopamine prediction errors are also
theorized to contribute to the creation of new states which allow
for the development of state-specific associations (Gershman
et al., 2010; Gershman et al., 2013). Specifically, it is thought
that persistently large prediction-error signals may serve as a
segmentation signal that alerts the individual to a new state of the
world and to form a state-specific association. Take for example,
the context-specificity of extinction learning. If a predictive cue
is suddenly presented without its predicted outcome, humans
and other animals do not unlearn the original cue-outcome
association. Rather, they will attribute the change in contingency
to any perceived change in the experimental circumstance
(Bouton, 2004). Thus, responding to the predictive cue will re-
emerge when the experimental circumstance no longer reflects
that present in extinction (e.g., the passage of time or a physical
change in context; Bouton, 2004). According to Gershman et al.
(2010), the large prediction errors present at the beginning of
extinction leads an individual to infer a new state and form a
context-dependent association specific to the extinction context.
In line with this theory, Gershman et al. (2013) have shown
that using a gradual extinction procedure, where prediction
errors during extinction were reduced by sporadically presenting
reinforced trials, reduced the recovery of responding to the
predictive cue following the passage of time. This is consistent
with an idea that experimentally manipulating the degree of
prediction error during extinction reduced the likelihood that
a subject will infer a new state and form a context-specific
association.

Of course, learning also often extends beyond a reaction
to explicit and implicit sensory cues. Humans and other
animals are capable of constructing rich associative models
of the world which can be flexibly utilized in the absence
of direct experience. In such models, a behavioral choice
is often made by simulating all possible consequences and
selecting the response that is associated with the outcome that
is most favorable to the participant. The construction of such
models is typically referred to as ‘model-based’ learning and
contains information about value as well as the identity of cues,
responses, and rewards. Such learning is typically considered
to be independent of a dopaminergic prediction-error system
under current interpretations of these signals (Schultz, 1997,
2002, 2007). However, recently research has begun to emerge
which suggests that dopaminergic prediction errors may contain
model-based information (Daw et al., 2011; Sadacca et al., 2016).
For example, dopaminergic prediction errors are influenced by
OFC activity, known to be involved in model based behaviors
(Takahashi et al., 2011). Further, Daw et al. (2011) recently
found evidence for information consistent with a model-based
account of behavior in the ventral striatum, traditionally thought
to receive a model-free prediction error from VTA dopamine

neurons (Suaud-Chagny et al., 1992; Day et al., 2007). Here, they
tested human participants on a two-stage decision task. In the
first stage, subjects are presented with two pictorial cues. A choice
of one cue would lead to a second stage where another set of
cues (set 1) are presented the majority of the time, where the
choice of the other would lead to a different set of cues (set 2)
being presented most of the time. In this second stage, choice
of one of the pictorial cues in the two different sets leads to
either low or high monetary reward. On rare transitions, the
first-stage choice of the set 1 cues would lead to the set 2 of
pictorial cues that it is not usually associated with that first-stage
choice. The reasoning here is that if the rare transition to the
set 2 cues ended up with a choice that lead to an upshift in
monetary reinforcement, a model-based agent would select the
choice in the first-stage that most likely produces the set 2 cues.
That is, they would actually produce a different response from
the last reinforced response as it is more often that the alternate
choice led to presentation of the set 2 cues. However, a ‘model-
free’ agent, would make the same choice as the last trial. This is
because the response on the last trial has just been reinforced and
value of that action updated. In line with a model-based account
of this behavior, when participants had been reinforced after the
rare transition, they choose the different response on first-stage
of the next trial that was likely to lead to the pictorial cues that
signals greater reinforcement. Further, the Blood Oxygenation
Level Dependent (BOLD) activity of this model-based choice
were specifically found in ventral striatum, where activity tracked
individual differences in degree of model-based behavior. This
challenges the traditional assumption that such activity reflects
a model-free error signal from VTA dopamine, suggesting this
signal facilitates the use of more complex choice behavior that
requires an associative structure of the task.

In further support of this notion, Sadacca et al. (2016) have
recently found direct evidence that VTA dopamine phasic signals
in the rodent encodes model-based information. Using a sensory-
preconditioning task, Sadacca et al. (2016) found that VTA
dopamine neurons emit their traditional phasic signal toward a
cue that has not been directly paired with reward but, rather,
has come to predict reward via its associative relationship with
another reward-paired cue. Sensory preconditioning involves
first pairing two neutral cues as a serial compound in the absence
of any reward. Following this preconditioning phase, one of these
cues is then paired directly with reward during conditioning. As a
consequence of this training, both the reward-paired and neutral
cue will now elicit the expectation of reward. Thus, the cue not
directly paired with reward also acquires an ability to predict
reward via its prior association with the to-be-conditioned cue.
Such a prediction is model-based as updating learning in the
absence of direct experience requires the existence of a mental
map of relationships between cues that can be flexibly adapted
to incorporate the new information. Interestingly, Sadacca
et al. (2016) found that VTA dopamine neurons responded
to both the cue directly paired with reward and the neutral
cue that came to predict reward by virtue its associative link
with the reward-paired cue in the preconditioning phase. This
data clearly demonstrates that VTA dopamine neurons encode
associations that reflect model-based inference not based on
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direct experience. Thus emerging evidence from both the human
and rodent literature has begun to suggest that the dopaminergic
prediction-error system contains information that goes above
and beyond that appropriately described as a model-free value
signal described in Sutton and Barto (1981).

OUTSTANDING QUESTIONS

How Does the Diversity of VTA Dopamine
Neurons and Their Projection Targets
Lend to Our Understanding of How
Associative Learning Systems Interact?
A growing interest in the field is the investigation of the
heterogeneity of dopaminergic neurons in the VTA and the
diversity of their neurons targets (Lammel et al., 2011; Parker
et al., 2016; Morales and Margolis, 2017). For example, studies
have identified that distinct populations of dopamine neurons
in the VTA that show preferential increases in firing to either
rewarding and aversive outcomes and the cues which predict
their occurrence (Matsumoto and Hikosaka, 2009; Bromberg-
Martin et al., 2010b). In parallel, research has shown that
distinct populations of VTA dopamine neurons receive input
from the laterodorsal tegmentum (LDT) and lateral habenula
(LHb), argued to underlie these appetitive and aversive responses,
respectively (Lammel et al., 2012). These inputs from LDT
and LHb synapse preferentially on VTA dopamine neurons
projecting to nucleus accumbens (NAc) and PFC, respectively.
These studies are a few of a host of studies which are beginning

to identify disparate populations of VTA dopamine neurons that
appear to show distinct and complex interactions with wider
neuronal systems where they contribute to behavior in diverse
ways (Matsumoto and Hikosaka, 2007; Jhou et al., 2009; Lammel
et al., 2011; Eban-Rothschild et al., 2016; Parker et al., 2016).
Additional complexity of the VTA dopamine system comes from
recent evidence which suggests that VTA dopmaine neurons also
release other neurotransmitters such as glutamate and GABA.
Thus this emerging research begins to paint a complex picture
of how VTA dopamine neurons may contribute to learning
and behavior which may continue to challenge a perception of
the prediction error as a cached-value signal. The continuation
of such research will undoubtedly shed light on the ways in
which VTA dopamine prediction-error signaling contributes to
attentional and model-based learning described in this review.

What about Non-dopaminergic VTA
Neurons?
The prediction-error signal to the reward wanes across successive
cue-reward parings as the cue comes to reliably predict the
reward. However, with this decrease in signal at the time of the
reward, we also see an increase of dopamine signaling to the
reward-predictive cue. This phasic response to the cue is thought
to reflect the cached value inherent in the reward it predicts. It
has been suggested that this reduction in the neural response at
the time of reward, as a result of expectation elicited by a cue, may
arise from inhibition of dopamine neurons that is initiated after
cue offset and persists during reward (see Figure 3). GABAergic
neurons in the VTA are one possible candidate proposed to
provide this inhibitory signal. Recently, Cohen et al. (2012)

FIGURE 3 | Schematic of dopamine and GABA reward prediction-error activity during learning. Neural activity is aligned to cue presentation (e.g., light, on
the left) and reward presentation (e.g., a drop of juice, on the right). While phasic activity of dopamine neurons (black lines) are elicited by unexpected reward delivery
upon initial cue-reward pairings (top) with repeated cue-reward pairings the signal at the time of reward receipt wanes as the reward becomes predicted by the cue
(middle). This transition occurs gradually over successive trials in accordance with traditional learning models of prediction error (Rescorla and Wagner, 1972; Sutton
and Barto, 1981). It is speculated that this reduction in the dopamine signal to the reward may result from inhibition of dopamine neurons by GABAergic neurons in
the VTA (bottom, blue line) that is initiated after cue offset and persists during reward delivery (Houk et al., 1995; Cohen et al., 2012).
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recorded GABAergic neurons in animals well trained on a simple
cue-reward procedure where different odor cues predicted either
big reward, small reward, nothing, or punishment. Cohen et al.
(2012) found that dopaminergic neurons responded to cues in
a manner consistent with the quantitative value it predicted.
However, while GABAergic neurons were excited by predictive
cues, they exhibited sustained activity across the delay between
the cue and the expected reward (see Figure 3). The authors
concluded that this signal from GABAergic neurons counteracts
the excitatory drive of dopaminergic neurons when a reward
has been predicted to ensure that a prediction-error signal
is not elicited when an expected reward is delivered. Thus,
these GABAergic neurons may contribute to the development
of a reduction in the dopaminergic response during reward
receipt as the cue comes to predict the reward. Future
studies may continue to investigate the causal role of these
neurons in learning and to determine which inputs from other
regions provide the expectancy signal to allow GABAergic
neurons to modulate dopaminergic prediction-error signals in
the VTA.

Is Learning Always Distributed in
Accordance with a Summed-Error Term?
As it stands we have argued that dopamine signaling in the
VTA can support learning in a manner that is consistent with
multiple theories of associative learning. In doing so, we have
predominantly focused on how VTA dopamine may relay a
summed-error term to facilitate cue processing in other brain
regions (Rescorla and Wagner, 1972; Sutton and Barto, 1998).
However, empirical data has shown that learning can also
be governed by an individual-error term; as such learning
on any one trial need not be equally distributed across cues
present on a trial even if they are of equal salience (Le Pelley
and McLaren, 2001; LePelley and McLaren, 2004; Leung and
Westbrook, 2008). One of the most convincing findings in
favor of the presence of individual-error terms comes from
studies of causal learning in humans (LePelley and McLaren,
2004). Specifically, Le Pelley and McLaren (2001) looked at the
distribution of associative change between the elements of a
compound composed of an excitatory cue and an inhibitory
cue. In contrast to the predictions made by models comprising
a summed-error term (Rescorla and Wagner, 1972; Sutton and
Barto, 1981), they found that learning was not distributed equally
across the elements of the compound. When the compound
was reinforced, the excitatory cue underwent greater change,
however, when the compound was not reinforced the inhibitory
cue underwent greater change. These data cannot be accounted
for by a summed-error term (nor a differential degree of
attention directed toward one of the cues). Rather, these data
suggest that an individual-error term must be at least capable
of contributing to associative change in some settings. As a
consequence of such evidence, more recent developments in
models of associative learning have taken into account the

need for individual-error terms (Mackintosh, 1975; Pearce and
Hall, 1980; Rescorla, 2000; LePelley and McLaren, 2004; Pearce
and Mackintosh, 2010; Le Pelley et al., 2012). While there has
been little investigation into the neural mechanism underlying
individual-error terms, it would be of interest to identify whether
midbrain dopamine signals may also reflect an individual-
error term to contribute to associative change under these
circumstances.

How Might We Reconcile Evidence for
Model-Based Learning in the VTA within
the Current Framework?
Of course, a discussion of how VTA dopamine signaling impacts
other structures to produce many forms of learning driven by
error correction is a one-sided view. VTA dopamine neurons
not only project out to a rich neural circuit, they receive dense
reciprocal projections from these regions (Carr and Sesack,
2000; Vázquez-Borsetti et al., 2009, see Figure 2). Taking the
broader circuitry into account, perhaps areas known to be
involved in model-based reasoning inform VTA dopamine
phasic signals of learning outcomes garnered from more
flexible mental representations developed in the absence of
direct experience. Thus, this information could be relayed in
a top-down manner to VTA to modulate these phasic signals
according to this word view (Daw et al., 2011; Takahashi
et al., 2011, 2016; O’Doherty et al., 2017). However, it is also
possible that VTA dopamine signals are causally involved in
promoting the development of the associations which underlie
the development of flexible mental maps which facilitate model-
based inference. That is, these signals may provide more
complex associative information about relationships between
cues and outcome that facilitate model-based behaviors. While
we have begun to scratch the surface of how dopamine
signaling may influence model-based mechanisms, we need
to start causally testing predictions of dopamine functioning
beyond that envisioned by Sutton and Barto’s (1981) model-
free reinforcement learning algorithm to truly understand all the
weird and wonderful ways that phasic VTA dopamine supports
associative learning.
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