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Social interaction occurs across many time scales and varying numbers of agents; from

one-on-one to large-scale coordination in organizations, crowds, cities, and colonies.

These contexts, are characterized by emergent self-organization that implies higher order

coordinated patterns occurring over time that are not due to the actions of any particular

agents, but rather due to the collective ordering that occurs from the interactions of

the agents. Extant research to understand these social coordination dynamics (SCD)

has primarily examined dyadic contexts performing rhythmic tasks. To advance this

area of study, we elaborate on attractor dynamics, our ability to depict them visually,

and quantitatively model them. Primarily, we combine difference/differential equation

modeling with mixture modeling as a way to infer the underlying topological features of

the data, which can be described in terms of attractor dynamic patterns. The advantage

of this approach is that we are able to quantify the self-organized dynamics that agents

exhibit, link these dynamics back to activity from individual agents, and relate it to other

variables central to understanding the coordinative functionality of a system’s behavior.

We present four examples that differ in the number of variables used to depict the

attractor dynamics (1, 2, and 6) and range from simulated to non-simulated data sources.

We demonstrate that this is a flexible method that advances scientific study of SCD in a

variety of multi-agent systems.

Keywords: dynamical systems, social coordination dynamics, multi-agent coordination, attractors, agent-based

modeling

INTRODUCTION

For many animals and humans, social interaction is pervasive in daily life. Social interaction
occurs across many time scales and varying numbers of agents; from one-on-one to large-scale
coordination in organizations, crowds, cities, and colonies. Since social interactions occur at
different scales, and in ways that change dynamically over time, they can be quite a complex
phenomenon to study without appropriate guiding theoretical and methodological frameworks.

In dynamical systems theory, complexity arguably occurs due to the emergent, self-
organizational nature of the system. Emergent, self-organization here implies that there are higher
order macroscopic patterns occurring over time that are not necessarily due to the actions of any
particular controlling agents or components, but rather due to the collective ordering that occurs
from the individual interactions of the agents or components of the system (Halley and Winkler,
2008). Taken together these diffuse interactions contribute to more macro-scale phenomena that
are observed over time. Common examples of this type of emergent, self-organization of social
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behavior occurs in flocking birds and in schools of fish that
appear to move in a highly coordinated fashion (e.g., Couzin and
Krause, 2003).

Because of the multitude of agents (or system components)
that give rise to emergent patterns, it is often difficult to
determine how one should depict the resultant system. In line
with approaches to social coordination dynamics (SCD), we aim
to uncover the dynamic processes that underlie the ways in
which agents are able to organize their behavior and change
together in time (Oullier and Kelso, 2009). This emergence is
a form of coordination that specifically implies the occurrence
of a functional ordering of components that interact across
spatial and temporal dimensions, often with multi-directional
relationships (Kelso, 2009; Butner et al., 2014a). We aim to
model this emergent, multi-agent coordination through attractor
dynamics depictions (which we discuss in detail in the next
section).

From the SCD perspective, two or more agents are able
to coordinate their behavior based on some form of mutual
information exchange. This information exchange generates
coordinative structures with higher order patterns not easily
identifiable from the lower order interactions. The resultant
higher order patterns are then depicted through attractor
dynamics in which the patterns are attributed with stability
properties implied by an underlying topology (Kelso, 1995).
SCD is thus consistent with notions of weak emergence
(Bedau and Humphreys, 2008), but the resultant patterns
have then been modeled using attractor dynamics descriptions
depicting patterning over time that have stable properties under
perturbations. Onemajor distinction between SCD and examples
of weak emergence (usually through agent-based or cellular
automata models) is in the scale of the social systems involved.

Agent-based models are usually quite large-scale social
systems, while SCD has often focused on a dyadic scale of
analysis. SCD has excelled in generating models of intentional
and spontaneous dyadic interpersonal rhythmic behavior such
as finger or limb oscillations (e.g., Haken et al., 1985; Schmidt
et al., 1990; Oullier et al., 2008), swinging pendula (Schmidt and
O’Brien, 1997), and rocking in chairs (Richardson et al., 2007).
Some recent work has provided ways to assess social interactions
in larger scales such as coordination of groups bigger than dyads
(e.g., Richardson et al., 2012; Duarte et al., 2013). One challenge
is to generate models of emergent, multi-agent coordination in
social systems where the agents may not behave rhythmically per
se, but are following some organizing rules or structures that give
rise to coordinated behavior serving a functional purpose.

In the current paper we build on SCD approaches, by
modeling the results from large-scale agent-based systems as a
function of attractor dynamics. Our chosen technique utilizes
mixture modeling in conjunction with topological equations
to represent attractor dynamics. This approach is particularly
attractive in that topological representations of phase space can
yield more qualitative information in comparison to other time
series approaches (Strogatz, 2014), generating a more complete
picture of the underlying system dynamics. Specifically, we
examine a series of agent-based examples, and model each set
of time series as a function of their changes through time. We

show how sets of linear equations can depict the higher order
emergent patterns in ways consistent with attractor dynamics.
The advantage of this approach is that we are able to quantify the
self-organized dynamics that agents exhibit, link these dynamics
back to activity from individual agents, and relate it to other
variables central to understanding the coordinative functionality
of a system’s behavior. Our goal is to exemplify the strategy. In all,
we present four examples that differ in the number of variables
used to depict the attractor dynamics (i.e., the dimensionality of
the systems) and range from simulated to non-simulated data
sources.

Attractor Dynamics
In dynamical systems theory, the concern is often placed on what
states a system is drawn toward, or away from, as it changes
over time (e.g., Richardson et al., 2014). This epitomizes the
notion of attractor dynamics. Attractor dynamics are merely
a mathematical way of expressing repetitious behavior in the
face of constant disruptions to those repetitions. The constant
disruptions are inherently part of the system in that open systems
are dissipative and function far from equilibrium to maintain
patterns (Prigogene and Stangers, 1984). By only examining
a portion of a system, as is common in empirical research,
the unexamined variables are treated as constant disruptions
or perturbations to those patterns. These repetitious behaviors
describe the most probable system states and their ability to
remain in these states (while facing perturbations) conveys
the inherent stability of those states. These attractor dynamics
can then be modeled using differential/difference equations,
allowing for exploration of the inferred dynamics and theorizing
the manifolds in which the system functions (Differential
equations are based on idealized models for when change in
time approaches zero while difference equations estimate models
using the observed discrete differences; Butner et al., 2015).

Assuming a system exhibits stability, the emergence of a
limited set of patterns, which can be described in terms of
topological features, are plausible. These topological features can
be described using map analogies, because there is a strong tie
between topology and maps. In fact, differential topology is the
math behind maps. Traditionally, topographical maps convey
elevation of a landscape. But, the notion of topologies can also
be applied as a graphical representation of how data are changing
over time.

To ease the interpretation of differential topology, we will
temporarily link movement on maps to different topological
features. This interpretation is directly relevant to several of the
examples (although more general definitions are extant; Butner
et al., 2015). An Attractor is when the agents are drawn toward
a particular coordinate over time or a particular directional
heading. This is akin to a topographical valley. A Repeller is a
coordinate that agents move away from. These would be reflected
topographically as amountain peak. A Saddle occurs when agents
are attracted in one dimension and repelled in another. It is
analogous to a topographical ridgeline because it can separate
different patterns such as two attractors (Abraham and Shaw,
1983; Butner et al., 2015). A Cycle corresponds to a push/pull of
two dimensions on one another. Combined versions of patterns
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described can also be observed such as spiral attractors where
there are circling movements for how agents converge toward an
attractor. Saddles and cycles require at least two dimensions and
thus will only be possible in the later examples (not merely with
heading as it is a one dimensional example).

To continue with the link to maps, we will begin with agent-
based models that function spatially. As a simplification, we can
reduce their behavior to movement along an X and Y axis or
merely the directional heading of agents (when we only require
a single dimension to depict the system). We can then model the
simultaneous change of these variables over time. In this way, we
capture the movement of many agents and can characterize them
with attractor descriptions. With this information it is possible
to examine and identify patterns of change for the overall system
using the particular topological features defined above to describe
howmultiple agents are moving over time (Butner et al., 2015). It
is in these terms that we gain an understanding of the emergent,
coordination of many agents.

As a beginning example, consider a Flocking agent based
model (Wilensky, 1998) in NetLogo v5.2.1 (Wilensky, 1999)
designed to emulate the self-organized behavior of how flocks
of birds might come to match one another’s movements creating
complex group behavior. Agents start with a randomheading and
constant velocity in a wrapped environment (makes a torus). The
heading for each agent is determined by three rules: (1) alignment
states that each agent tends to turn to be moving in the same
direction as nearby agents; (2) separation states that each agent
will turn to avoid an agent when it gets too close; and (3) cohesion
states that agents tend to move toward other agents. As the agents
“fly” through the two dimensional environment they update their
headings over time. Figure 1 shows time series of the headings for
all (300) agents simultaneously over one thousand iterations. It is
clear that early in the simulation the full range of headings are
observed yet, in later times the range of headings become more
restricted and shared by the agents. This is an example of the
emergent coordination that occurs within the Flocking model.

To depict these results topologically requires identifying the
underlying map in which the agents are interacting. An attractor,
in this case, would be the heading(s) in which the agents move
toward and the stability would be the resistance exhibited in
the system when an agent begins to diverge from this attractive
heading and pulled back thusly. The map is not one of actual
hills and valleys, but instead the resultant decrease in heading
directions, from the emergent self-organization between agents.
Thus, the trajectories for agents imply an underlying pattern
that we can infer. One assumption of dynamical systems theory
is that there is one—or perhaps multiple—underlying patterns
emergent from the interactions of individual agents over time.
Interactions result in a consistent pattern, that the system flexibly
returns to when interactions or outside forces briefly move the
system away from its primary pattern. This notion of consistency
in the face of perturbations is stability. While it is easy to observe
the convergence of heading amongst the agents in Figure 1, little
information can be drawn in regards to the number of underlying
patterns and their inherent stabilities.

The flocking example is a useful one in that the implied map is
not a map of X and Y coordinates, but one of heading—it is a one

FIGURE 1 | Time series of the headings for 300 flocking agents. Note

that the flock moves toward a very restricted heading.

dimensional map. One dimensional maps are not very interesting
to draw; they are a line showing where the data converges over
time. That is, attractor dynamics are time implicit models rather
than time explicit ones and thus, are akin to collapsing the X axis
in Figure 1, while adding in notions of where each agent goes next
to determine the map.

Dynamical systems theory has long provided the theoretical
framework and terminology for describing multi-agent self-
organized patterning. Returning to Figure 1, an apt depiction of
the Flocking simulation is one that begins with many attractors
that cease to exist over time, which produce a limited set
of stable attractors. This qualitative description captures the
evolving process, without any of the quantitative dynamics. By
quantifying them through topological equation representations,
we can further differentiate aspects of the system and specify the
strength of the attractors. We therefore next cover the step of
quantifying the dynamic.

A Vector Based Approach

There are several ways to estimate differential topological
equations. In all cases, we must first express the data in
terms of data vectors rather than values. For the heading data
illustrated in Figure 1, the data is structured such that two or
more points in time are used to define a data vector, known
as a time delay or Toeplitz data structure (e.g., Boker and
Laurenceau, 2006). The data is structured so that a value at time
t and a value at time t+1 are two variables within the model.
Further, our models are all estimated in structural equation
modeling wherein change was built into the models themselves
as latent variables (McArdle, 2009). One can also estimate change
directly through a discrete difference or various methods for
estimating derivatives and thus while we use structural equations
to build our models, this is far from a necessity (Boker et al.,
2010).

Different attractor dynamics are then captured through
expressions of change predicted by value. For example, Equation
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(1) expresses the potential dynamics for the headings of the
various agents.

ẋt = b0 + b1xt + et (1)

Current heading of a given agent at time t is x, x-dot is an estimate
of its derivative with respect to time, b0 is the intercept, b1, the
slope with respect to x and et is error. For clarity, this equation is
written in regression formwhere velocity in heading at each point
in time is treated as the criterion and position (current heading)
is the predictor. When the slope in Equation 1 is negative, we
observe an attractor where the time series are attracted toward a
value of −b0/b1 known as the set point (Butner et al., 2015). A
repeller occurs when the slope is positive instead of negative. The
strength of attraction/repulsion is defined by the steepness of the
slope relative to zero.

Equation (1) is limited in that it can only capture a single
topological feature (Butner et al., 2015). While the system may
converge to a single heading, this convergence is developed over
time. Consistent with the qualitative description of the flocking
model, we should observe several patterns that cease to exist
as time continues. This results in a much more limited set of
dynamic patterns that occur at later times. We therefore expand
our approach to allow for multiple sets of Equation (1). We did
this through an analytic technique known as mixture modeling.

Mixture Modeling Methods

Mixture modeling is a taxonomic approach that can be
combined with structural equation modeling (Enders, 2006) as
an alternative way to capture interactions (Jung and Wickrama,
2008). Non-linear dynamical systems allow for multiple
topological patterns by building non-linear transformations,
such as the interaction and therefore mixture modeling can
be used as a way to capture the different topological features
by slicing up the overarching state space under an assumption
that each dynamic is locally linear. One description of mixture
modeling is as a multiple group analysis (stacked model), where
assignment to group is unknown (Muthen, 2001). Multiple
group models allow for different parameters across groups. We
can extract different equation sets by allowing key parameters
to differ across these groups while equating others. Specifically,
we allowed the slope coefficients characterizing how position
predicted each velocity, the intercepts for the velocity factors,
the means for the position factors, the residual variances for
the velocity factors, and the variances for the position factors to
vary across sets of equations [see Appendix A (Supplementary
Material) for an example in Mplus (Muthén and Muthén,
1998–2012)].

As previously described, the sign of the slope coefficients
capture the type (e.g., attractor, repeller, limit cycle) and strength
of attraction for the dynamic implied by the equations (see
also Butner et al., 2015). In addition, the velocity intercepts
help determine the set point, or relative position to which the
dynamics can be described (e.g., the location of the attractor).
Following logic laid out under notions of centering and simple
slopes analysis (Cohen et al., 2003), the means and variances
for the position factors help depict common trajectories implied

by the pattern and thus help identify the basin of attraction. By
allowing for variation in these parameters across latent classes, we
can infer a number of varying topological features, as opposed to
a single feature.

Mixture modeling can be used as a confirmatory or
exploratory method. In either case, there must be established
criteria for fit. The current preferred methods are through
forms of the Bayesian Information Criterion (BIC) or through
forms of model testing such as log likelihood or chi-square
comparisons to see if the current number of extracted groups
improves description of the data beyond the previous number of
groups. Specifically, the BIC and sample size adjusted BIC tend
tominimize when the proper number of mixture groups has been
extracted (Sclove, 1987; Nagin and Tremblay, 1999; Nylund et al.,
2007) and both have been used under different circumstances
usually relating to the sample size (sample size adjusted BIC is
preferred when n < Bauer and Curran, 2003; Lubke and Neale,
2006; Enders and Tofighi, 2007).

Model identification can also be informed by various
likelihood ratio tests (LRT), which are used to test relative
model fit by testing the null hypothesis that competing models
demonstrate comparable fit (Vuong, 1989).Within latent variable
models such as the present one, the Vuong-Lo-Mendell-Rubin
test (Lo et al., 2001) is an accepted methodology for testing
the equivalence of two associated probability density functions
(Henson et al., 2007). Simulation studies have indicated that
the VLMR test favors selection of more components when used
with small samples, resulting in increased Type I error rates; this
suggests the need for an adjusted test (aVLMR) with samples less
than 300 (Lo et al., 2001). For our purposes, we chose to rely on
the BIC.

Note that our data had an inherent dependency—the nesting
of multiple measures through time within each agent. Ignoring
a data dependency is known to produce biased standard
errors with large alpha inflation as the common result (Cohen
et al., 2003). However, current mixture modeling practices
that incorporate methods for accounting for the dependency
preclude any descriptions of predictors. In this case, that would
result in the loss of the means and variances for the position
factors that detail key information about the basins of attraction.
We therefore chose to temporarily ignore the dependency,
recognizing that the standard errors for each coefficient may be
biased toward Type 1 errors.

To better understand the extracted equation groups, we saved
out the posterior probabilities for each data vector. This is
the probability that each instance in time for a given agent
belonged to one of the classes characterized by a particular
equation set where the set of posteriors for a given vector
sum to one. It is the equivalent of factor scores if mixture
groups as likened to a categorical latent variable. The value of
the posterior probabilities is that they allow us to specifically
link each agent to the various attractor dynamics at each
point in time. Through the combination of the description
of each attractor dynamic and the posterior probabilities
linking the agents to the topologies, we are able to traverse
between the observed vectors from the agents to the underlying
topology.
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One Dimensional Systems
What follows is an illustration of the analytic strategy for the
flocking example using the headings from all agents. Fit indices
of the 300 flocking agents over 1,000 iterations resulted in sixteen
unique attractors (as indicated by the BIC at its lowest value).
Table 1 contains the estimated parameters for each of the sixteen
equations. All sixteen patterns are attractors as indicated by the
negative slopes. They vary in their stability, indicated by the
range of slopes. The headings to which each pattern indicates a
point of attraction is identified by converting the intercepts and
slopes into the set point (−b0/b1). In essence, the flock example
is characterized by a total of sixteen unique attractors.

We can link the attractors back to the individual agents
through the posterior probabilities. For purposes of relating to
the initial assessment of the many unique patterns dying off,
we chose to illustrate the average posterior probabilities (the
average likelihood a given agent is depicted by a given attractor)
as a function of time. Figure 2 shows the average posterior
probabilities for each attractor dynamic. The legend shows the
heading attracted to (set point) and level of attraction (slope) as
a function of time. Consistent with Figure 1 (and expectations),
initially there were many attractors, but somewhere around
iteration 300, two specific attractors started to dominate (dotted
lines in Figure 2).

Notice that they share the same heading of 273 degrees, but
with slightly different degrees of attraction. Recall the three rules
that constitute the changes in heading over time: alignment,
separation, and cohesion. Alignment and cohesion drive the
agents toward a single heading, but separation instead evokes
divergence when agents become too close (and specifically
overrides the other two rules). What distinguishes the patterns
is not the heading they are drawn toward, but in the divergences
themselves due to separation that produces a weaker attractor.
Note that agents can be switching between the two attractors over
timemoving to the slightly weaker attractor, as they need to avoid
collisions.

We gain additional information from the quantitative
attractor dynamic description as illustrated in Figure 2 when
compared to Figure 1. Each data vector is now depicted not
only in terms of its vector, but also the likely attractor in which
it is drawn (through the posterior probabilities). Further, the
description is now in terms of the underlying system forces that
depict the type of pattern (all attractors since all the slopes were
negative), the location to which the patterns are relative (the set
points), and their stability under perturbations (the deviation of
the slopes from zero). However, thinking topologically becomes
even more beneficial as we move toward systems with more
dimensions.

Two Dimensional Systems
Modeling a two dimensional system can be captured through two
simultaneous equations.

ẋt = b0 + b1xt + b2yt + ext (2)

ẏt = b3 + b4xt + b5yt + eyt (3)

TABLE 1 | Unstandardized coefficients from the sixteen attractor solution

for the Flocking model of headings.

Pattern Intercept Slope

1 348.528 (1.485) −1.428 (0.007)

2 300.932 (1.632) −1.402 (0.007)

3 235.521 (3.214) −1.306 (0.013)

4 197.095 (3.055) −1.202 (0.093)

5 255.672 (1.519) −1.174 (0.061)

6 147.377 (2.554) −1.103 (0.014)

7 93.272 (2.171) −1.063 (0.013)

8 24.897 (0.650) −1.019 (0.003)

9* 271.455 (1.389) −0.993 (0.005)

10 332.548 (1.056) −0.972 (0.006)

11* 259.730 (3.296) −0.952 (0.012)

12 227.678 (6.830) −0.926 (0.021)

13 334.308 (0.936) −0.896 (0.052)

14 21.801 (0.811) −0.881 (0.037)

15 284.039 (5.719) −0.818 (0.021)

16 245.613 (7.467) −0.755 (0.022)

Patterns ordered by slope deviation from zero (to match Figure 2). Italicized patterns

marked with an * match dotted patterns in Figure 2.

These equations represent two variables measured
simultaneously (x and y) at time t, x-dot and y-dot are
their estimated derivatives at time t, b0 and b3 are intercepts,
b1 and b5 are each variable predicting its own derivative, b2
and b4 are crossover or coupling relationships, and ext and eyt
are errors in equation. Notice that Equation (2) is identical to
Equation (1) with the addition of the other changing variable
also predicting velocity in x (or x predicting velocity in y). By
having both variables changing simultaneously, we generate a
two dimensional depiction. The emergent dynamic (attractor,
repeller, etc.) is a function of all the b coefficients in the equations
(Gottman et al., 2002). Common interpretation is that the own
effects (i.e., x predicting change in x and y predicting change
in y) depict the stability properties of the dynamic pattern
(attractor, repeller, or saddle) such that negative coefficients are
indicative of attractive behavior and positive coefficients are
indicative of repulsive behavior in the respective dimensions.
The crossover relationships (also known as coupling effects) are
commonly interpreted to represent the push-pull of variables
that constitute cycles and swirling qualities graphically. The
set point is a function of both equations. And as noted earlier,
two-dimensional systems can include saddles and cycles, which
are topological features that are not possible in one-dimensional
systems.

While many cases can be interpreted as described in the
previous paragraph, some cases do not always conform to the
conventional interpretations (and we include some examples
of this below). A common violation relates to the notion of
collinearity. If all variation in both x and y perfectly map onto
one another, then x and y are essentially a single dimension.
Under this circumstance the coefficients can bemisrepresentative
of the dynamic pattern. In our spatial movement circumstance,
agents will sometimes capitalize on diagonal movement as a
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FIGURE 2 | Time series of the average posterior probabilities for each

attractor dynamic pattern. All patterns were attractors as indicated by their

negative slopes, but differed in terms of their set points (SP; the heading in

which the agents were attracted toward) and the attractor strengths (the

steepness of their slopes). At around iteration 300, the system shows a phase

transition wherein two patterns with the same heading begin to dominate.

primary, singular dimension. Assessment of the eigenvalues and
eigenvectors of the coefficients (treated as a Jacobian matrix
of partial derivatives for estimating local Lyapunov exponents;
Arabanel et al., 1992) is a method for verifying and determining
whether to follow the classic interpretation or whether the
interpretation should be modified.

The Ants Model

Consider the Ants model (Wilensky, 1997) in NetLogo v5.2.1
(Wilensky, 1999). This agent-based model was designed to
simulate ant colony foraging behavior. The simulation consists of
125 ants each with the same instructions, starting at a nest in the
center of a two-dimensional space. Ants are released one at a time
from the nest, moving at a constant velocity. Three food sources
are placed within the two-dimensional space each with a finite
quantity of food supply. The ants search the environment for
food (following a random direction algorithm) and upon locating
and collecting food, return it to the nest. The primary mechanism
for the emergent foraging behavior involves the ants releasing
digital pheromones while carrying food and that the ants are
attracted to this pheromone. This is much like how stigmergy, a
form of environmental modification by individual social animals
that affords collective coordination, is proposed to work in live
ant populations (Theraulaz and Bonabeau, 1999). The nest also
releases a pheromone signal so that the ants can find the nest.
The simulation allows for the manipulation of the evaporation
and diffusion rates of the pheromones, which we left at default
settings. Figure 3 shows the standard placement of food sources
in the environment in relation to the nest at the center.

From visual inspection, several emergent colony behaviors can
be observed. Ants will search the environment until a critical
threshold of ants find a given food source. At this point the ants

FIGURE 3 | Screenshot of nest and food placement of the Ants model

from Netlogo.

will form a trail between the food source and the nest. There
are sometimes congestion-like behaviors that occur in the middle
of the trail or near the nest as more ants converge toward the
strongest pheromone locales. Once the food source is used up, the
ants once again spread out into a search pattern until a new food
source is found. In this case, we will depict the attractor dynamics
of the ant movement in two dimensions as a way to characterize
the different ant behavioral patterns.

We extracted the horizontal (x) and vertical (y) coordinate
position of every ant from the beginning of the simulation until
the last food pile was fully exhausted, totaling 1,080 iterations.
Figure 4 is a kernel density plot of the ant positions, collapsed
across all ants and all iterations. This shows the regions where
ants spent most of their time and can be thought of as the
probability density function of the data (under the assumption
of two dimensions)—a graphical illustration of the integral of
the dynamics. The density plot is read in the same fashion as
a topographical map, where the lines illustrate more density.
Note that the greatest density is at the nest (0,0). This was likely
a function of all the ants starting at the nest, including the
dispersion algorithm of only a single ant leaving the nest per
iteration. It is also a function of all the ants returning to the nest
to deliver food. Each branch of the density plot corresponds to
one of the food sources, consistent with a trail between the nest
and the food source. The densest part for each of the branches
was, however, closer to the nest than the food source.

Figure 5 contains trails of three exemplar ants as vector plots
in time to help illustrate the link between individual agents and
the model estimated from all agents. Figure 5A shows the trail
of an ant that helped collect food from all of the food piles.
However, it also shows searching behavior in some of the areas
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of the world where food did not reside. Figure 5B illustrates
an ant that only helped collect food from two piles and also
participated in searching behavior in empty quadrants of the
world. Figure 5C shows an ant that participated minimally in
food collection instead spending more time searching. As a
whole, these illustrate that the emergent behavior is not from any
one ant. Instead, it is through their interactions with one another
(through pheromones) and the environment (food resources
relative to the nest) that their behavior becomes emergently
coordinated.

Our mixture model identified a total of 7 different patterns
in the example ant model (minimized BIC at 7 groups). Table 2
shows all the coefficients for the seven different patterns, labeled
by their colors from Figure 6. The last two columns are the
eigenvalues wherein we built matrices of the own and coupling
effects in the same order as Equations (2) and (3) (First row:
own predicting x, coup predicting x and second row: coup
predicting y, own predicting y). The eigenvalue procedure allows
us to account for when the coefficients do not directly represent
the type of attractor dynamic due to the primary axes for the
dynamic depictions being different from the variables used in
the equations. When the eigenvalues are both real numbers and
negative, the system depicts an attractor. When the eigenvalues
are both real and positive, the system depicts a repeller. When
one is positive and one is negative, the system depicts a saddle.
Imaginary numbers instead depict cyclic behavior with complex
numbers being a combination of cyclic and attractive/repulsive at
the same time (Abraham and Shaw, 1983).

Figure 6 is a topographical representation of the seven
attractor dynamics patterns emergent in the ant behavior.
Figure 6 was generated by using the estimated equations from
the mixture model in conjunction with the adaptive Runge-Kutta
algorithm from the deSolve package (Soetaert et al., 2010) in R
(R Core Team, 2016) to estimate example trajectories iterated
over time. In each case, values were chosen using the position
means and variances extrapolating in all possible combinations
of one standard deviation in X and Y and iterating the trajectories
forward in time. Details on each pattern follow.

The blue, brown, and green patterns correspond to the food
piles while the red pattern corresponds to the ant nest. The yellow
pattern corresponds to searching an area where no food existed.
The light blue captured the pattern of the ants converging in the
middle of the trail as the pheromones were most intense there
and the purple captured the dispersal after the food pile in the
upper left had been fully collected (it was the first pile found in
the simulation).

Notice how each pattern is captured through a different
attractor dynamic. For example, the red nest pattern shows a
repeller in which ants leave the location. If we capture each
ant trail of food collection through the other patterns, then
what primarily remains is the initial leaving from the nest. The
blue and brown patterns, both corresponding to food piles,
show cyclic properties (they have imaginary components to their
eigenvalues). This is capturing the pattern of getting the food
from the pile, bringing it to the nest and returning. The pattern
corresponding to the lower left food pile was a saddle, however—
attractive in one dimension and repulsive in the other. By having

FIGURE 4 | Kernel density plot of where the ants spent most of their

time during the simulation. Note that the highest densities correspond to

the three food source locations and the nest.

the set point far from the dynamic pattern, the saddle generated
curved trails that could then be completed by feeding into other,
already established, patterns.

Now, we link the agents to these patterns and to key system
descriptions—in this case food depletion. Figure 7 shows the
decline in the food piles as a function of time. Notably, the
ants found the pile in the upper left first, followed by the lower
left and then finally the middle right. We ran seven multilevel
models treating the posterior probabilities of each pattern as
the outcome as a function of the proportion of food remaining
in each pile (a three predictor MLM). The fixed and random
effects along with intraclass correlations (ICC) are in Table 3.
All random effects were significantly non-zero suggesting that
there was variability in their likely pattern as a function of the
remaining food piles among the individual ants. The fixed effects
can be interpreted as whether or not the likelihood of being in
a pattern occurred where a positive sign meant that declines
in a food pile corresponded to declines in the pattern and a
negative sign meaning that declines in a food pile corresponded
to increases in the pattern. Given the order of the food pile
depletions, the pattern of effects can also roughly determine when
the pattern was more prevalent.

The red pattern at the nest was likely when all the food sources
were untouched and declined in likelihood as all the food piles
declined, consistent with the ants initially leaving the nest to
search. The blue, light blue, and purple patterns all associated
with the upper left quadrant were all less likely when the last
food pile was untouched, but only the purple (the theoretical
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FIGURE 5 | (A–C) Three example ant trails that illustrate how the ant behavior is shared across all the ants while each ant had unique behavior.

dispersion after the food pile was depleted) was contingent upon
the corresponding upper left food pile. The negative sign was
indicative that declines in the first pile increased the likelihood
of the purple dispersion pattern consistent with leaving the trail
to find another food source once the food in the first pile was
depleted. The green (corresponding to the lower left food pile)
and brown (corresponding to the middle right food pile) patterns
were predicted by all three food piles with negative coefficients
suggesting that as any food depleted, these became more likely—
consistent with these food piles being found later. Finally, the

yellow pattern was only uniquely predicted by the middle right
food pile depletion such that as the food pile declined, so did the
likelihood of being in the search pattern. Given that as more ants
found the last food pile, more converged on it. Once it depletes,
however, fewer ants would be in this search pattern.

Baboons Navigation Data

So far, we have relied on simulations to illustrate how one can
depict higher order emergent coordination for agent interactions
using attractor dynamics. Our next two examples are derived
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TABLE 2 | Unstandardized coefficients (and standard errors) for the seven

group solution along with eigenvalues for the Ants model.

Pattern Own Coupling Intercept Eigenvalues

Blue X−0.009 (0.002) 0.006 (0.002) −0.361 (0.064) −0.011 + 0.007i

Y−0.013 (0.001) −0.009 (0.002) 0.096 (0.064) −0.011 − 0.007i

Light Blue X−0.020 (0.003) 0.018 (0.004) −0.467 (0.075) −0.040

Y−0.023 (0.004) 0.020 (0.004) 0.522 (0.083) −0.002

Purple X−0.014 (0.003) 0.014 (0.004) −0.146 (0.035) −0.028

Y−0.001 (0.005) 0.027 (0.004) 0.107 (0.049) 0.013

Yellow X 0.005 (0.001) 0.018 (0.003) −0.645 (0.071) −0.011

Y−0.017 (0.003) −0.005 (0.001) 0.605 (0.085) −0.000

Green X−0.003 (0.001) 0.002 (0.001) −0.049 (0.014) −0.001

Y 0.003 (0.001) −0.004 (0.001) 0.002 (0.014) 0.001

Brown X 0.000 (0.001) 0.001 (0.000) 0.022 (0.019) 0+0.002i

Y 0.000 (0.000) −0.003 (0.001) 0.046 (0.017) 0−0.002i

Red X 0.000 (0.001) 0.001 (0.002) 0.011 (0.004) 0.019

Y 0.019 (0.002) −0.006 (0.001) 0.036 (0.004) 0.000

from observed data. Figure 8 represents a solution from global
positioning system (GPS) data collected from a troop of baboons
at the De Hoop Nature Reserve in South Africa. Table 4 contains
the coefficients and eigenvalues, again using colors to indicate
correspondence. To collect this data, researchers recorded the
positions of 14 adult baboons by holding a GPS device over or
very close to each animal at different points over a 74 day period
(data was made available by Bonnell et al., 2016; and further
details of the original study can be found at Bonnell et al., 2017).
Consistent, with the ants data, this example data is in an x/y
coordinate space, but now in longitude and latitude. To facilitate
estimation due to variability occurring in small decimal places,
longitude and latitude were mean-centered and multiplied by
1,000.

Figure 8 illustrates that several of the patterns show cyclic
behaviors. In fact, all the eigenvalues were negative with 7 of
the 10 showing imaginary eigenvalues consistent with cyclic
behaviors. Further, all patterns had at least one negative real
eigenvalue suggesting that they all were attractive indicating a
pattern of convergence for baboons. Figure 8 clearly shows that
the patterns were not equally attractive, however, in that vector
length differed dramatically when example trajectories were
estimated. This can also be seen by the size of the eigenvalues
where some were quite close to zero in their real number
portion(s) while others were much smaller numbers approaching
and surpassing negative one. Thus, some of these patterns were
more stable clusters for the baboons while others were more loose
associations around the shared longitude/latitude set point.

In their original work, Bonnell et al. (2017) evaluated
whether the movement patterns of a focal individual baboon
was influenced by the location of the troop as a collective or
by the locations of specific influential members of the troop.
Ultimately, their results showed evidence for both of these
patterns. In some cases, the focal baboon’s movement was highly
influenced by the average movement location of the entire
troop. In other cases, the focal baboon’s movement was quite

FIGURE 6 | Topographical illustration of the seven equation solution for

the Ant simulation.

FIGURE 7 | Time series plot of the amount of food available in each of

the three food piles. The legend describes where in the coordinate space a

given food pile was located (see also Figure 3).

sensitive to the movements of the alpha female (F1) and the
alpha male (M1). To link back to individual baboons, our
results suggest a consistent pattern as illustrated in Figure 9

wherein we show the average posterior probabilities for each
baboon illustrating which pattern would arguably influence a
given baboon the majority of the time (again, colors correspond).
Few distinctions existed between the female and dominant male
baboons showing preference for the light green (cyclic attractor)
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TABLE 3 | Unstandardized coefficients (and standard errors) and intraclass correlations from multilevel models predicting the posterior probabilities of

being in each of the seven groups for the Ants models.

Upper left food pile Lower left food pile Middle right food pile Intercept ICC

FIXED EFFECT

Blue 0.014 (0.009) −0.018 (0.010) −0.248 (0.020)* 0.269 (0.016)* 0.046

Light Blue −0.008 (0.006) 0.008 (0.008) −0.239 (0.013)* 0.249 (0.011)* 0.031

Purple −0.019 (0.005)* −0.010 (0.009) −0.221 (0.015)* 0.259 (0.012)* 0.021

Yellow −0.020 (0.011) −0.018 (0.010) 0.034 (0.011)* 0.028 (0.007)* 0.185

Green −0.092 (0.024)* −0.304 (0.023)* 0.479 (0.029)* 0.025 (0.017)* 0.070

Tan −0.219 (0.025)* 0.187 (0.025)* 0.072 (0.027)* 0.094 (0.018)* 0.116

Red 0.345 (0.025)* 0.154 (0.011)* 0.123 (0.012)* 0.076 (0.006)* 0.020

VARIANCE COMPONENT

Blue 0.009 (0.001)* 0.012 (0.002)* 0.049 (0.006)* 0.033 (0.004)*

Light Blue 0.004 (0.0010* 0.008 (0.001)* 0.021 (0.003* 0.014 (0.002)*

Purple 0.003 (0.000)* 0.009 (0.001)* 0.029 (0.004)* 0.017 (0.002)*

Yellow 0.014 (0.002)* 0.012 (0.001)* 0.016 (0.002)* 0.006 (0.001)*

Green 0.072 (0.009)* 0.063 (0.008)* 0.107 (0.014)* 0.037 (0.005)*

Tan 0.080 (0.010)* 0.079 (0.010)* 0.087 (0.011)* 0.039 (0.004)*

Red 0.079 (0.010)* 0.014 (0.002)* 0.017 (0.002)* 0.004 (0.001)*

*Denotes p < 0.05.

FIGURE 8 | Topographical solution for the Baboon gps data.

and yellow (attractor) patterns. The dominant male (M1) showed
slightly more preference for the magenta pattern (also an
attractor). Thus, there is evidence of following the primary male
baboon, but also one of a female majority. And yet in both
cases these most common patterns represent the least attractive
patterns (eigenvalues closest to zero) in that there is lots of
wandering in comparison to the other patterns inferred from the
GPS data.

Beyond Two Dimensions
As we move beyond two dimensions, it is difficult to make
easy to read and meaningful maps of the data. However, our
approach is not limited to two dimensions. By relying on

TABLE 4 | Unstandardized coefficients (standard errors) and eigenvalues

for the 10 pattern solution from the Baboon GPS data.

Pattern Own Coupling Eigenvalues

Red X −0.821 (0.015) −0.280 (0.013) −0.554 + 0.441i

Y −0.314 (0.023) 0.689 (0.023) −0.554 − 0.441i

Orange X −0.687 (0.021) 0.084 (0.017) −1.713

Y −0.860 (−0.14) −0.140 (0.039) −0.828

Yellow X −0.025 (0.002) −0.007 (0.001) −0.178

Y −0.005 (0.001) −0.019 (0.002) −0.004

Light Green X −3.720 (0.637) −0.906 (0.182) −0.006 + 0.017i

Y 1.595 (0.455) 3.798 (1.660) −0.006 − 0.017i

Dark Green X −0.024 (0.003) 0.005 (0.001) −0.424 + 0.311i

Y −0.011 (0.001) −0.062 (0.003) −0.424 − 0.311i

Light Blue X −0.386 (0.015) 0.164 (0.015) −1.205 + 0.350i

Y −1.073 (0.036) −1.103 (0.032) −1.205 − 0.350i

Blue X −1.066 (0.019) −0.039 (0.017) −0.857 + 0.239i

Y −1.040 (0.040) 0.807 (0.047) −0.857 − 0.239i

Navy Blue X −0.011 (0.005) 0.002 (0.002) −0.026 + 0.011i

Y −0.035 (0.003) −0.109 (0.009) −0.026 − 0.011i

Purple X −0.008 (0.030) 0.014 (0.014) −0.028 + 0.017i

Y −0.035 (0.019) −0.064 (0.039) −0.028 − 0.017i

Magenta X −0.013 (0.002) −0.020 (0.003) −0.026

Y −0.014 (0.003) −0.007 (0.002) −0.002

the eigenvalues presented earlier, one can derive the higher
order patterns to illustrate what is occurring without a means
to draw them. Further, it also allows us to point out that
any variables can be captured as attractor dynamics—they do
not inherently need to be spatial, as illustrated by our next
example.
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FIGURE 9 | Average posterior probabilities associated with each

equation group, by baboon. F is for female and M is for male.

Each new dimension corresponds to an additional equation.
In the six-dimensional case that follows, we model six
simultaneous equations where change in each variable is treated
as the outcome from each equation. Further each variable at a
given point in time is allowed to freely predict the changes in each
equation. The matrix used to generate the eigenvalues is based on
the coefficients where, as before, the main diagonal are the own
effects and the off diagonals are the coupling relationships. Each
matrix row corresponds to a different equation.

Affect in Families Data

To show a non-spatial example with more than 2 simultaneous
change equations, we modeled positive and negative affect from
the PANAS (Watson et al., 1988) taken from mothers, fathers,
and adolescents from 252 families where the adolescent has
type 1 diabetes. The data are taken from the Adolescents with
Diabetes and Parents Together study where each family member
completed a daily diary for 14 days (further study details can be
found at Berg et al., 2009).

We extracted two stable patterns (three patterns would not
properly converge and fit indices supported the two pattern
solution). Table 5 provides the estimated coefficients. Notably,
the eigenvalues were quite different between the two patterns.
The first pattern generates all negative eigenvalues indicating
that it forms one large six dimensional attractor (−0.709,
−0.522, −0.455, −0.428, −0.285, −0.257). The second pattern,
on the other hand had complex numbers for the first two
eigenvalues suggesting cyclic behavior as a primary component
(−0.613+0.027i, −0.613 −0.027i, −0.420, −0.343, −0.180,
−0.157).

Though we cannot draw a map to represent this higher order
pattern, one way to represent the changes in the system is through
a network diagram. Figures 10A,B shows only significant (alpha
= 0.05, two-tailed) pathways between affect variables. The
beginning of an arrow is value and the end of an arrow is change.
Blue arrows represent negative relationships and brown ones are

positive. Note between Figures 10A,B the connections between
individuals breaks down substantially with the cyclic nature
relating to the less connected network. The most noteworthy
is the changing connections of father’s affect to the mother
and adolescent. It is noteworthy that these coefficients merely
indicate prediction and thus any interpretation of causality would
overstate the relationship. That said, fathers were clearly showing
less connection in the second pattern.

To link back to individual families, we built a multilevel
model predicting the posterior probabilities for the first pattern
as a function of diabetes risk for the adolescent on a given day.
We use the variable risk as an easy to interpret indicator as to
how well the adolescent was managing their diabetes on a given
day. Risk is a rescaled version of daily blood glucose variability
and level such that zero indicates perfect maintenance at doctor
recommended levels and 100 indicates either going too high
or too low repeatedly (both of which can be quite dangerous;
see Kovatchev et al., 2006). Since posterior probabilities for a
given data vector add to one, high probabilities of being in the
first pattern inherently implies a low probability of being in
the second. Table 6 contains the coefficients. At zero risk on
a given day, families were equally likely to be in each pattern
(the intercept is the posterior probability when risk was zero).
As risk increased, however, families were more likely to fall
into the second pattern. That is, on good days we see the more
connected attractor pattern and on bad days the father appears
less connected and the family affect adopts a cyclic attraction
pattern instead.

DISCUSSION

Kelso (2009) posited that SCD “unites the spontaneous, self-
organizing nature of coordination and the obviously directed,
agent-like properties characteristic of animate nature into a single
framework” (p. 1540). This logic matches with self-organization
from agent-based models, and cases where many agents engage
in social coordination, more generally. By connecting attractor
dynamics modeling with cases where there are a range of agents
and a range of outcomes allows for a generalized approach to
quantifying the emergent patterns.

Through various examples, we illustrated that the
attractor dynamics can be captured using a combination of
difference/differential equation modeling and mixture modeling.
Further, we showed that these attractor patterns and their
occurrence could be linked with different outcomes. For the
flocking model, we found sixteen attractor patterns of the
agents’ heading that converged on fewer attractors over time.
For the ants model, we found seven dynamic patterns to depict
their motion in a two-dimensional x/y space that roughly
corresponded to qualitative depictions of rules the ants follow.
For the baboon navigation data, we found ten patterns in
two-dimensional longitudinal and latitudinal space in which the
probability of exhibiting a particular attractor was contingent
upon influential baboons in the troop (e.g., an alpha male). For
families where an adolescent has type 1 diabetes, we found two
patterns in a six dimensional affect space that corresponded to
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TABLE 5 | Unstandardized coefficients (and standard errors) from the two pattern solution for the Affect Daily Diary.

Mother + Mother − Father + Father − Adolescent + Adolescent −

1 1M+ −0.39 (0.03) 0.09 (0.03) 0.07 (0.03) 0.08 (0.04) 0.01 (0.02) 0.02 (0.02)

1M− 0.06 (0.02) −0.55 (0.03) 0.023 (0.03) −0.11 (0.04) 0.04 (0.02) −0.04 (0.02)

1F+ 0.09 (0.03) 0.05 (0.03) −0.41 (0.03) 0.09 (0.04) −0.01 (0.02) 0.02 (0.03)

1F− −0.00 (0.02) −0.05 (0.02) 0.08 (0.02) −0.55 (0.04) 0.02 (0.02) −0.03 (0.02)

1A+ 0.01 (0.04) 0.09 (0.04) 0.02 (0.04) 0.09 (0.06) −0.41 (0.03) 0.12 (0.03)

1A− 0.00 (0.03) −0.09 (0.03) 0.01 (0.03) −0.08 (0.02) 0.09 (0.02) −0.34 (0.03)

2 1M+ −0.33 (0.03) 0.28 (0.12) 0.07 (0.03) −0.19 (0.21) 0.02 (0.02) 0.03 (0.08)

1M− −0.00 (0.01) −0.61 (0.04) −0.02 (0.01) −0.04 (0.07) 0.01 (0.01) 0.04 (0.02)

1F+ 0.04 (0.03) −0.03 (0.09) −0.19 (0.04) −0.32 (.19) 0.02 (0.02) 0.02 (0.07)

1F− −0.01 (0.01) 0.01 (0.02) 0.00 (0.01) −0.50 (0.07) 0.00 (0.00) −0.01 (0.01)

1A+ 0.06 (0.03) 0.36 (.12) 0.01 (0.03) 0.35 (.24) −0.20 (0.02) 0.19 (0.09)

1A− 0.00 (0.01) 0.00 (0.05) −0.01 (0.01) −0.12 (0.08) 0.02 (0.01) −0.41 (0.06)

In the form of matrices used to estimate eigenvalues. Table was rounded to second decimal for space. Rows are changes (∆) in Mother (M), Father (F), and Adolescent (A).

FIGURE 10 | (A,B) Two network diagrams that illustrate the two different equations. Beginning of arrows represent value at time t. Arrow heads represent change in

value.

higher and lower levels of risk from the disease. By using the data
from all the agents, the underlying topology is inclusive of all the
agents. In the ants model, for example, not all ants illustrated
being influenced by every pattern. Instead, ants can exist in a
single pattern their entire time or move between them. Thus, the
underlying map implied by the set of dynamic patterns generates
an inclusive generalization both within and between agents that
capitalizes on the most probable systems states over the duration
of the observation period.

In each circumstance, the technique depicts the topological
feature in terms of the implied patterns and the stability of those
patterns. Whereas, the flocking model only contained attractors
that varied in their set points (attractive headings) and their
stabilities, the ants model illustrated all the common possible

attractor dynamic patterns including attractors, repellers,
saddles, and cycles.

The complexity of the underlying pattern is directly related
to the number of dimensions. With a single dimension, attractor
dynamics may only convey attractors and/or repellers. With two
dimensions, cycles and saddles can be inferred. Beyond two
dimensions, chaotic (strange) attractors are possible, though all
currently known chaotic attractors require non-linear equation
forms and the equations herein were restricted to linearity within
each equation group. Thus, this is a limitation of the technique
provided.

In each case, we then linked the quantification back to the
individual agents. Through mixture modeling we did this by
outputting the posterior probabilities. These probabilities are the
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TABLE 6 | Unstandardized coefficients (and standard errors) from

multilevel model predicting the posterior probability of the first pattern as

a function of Diabetes risk.

Fixed coefficients Variance components

Intercept 0.502 (0.027)* 0.100 (0.012)*

Risk −0.003 (0.001)* 0.000 (0.000)

*Denotes p < 0.05.

probability that a given data vector is under the influence of a
given dynamic pattern, the probabilities for a given vector sum to
one across all the possible patterns. Therefore, these probabilities
maintain the data dependency we inherently ignored in the
estimation for the dynamic patterns themselves. We therefore
always either examined the probabilities at a collapsed agent
level (e.g., averages) or through multilevel modeling wherein the
dependencies could be properly taken into account. In each case,
it could be linked to possible variables of interest used to depict
the system. For the headings, this was illustrated with time in that
attractors should collapse as time goes on. For the antsmodel, this
was illustrated through food supply. For the baboons, this was
illustrated through the location of the alphamale and the females.
For affect in families where the adolescent had type 1 diabetes, it
was illustrated with the diabetes risk exhibited that day. In all, this
allows one to link the higher order patterns back to meaningful
outcomes that characterize when agents behave in certain ways
or exhibit theoretically important states.

In the spatial examples, we utilized variables that depicted
the spatial movement. As an initial foray into understanding
attractor dynamics, thinking spatially helps make the concepts
more intuitive. But, ultimately, these concepts can be applied
in many contexts where relationships are not inherently spatial.
Being able to think about the spatial analogs helps ground what
is being observed, but does not inherently limit the domains in
which attractor dynamics can be examined.

Further, individual equation parameters do not always align
with the system depiction graphically or through the eigenvalue
procedure. In the ants example, this had to do with the reliance
on diagonal movement of the ants. By depicting the system
through an equation of x and an equation of y, we mask diagonal
movement—it is really a straightforward combination of the
two dimensions rather than showing some independence. More
generally, the coefficients are under an assumption that the
dimensions chosen are the primary dimensions for depicting
the changes occurring in the system. The eigenvalue procedure
bypasses this assumption by instead capitalizing on dimensions
that maximize the strength of the attractor dynamics.

Once we moved beyond two dimensions, the eigenvalue
procedure becomes even more valuable. There is no easy way
to graphically “see” the implied dynamic, but the sign and
distinctions between real and imaginary portions elucidate the
attractor pattern. In practice, anytime we model a system
with two or more equations we should adopt the eigenvalue
procedure as a means to understand the higher order pattern
in addition to any interpretations applied to the individual
coefficients themselves. For example, it is common to interpret

coupling coefficients as the push/pull of one variable upon
another. However, this fails to capture what pattern the push-
pull creates as their interpretation is under an assumption that we
somehow picked ideal dimensions to represent them. Locally, the
coefficients maintain their meaning, but we cannot extrapolate
the more global pattern of which they are a part.

In regards to equation identification, the technique is not
without its limitations. The choice of slicing up the data into
a series of locally linear equations is an imperfect method for
capturing non-linear dynamic models. Specifically, non-linear
dynamic models can have both multistability in which more than
one pattern is stable simultaneously and cases where variables
differentiate when one pattern is or is not accessible. By slicing up
the data into a series of locally linear equations through mixture
modeling, these two circumstances are difficult to distinguish.
One can begin to distinguish these circumstances by attempting
to predict the posterior probabilities. However, ultimately
multistability is distinguished by states being probable despite
nothing differentiating them (or when the dimensions being
examined are all that differentiate them). That is, multistability
would occur under a lack of being able to predict differences of
when agents would be in one or the other. Thus, this approach
provides a limited potential for knowing when multistability
exists as opposed to having some variable differentiate them. We
may never examine the “right” variable or are instead in the
situation of arguing a null finding to support the multistable case.

In contrast, it is possible through a cusp catastrophe
model in conjunction with multilevel modeling, for example,
to allow for differentiating variables (also known as control
parameters) without their identification (Butner et al., 2014b),
though knowing which scenario you are observing requires
examination of many more qualities than discussed herein
(Gilmore, 1981). Further, manifolds (the surfaces implied by
topological equations) are smooth, while the mixture modeling
approach is more patchwork. We do not know the reach of a
given attractor dynamic—we chose to represent each dynamic
through one standard deviation in each direction from themeans
when we utilized the Runge-Kutta algorithm to graph plausible
trajectories. Notably the means and standard deviations are
specific to each dynamic pattern (allowing some to be large and
others to be smaller). However, the boundaries of one pattern to
another are truly unknown, requiring some inference.

Notably, SCD has tended to rely on cyclical descriptions to
model the rhythmic coordination of social agents. While the
modeling approach illustrated herein allows for cycles, it does
not assume their existence. The direct equation link is that
SCD generally functions with second order equations where
the second derivatives (acceleration or change in velocity) are
treated as the outcomes. Within our structural equation model,
it would be analogous to building a quadratic growth model
on Toeplitz data where the quadratic growth latent variable
would be the second derivative predicted by the other two latent
variables (Butner and Story, 2010). Moving to a second order
model automatically implies two dimensions and thus generates
cycles. However, it is not without a cost. Specifically, second
order modeling in this form assumes that the set point of the
cycles must equal zero. Overcoming this assumption is currently
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something under consideration for modeling dynamic patterns
and once resolved will unite these approaches more generally.

CONCLUSION

Understanding how large-scale, multi-agent social systems
coordinate is challenging and complex. In part, the challenge is
due to the fact that there are so many agents, system components,
and potential system states that can become coordinated; all
of which may change over time (Van Orden et al., 2003).
These many components interact generating higher order system
behavior that is emergent and dynamic. However, knowing
the “Dynamics demystifies...emergence” and it can also provide
“basic laws for a quantitative description of phenomena that are
observed” (Kelso, 2009; p. 1540). As such, we have expanded
on work in SCD by demonstrating the utility of modeling the
attractor dynamics of several systems to characterize their higher-
order behavioral patterns and showed how these patterns varied
over time and could be linked to meaningful aspects of the
systems.

Within domains, such as agent based modeling, qualitative
depictions of higher-order patterns are often known, but not
quantitatively modeled. In SCD, phenomena can be non-
rhythmic, and yet dynamically coordinated. They can exhibit
stability and multistability. Thus, using attractor dynamic
descriptions along with statistical innovations, such as mixture
modeling, provide a reasonable solution to understanding the
large-scale, multi-agent social coordination. Characterizing the
higher order properties of the system in this way forms a
foundation for examining the emergent patterns through time
in either a confirmatory or exploratory manner. This same
technique, as we have shown, can be utilized with simulated as
well as observational data.

It is our aim that we recognize that we study systems
that are inherently open systems (even though simulations
are often closed). By examining part of the system (the
variables wemeasure), unobserved aspects of the system function

as perturbations to the system. Thus, a system depicting
families is open because we are only examining some of
the variables involved. To understand how agents exhibit
emergent self-organization and coordination, we have advanced
a general quantification that can be applied to a range of
social systems, such as two individuals that form a couple
up to a crowd’s behavior. We hope that the widely applicable
techniques will be adopted to advance scientific understanding
of SCD.
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