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In this paper, we show that a neurally implemented a cognitive architecture with
evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian
Neurodynamics, assumes that the unconscious mechanism of problem solving during
insight tasks is a Darwinian process. It is based on the evolution of patterns that represent
candidate solutions to a problem, and are stored and reproduced by a population of
attractor networks. In our first experiment, we used human data as a benchmark and
showed that the model behaves comparably to humans: it shows an improvement in
performance if it is pretrained and primed appropriately, just like human participants in
Kershaw et al. (2013)’'s experiment. In the second experiment, we further investigated
the effects of pretraining and priming in a two-by-two design and found a beginner’s
luck type of effect: solution rate was highest in the condition that was primed, but not
pretrained with patterns relevant for the task. In the third experiment, we showed that
deficits in computational capacity and learning abilities decreased the performance of the
model, as expected. We conclude that Darwinian Neurodynamics is a promising model
of human problem solving that deserves further investigation.

Keywords: insight, Darwinian Neurodynamics, attractor networks, four-tree problem, evolutionary search

INTRODUCTION

Darwinian Neurodynamics

The Bayesian brain is an increasingly popular idea in cognitive science. According to this theory,
the mind assigns probabilities to hypotheses and updates them based on observations. Bayesian
cognitive models were successfully used in many different areas of cognition, like learning, memory,
reasoning and decision making. However, the “Bayesian brain falls short in explaining how the
brain creates new knowledge” (Friston and Buzsaki, 2016), it does not account for the generation
of new hypotheses; it only accounts for the selection of already existing variant hypotheses.

It has been pointed out that Bayesian update effectively implements a process analogous to
selection (Harper, 2009), where the prior distribution is equivalent to an existing set of hypotheses,
the likelihood function acts as the selection landscape, and the posterior distribution is the output
population of hypotheses after a round of selection. If selection acts on units that can replicate
and inherit their traits with variability we get full-blown evolution (Maynard Smith, 1986). We
believe that the Bayesian paradigm for modeling cognition, especially problem solving, could be
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successfully complemented with replication and inheritance to
explain where new hypotheses come from.

Problem solving can be conceptualized as search for the
solution in a search space (sometimes also called the hypothesis
space, state space, or problem space). The search space is the
space of all hypotheses that are possible within the dimensions
that the problem solver considers. Cognitive search mechanisms
must be very effective in exploring the search space and must
account for the generation of new hypotheses. Evolutionary
search (Maynard Smith, 1986) fulfills those requirements, as
it implements parallel, distributed search with a population of
competing evolutionary units and it also explains the generation
of these units that depends on fitness. Evolutionary search as
a model for creative cognitive processes is not a new idea (see
e.g., Campbell, 1960; Simonton, 1999, 2011; Fernando et al,
2012). Some of us have previously proposed (Fernando and
Szathmdry, 2009, 2010; Fernando et al., 2010) the framework
of Darwinian Neurodynamics (previously called the Neural
Replicator Hypothesis) as a cognitive model for problem solving
in the brain. In this framework, hypotheses or candidate solutions
to a problem play the role of evolutionary units: they are selected
based on their fitness just like in Bayesian update, but they also
multiply with heredity and variation, thus the model implements
a full evolutionary search and explains the generation of new
hypotheses.

In de Vladar et al. (2016) and Szilagyi et al. (2016), we
describe an instance of a neural implementation for a cognitive
architecture and show how the synergy between selection and
learning can solve pattern-matching problems. Here, we take
these ideas a step further to demonstrate the problem solving
capabilities of Darwinian Neurodynamics in a task that is more
relevant to understanding cognition. For this purpose, we apply
the Darwinian Neurodynamics framework to a classic insight
task, namely, the four-tree problem.

The Four-Tree Problem

Insight problems are used by cognitive scientists to study insight
problem solving behavior. While most agree that insight tasks can
be solved analytically, these tasks usually trigger a different route
of problem solving that can be characterized by typical problem
solving stages, including impasse and insight (Chronicle, 2004).
After an initial phase of search, when problem solving is mostly
conscious and analytical, most problem solvers enter a phase
of impasse when they feel that they are not getting closer to
the solution (Ohlsson, 1992; Ollinger et al., 2014). Search and
impasse can alternate several times (Fedor et al., 2015). While
most researchers agree on the behavioral correlates of impasse
(repeating previous solution attempts or becoming inactive,
Ohlsson, 1992), what happens at the cognitive level remains
unknown. Yet, it can be assumed that the search goes on
unconsciously, because some problem solvers emerge from the
impasse phase with an insight, when they figure out how to
proceed.

We chose an insight task to test our cognitive architecture,
because they usually have vast search spaces and their solutions
are new and unusual in some sense. This is a case where
evolutionary search can be very effective, because it implements

parallel, distributed search and explains the generation of new
hypotheses. We do not think that evolutionary search can
account for all aspects of cognition, but it could have huge
benefits in certain problems, where the search space is large
and/or where the solution is new.

The four-tree problem is posed for participants in the
following way: A landscape gardener is given instructions to plant
four special trees so that each one is exactly the same distance
from each of the others. How is he able to do it? (de Bono, 1967).
The solution is that he plants the trees on the apices of a regular
tetrahedron, so that one of the trees is on top of a hill (or at
the bottom of a valley), and the other three trees are at ground
level in a shape of a triangle (any other rotation of a tetrahedron
would do, but this is the easiest solution in terms of the amount
of landscaping that must be done).

The four-tree problem belongs to the class of 2D constraint
problems (Katona, 1940; Ormerod et al., 2002), in which problem
solvers implicitly impose on themselves the constraint that the
problem should be solved in two-dimensional space, although the
solution is three-dimensional. Most insight tasks are misleading
in some way and most problem solvers unnecessarily constrain
the initial search space. Restructuring (Ohlsson, 1992) happens
when the problem solver, either consciously or unconsciously,
lifts the constraint and starts searching in a new, unrestricted
(or less restricted) search space. While these dynamics might not
be true for all insight tasks (Metcalfe and Wiebe, 1987; Kershaw
and Ohlsson, 2004), many other insight problems (e.g., nine-
dot problem, five-square problem, ten-penny problem) can be
described in this way.

We propose that the difference between conscious search
and search during impasse can be modeled as search based
on previous experiences vs. search during which entirely new
hypotheses are generated that broaden the effective search space,
respectively. We speculate that the futility of trying to solve the
problem and the frustration it causes makes problem solvers to
stop conscious search. This might lead to a different kind of
search, which is mainly unconscious (or this might go on in
parallel since before), and which might lead to restructuring.
In the case of the four-tree problem, the behavioral correlate
of restructuring is the appearance of the first three-dimensional
solution attempt.

Kershaw et al. (2013) recently conducted a study of the four-
tree problem. Their pilot work revealed that the main sources of
difficulty in the four-tree problem were participants’ geometric
misconceptions (e.g., “believing that the diagonal of a square
is the same length as the sides”) as well as their “perceptual
bias of constructing a two-dimensional problem space”. In their
experiments, Kershaw et al. attempted to relax the knowledge
constraint with direct instructions and the perceptual constraint
with analogy training. Direct instructions included teaching
participants about the properties of squares, equilateral triangles
and tetrahedrons. During analogy training participants had to
solve three problems that were isomorphic to the four-tree
problem, i.e., four objects had to be placed equidistant from
each other in a shape of a tetrahedron. They conducted two
experiments, which differed only in the analogy training: in
Experiment 1 analogy training only posed the problems, but
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participants did not get feedback from the experimenter; in
Experiment 2, the first two problems were presented together
with their solutions, and participants were encouraged to
compare these examples, then participants got feedback on
their solution attempts to the third problem. Additionally,
after receiving instructions for the four-tree problem half of
the participants received picture clues, including pictures of
trees on mountaintops, in an attempt to prime participants to
think about three-dimensional landscapes and prevent unhelpful
prior knowledge, activated by the task, to restrict the problem
representation to two dimensions. They compared the solution
rates of groups of participants who either received direct
instructions, analogy training, both (combined groups) or none
(control group). Experiment 1 revealed that the direct instruction
and the combined groups performed better than the analogy and
the control group. In Experiment 2 they found, among others,
that participants with the analogy training and the combined
training were more likely to solve the task than the control group
and that within the combined group, participants who received
picture clues were more likely to solve the task than participants
who did not receive picture clues.

Kershaw et al. argue that the bias to represent the problem
in two dimensions arises from prior experiences of problem
solvers. We think that giving participants pen and paper
to solve the problem is also a factor, in fact, it can be
thought of as a misleading element in the task. We think
that presenting the problem in a less misleading manner, for
example asking participants to plant small model trees in a
sandbox, would increase the frequency of three-dimensional
solution attempts. While Kershaw et al. did not manipulate the
misleading component in the task, their priming through picture
clues might have influenced how much the same misleading
component (i.e., giving them paper and pencil) actually misled
participants.

Motivation for the Present Study and

Predictions

Experiment 1

The aim of our first experiment was to benchmark the behavior
of our cognitive architecture with evolutionary dynamics based
on human data. Our second and third experiments provide
new predictions about human behavior that are yet to be
tested.

Kershaw et al. (2013)’s direct instruction training addressed
gaps in prior knowledge, while their analogy training increased
participants’ experience with problems involving tetrahedrons.
Since both training types occurred right before participants
were given the four-tree problem, in our view, both served
to prime participants to think about three-dimensional shapes,
and particularly tetrahedrons. The picture clues can be thought
of as additional and pure priming that affects the two-
dimensional bias (without training), but they were only given
to half of their combined training group in Experiment 2.
To sum up, all their experimental groups received training
with tetrahedrons and priming with tetrahedrons to some
degree, while their control group received neither training, nor
priming.

In our simulation experiments, we could not differentiate
between the different types of trainings (direct instructions vs.
analogy training), because these require higher order cognitive
functions that we do not model here. Instead, we aimed at
explaining the mechanistic effect of training and priming on
problem solving. In our Experiment 1, we tried to reproduce the
difference between the control group (1 out of 31 participants, 3%
solved the problem in the given 4 min) and the combined training
group with picture clues (16 participants out of 28, 57% solved
the task; Kershaw, 2016, Personal communication, 28 June) in
Kershaw et al.’s (2013) experiment, to provide a benchmark for
our cognitive architecture (de Vladar et al., 2016; Szilagyi et al.,
2016). We ran 30 simulations in both conditions and compared
the problem solving behavior and performance of the models.

Experiment 2

In Experiment 2, we were interested in tearing apart the effects
of prior experience and priming on problem solving. In a
2 x 2 design, we investigated the effects of two-dimensional
vs. three-dimensional training and two-dimensional vs. three-
dimensional priming. Accordingly, in the first condition, the
models received two-dimensional training, and two-dimensional
priming, in the second condition the models received two-
dimensional training and three-dimensional priming, in the
third condition, the models received three-dimensional training
and two-dimensional priming and in the fourth condition
the models received three-dimensional training and three-
dimensional priming (we explain how these manipulations
were implemented for the model in the Methods section). We
ran 30 simulations in all of the four conditions, each. We
predicted that the group that received two-dimensional training
and priming would perform worst and that the group that
received three-dimensional training and priming would perform
best.

Experiment 3

In Experiment 3, we wanted to compare the problem solving
abilities of different populations of models. Specifically, we
wanted to model how different cognitive abilities might influence
problem solving behavior. Chein et al. (2010) showed that a large
spatial working memory capacity is beneficial for solving the
nine-dot problem, another multi-step insight problem. Ash and
Wiley (2006) also found that individual differences in working
memory had an effect on insight problem solving. Apart from
differences in working memory, we do not know of other
cognitive abilities that have been investigated in connection with
insight problem solving, but we assume that learning speed and
synaptic efficiency could also have an effect. To investigate this
question, we ran simulations with different parameter settings,
one group being the control group, and three other groups
representing different cognitive “deficits,” i.e., parameter settings
that we think would negatively influence problem solving. These
deficits were lower working memory, slower learning and less
effective synapses between layers of neurons. We predicted
that the deficit groups would perform worse than the control

group.
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METHODS connection between unit i and j is calculated according to the
. . - learning rule (Storkey, 1998, 1999):

The Cognitive Architecture for Darwinian

Neurodynamics

Architecture of the Model
Our model is also described in de Vladar et al. (2016) and Szilagyi
et al. (2016). The MATLAB code of the model, the parameters
and scripts for running and analyzing the experiments can be
downloaded from osf.io/vjfv9.

The core component of our model (Figure 1) is a population
of attractor networks. Attractor networks are recurrent auto-
associative artificial neural networks with only one layer of
units (artificial neurons). Attractor networks are fully connected,
i.e., each unit is connected to all the other units within the
same network (but self-connections are missing) with weighted
connections (weights are real values). In these simulations, the
population consisted of 100 attractor networks and each attractor
network consisted of 300 units (N = 300).

Attractor networks can be provoked or trained with input
patterns. Input patterns are binary vectors of the same length
as the number of neurons in the network. When the network
is trained with input pattern £ at timestep m, the weight of the

1 1 1
-1 ) .
Wi S REE Y e A

wh = 0 ifi=j,
with g being:

N
m o __ m—1sm
g = D Wi e
k=1

We used a forgetting rate of f = 0.1, which means that the
weights were multiplied by (1 — f) before each learning event
to prevent the saturation of weights. The result of training is that
the network learns (stores) the training (input) pattern. It means
that when the network is later provoked (see later) with noisy
versions of the training pattern, it outputs the original pattern
or a pattern very similar to it (pattern completion). The learning
rule we used is a modified Hebbian rule, which enables palimpsest
memory (Storkey, 1998, 1999; Storkey and Valabregue, 1999),

2
3 5 r

FIGURE 1 | Cognitive architecture for the Darwinian Neurodynamics theory. (1) Selected input patterns, (2) Each network is provoked by an input pattern, (3)
Attractor networks (the checkerboards represent the weight matrices; the input, output and recurrent connections are represented by arrows), (4) Output patterns are
submitted to the working memory, (5) Output patterns are evaluated and the patterns with the highest fitness are selected, (6) Selected patterns are used for retraining
some of the networks, (7) Selected patterns are used for provoking the networks.
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meaning that the networks can be retrained sequentially with
different patterns, without inducing catastrophic forgetting.
When the networks reach their memory capacity, they forget
earlier patterns, but they are still able to learn new ones.

When an attractor network is provoked by a pattern,
the pattern is clamped on the neurons and then the state
of the neurons is recalculated according to the update
rule. First, the local field h; of neuron i is calculated
as the weighted sum of recurrent signals from other
neurons:

N

Z wijxj(t),

j=1()

hi =

where N is the number of neurons in the network, x;(¢) is the
state of neuron j (active or inactive) in update step t and wj; is
the weight of the connection between neuron i and neuron j.
Then, the state of neuron i is calculated as x;(t + 1) = sgn(h;).
The neuron is said to be active, if its state is +1, and inactive
otherwise. The state of neurons is updated asynchronously
in random order (i.e., N neurons are chosen randomly with
replacement to be updated). After N updates, the collective state
of neurons is called the activation pattern of the network, which
is a binary vector of length N.

The output of the neurons is then fed back as input for the
next update step and the neurons are updated again. Recurrent
update cycles go on until the output converges to a stable pattern
or until the limit is reached (33 cycles in these experiments). The
final activation pattern of the network is called the output pattern.

All networks in the model produce output patterns
simultaneously. These patterns constitute one generation of
output patterns. The fitness of each output pattern is then
calculated by a fitness function (see later), where fitness is a
real value between 0 and 1. The best patterns (patterns with the
highest fitness; three patterns in these simulations) are selected
and then fed back to the networks as input patterns; the rest
of the patterns are deleted. Some random noise is added to the
patterns during this step to simulate imperfect copying. We
implemented this by randomly flipping (changing —1 to +1,
and vice versa) each bit in the patterns with a probability of m
(mutation rate).

Initializing a simulation means that we randomly generate
training and provoking patterns for each network. First, each
network is pre-trained with a different set of random patterns, i.e.,
each network has different weights at the beginning. Then, each
network is provoked with a different random pattern and the
first generation of the simulation begins. The networks produce
output patterns, and the best patterns are selected based on the
fitness function. The selected patterns are randomly ordered and
fed back to the networks. The networks are either trained with
these new patterns, or not (see later). If training happens, it is
called retraining, to differentiate it from the initial pre-training.
The selected patterns are randomly ordered again to provoke the
networks and the second generation of the simulation begins.
The simulation goes on until one of the selected patterns reaches
fitness = 1 or until time out.

Evolution and Selection Modes

As we mentioned above, input patterns are either used to
retrain some of the networks or not. We call these two
different working modes of the model evolution mode and
selection mode, respectively. In evolution mode, networks can
be retrained with the selected patterns with a probability of r
(retraining probability). The term “evolution mode” makes sense,
if we consider that in this mode the whole system effectively
implements evolutionary search for the pattern with the highest
fitness.

Evolutionary units have three essential traits: multiplication,
inheritance and variability (Maynard Smith, 1986). In a
population of evolutionary units, if these units are multiplied
with variation and if their hereditary traits influence their fitness,
evolution takes place. In our model the evolutionary units are
the patterns. In each step of the simulation, a new generation
of output patterns are produced by the attractor networks.
Output patterns are similar to the input provoking patterns if a
similar pattern is stored in the network. This step implements
inheritance with variability. A few patterns are selected based
on their fitness and these are copied with errors (mutations)
back to the attractor networks as inputs. These patterns multiply
when they are used as retraining inputs. They get stored in more
networks, which in turn will be able to reproduce these patterns
if they are provoked with a correlated pattern.

There are several sources of variation of patterns in
this architecture. The first one is a result of the stochastic
asynchronous update of the attractor networks. This means that
an attractor network usually produces slightly different output
patterns when repeatedly provoked by the same input. Second,
each attractor network in the population has a unique training
history, thus they produce different outputs when provoked with
the same input. Third, copy connections are error-prone, i.e.,
when the selected patterns are copied back to the networks to
provoke and to retrain them, they go through mutations. Finally,
networks sometimes produce so called spurious patterns, which
are different from any of the previously trained patterns or even
the input pattern. This usually happens when the input pattern
is quite far from the training patterns, thus none of the stored
patterns can be retrieved.

In evolution mode, the model performs evolutionary search,
and it can be thought of as an evolutionary algorithm in the
sense that it is “based on the model of natural evolution as an
optimization process” (Bick et al., 1993). The attractor networks
take care of multiplication with inheritance and variation. The
selected patterns are copied back with errors to the networks
as inputs through neural afferents. These are the components
that are neurally implemented, while the fitness function and
selection mechanism are symbolic. One novelty of the model is
that in fact, it is possible to semi-neurally implement evolutionary
search through a population of attractor networks. Inheritance
is different from that of other evolutionary algorithms because
selected patterns are not directly replicated but instead trained
to networks which can in turn reproduce them. Our experiments
show that this kind of indirect replication results in evolutionary
dynamics similar to that of asexual populations of evolutionary
units (there is no cross-over).
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In selection mode, the networks are not retrained and thus
their output is solely dependent on their pretraining and on the
input (provoking) pattern. We call this selection mode, because
it is based purely on selection over the standing variation: the
best patterns are selected but they do not reproduce, they do
not spread to new networks. Because of this, the model can only
search in the space of already available patterns and their close
neighbors (there is still mutation during copying of provoking
patterns).

In selection mode, our model is similar to Bayesian cognitive
models of learning and problem solving, where output patterns
play the role of hypotheses (Griffiths et al., 2010; Tenenbaum
et al,, 2011), because Bayesian update is analogous to selection
(Harper, 2009) as we described in the Introduction.

Problem Solving as Evolutionary Search

We think of this model as a cognitive process model for problem
solving which is also neurally plausible to some extent. Patterns
represent hypotheses, or candidate solutions to a problem that a
problem solver might entertain during problem solving. Patterns
are either stored in the long-term memory represented by the
weight matrices of attractor networks or in the working memory
that consist of the maintained activation of the networks. We
call the pattern with the highest fitness in each generation
a candidate solution. We suggest that most hypotheses are
unconscious and only a small sample emerges into consciousness.
Solution attempts are candidate solutions that the problem
solver acts out, i.e., draws on the given paper or describes
verbally. They allow us a very limited peek into the thought
processes of participants in insight experiments. We propose
that human participants sample their solution attempts from the
candidate solutions, and only a small subset of the candidate
solutions become conscious, especially, during impasse. Human
participants probably generate new hypotheses at different rates,
but for the sake of simplicity, we equate generations of patterns
in the model with time steps.

We conceptualize priming as an effect on the initial
assumptions of the problem solver. These initial assumptions
are modeled by the first set of patterns by which the
attractor networks are provoked before the first generation of
output patterns emerges. By manipulating how these initial
provoking patterns are generated, we can model different
priming conditions.

Pre-training patterns are analogous to prior experiences of
problem solvers and possible solutions to problems that are
stored in long-term memory. Selection and evolution modes
model two different thinking modes in humans: selection mode
is when the problem solver searches for the solution in long-
term memory and evolution mode is when the problem solver
generates new hypotheses.

When solving insight tasks, humans first try to solve the
problem based on their previous experiences (selection mode).
Insight tasks are constructed in a way that previous experiences
combined with some misleading elements in the task drive
problem solvers to unnecessarily restrict the search space. For
example, when the four-tree problem is presented on a piece of
paper, it misleads participants to think that the solution must be

two-dimensional. This coincides with the fact that most people
have more experience in two-dimensional paper-and-pencil type
tasks than in three-dimensional tasks. To find the solution,
problem solvers need to switch to a different thinking mode,
where they consider new hypotheses (evolution mode). This
might lead to extending their search space to three dimensions
through representational change (restructuring).

To model this process, we start simulations in selection mode
and then switch to evolution mode with a certain probability.
Before the switch between modes, the model only searches
based on its previous experiences, whereas after the switch, new
candidate solutions can evolve. Without the switch, finding a
solution is only possible if long-term memory already contained
the solution. We implement switching in a probabilistic way so
that it can occur any time during problem solving with a certain
probability. The probability of switching is calculated in each
generation of patterns by the following equation:

s=1/r""(1- ab*g),

where r is the number of repeated candidate solutions so far, g is
the number of generations so far, and a, b, and c are constants,
which were set to 0.7, 0.03, and 1.0, respectively. We suggest, that
these parameters can be adjusted when the architecture is used
to model different tasks. Switching happens only once during
a simulation, which is a simplification. We plan to implement
back-and-forth probabilistic switching in our future work.

As indicated, the first term of the equation (1/7¢) is dependent
on the number of repeated candidate solutions. The probability
of switching decreases as the number of repetitions increases
and selection mode also increases the probability of producing
a repeated candidate solution. Repeated candidate solutions are
patterns that represent solutions to the problem that has already
occurred in a previous generation. It has been shown (Kershaw
etal,, 2013; Fedor et al., 2015) that in human problem solvers the
number of repeated solution attempts is inversely proportional to
the probability of solving the task. In fact, repetitions are one of
the two behavioral associates of impasse. One possibility is that
repetitions cause impasse as a self-induced mental set (Luchins,
1942; Lovett and Anderson, 1996; Ollinger et al., 2008). A second
possibility is that repetitions are a direct consequence of either
a saturated working memory (the problem solver forgets that he
has already tried a solution attempt) or an inability to generate
new hypotheses, which makes it less probable that a solution
is found. The first term of the switching probability equation
implements a causative relationship between repetitions and the
inability of getting out of impasse. However, the other factors,
namely a poor working memory, is also present indirectly (see
Experiment 3).

The second part of the equation (1—a?"¢) is proportional
to the number of generations, ie., it is proportional to the
time spent by trying to solve the task. We assume that as time
passes, problem solvers become more likely to realize that their
initial search space is insufficient and that they need to look
for a solution in a different search space. Figure 2 shows the
probability of switching through the generations in one of our
simulations. It can be seen that if the model fails to switch
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FIGURE 2 | The probability of switching from selection mode to
evolution mode in a simulation in the control condition of Experiment
2. The blue curve shows 1-aP9, where g is the number of generations,
a=0.7 and b = 0.03. The green curve shows 1/r°, where r is the number of
repetitions and ¢ = 1. The red curve is switching probability, which is the
product of the previous terms.

in the first few tens of generations, switching becomes quite
improbable.

Implementing the Four-Tree Problem
Adaptation of the Task for the Model

In the original four-tree problem the task of the landscaper is to
plant all four trees. Here, we modified this task so that only one of
the trees must be placed; the rest of the trees are already planted
in a shape of a triangle on a plain surface (Figure 3). While
there have not been human experiments with this modification,
we can safely assume that the main problem difficulty (the two-
dimensional bias) remains the same. We represented the trees in
a three-dimensional coordinate system, where each axis ranged
from 0 to 100. The distance between each pair of trees was 80
units. The coordinates of the four trees were rounded to the
nearest integer: (15, 10, 0), (15, 90, 0), (84, 50, 0), and (38, 50,
65). The last set of coordinates represents the fourth tree that the
model has to place in order to solve the task.

Representation of the Task

An important aspect of modeling problem solving behavior
is how to translate the human-readable puzzle to a problem
defined within the model and how to translate the outputs
of the model to candidate solutions. The output patterns of
attractor networks are necessarily binary patterns so we need a
representation where these patterns (300-bit-long binary vectors)
can be unambiguously converted to a point in space where the
fourth tree is placed.

This conversion should take into consideration the properties
of attractor networks. For example, attractor networks have
probabilistic outputs, i.e., they can have slightly different outputs
when provoked with the same input. Because of this, slight
differences in the output should not translate to major differences

FIGURE 3 | The regular tetrahedron in the four-tree problem. The three
bottom trees represented by black dots were already “planted”; the task of the
model was to place the fourth tree represented by the red dot.

in the candidate solution: outputs that only differ in a few bits
should represent points in space that are close to each other. A
cumulative conversion, where the number of active neurons (or
the sum of the vector) is proportional to some kind of effort or
movement that the efferent of the system (that we do not model
here) exhibits in order to place the tree, seems to be a natural way
of representing this problem.

The conversion that we used is very simple: the output
patterns of networks represented the x, y, and z coordinates of
the fourth tree in the following way:

e x coordinate = number of active neurons from neuron 1 to
neuron 100,

e y coordinate = number of active neurons from neuron 101 to
neuron 200, and

e z coordinate = number of active neurons from neuron 201 to
neuron 300.

If we put the fourth tree in the (0,0,0) position before each
solution attempt, the output pattern can be interpreted as an
instruction about moving the tree to its final position. The
number of active neurons equals to the number of units of
movement in the three dimensions. While this representation
is probably not how a location in three-dimensional space is
represented in the brain, the details of the model are not essential
to the evolutionary argument.

Fitness Function

The fitness of patterns was based on the hypothetical instructions
(“Plant the fourth tree so that it is the same distance from all other
trees as they are from each other”): how close is the distance of
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trees to the target distance:

Fitness = 1 — (sum(abs(round(distance

(tree;_3, treeq)) — target)/3*target),

where tree; _3 are the already planted trees, treey is the tree whose
coordinates the model has to find, and target is the target distance
between trees (target = 80 in these simulations).

Initializing Simulations

Pre-training patterns and initial provoking patterns were
generated probabilistically with three different sparseness values
representing the probability that a unit responsible for the x, y,
or z coordinate is active. For example, a sparseness of [0.5, 0.5,
0.0] means that within a pattern, each x and y neuron has a
state of +1 with a probability of 0.5 and —1 with a probability
of 0.5, while all z neurons are inactive. Within each simulation,
90 pre-training-patterns and 1 initial pattern was generated for
each attractor network. The sparseness of these patterns differed
across conditions.

Simulation Experiments

Experiment 1

In this experiment, we simulated the positive effects of training
and priming on solution rates. We wanted to reproduce
the results of Kershaw et al. (2013), more specifically, the
difference between their control group and their combined
group with picture clues. We ran two groups of simulations,
where each simulation can be thought of as one individual
in the experiment. The combined condition received pre-
training in two-dimensions and on tetrahedrons and priming
on tetrahedrons; the control condition received pre-training and
priming in two-dimensions.

The question might arise why we pre-trained the control
group at all. In simulations, we have to simulate participants’
previous experiences (i.e., their “training” that happened
throughout their lives, before they arrived to the experiment)
and also the training that they might receive as an experimental
manipulation. Human participants who do not receive training
during the experiment are left with their previous experiences,
which we suppose are predominantly two-dimensional regarding
paper-and-pencil type tasks, because most people do not solve
three-dimensional tasks very often (this might be one of the
reasons for the low solution rates in the four-tree problem). These
predominantly two-dimensional experiences are modeled as pre-
training with two-dimensional patterns in our simulations. These
patterns were generated with a sparseness of [0.5, 0.5, 0.0]
(90 pre-training patterns for each network), which meant to
represent general two-dimensional experiences.

The combined group received both two-dimensional pre-
training (sparseness = [0.5, 0.5, 0.0] for 45 patterns), and pre-
training on patterns representing tetrahedrons (sparseness =
[0.38, 0.50, 0.65] for 45 patterns). This pre-training regime
modeled that participants in the combined condition had similar
two-dimensional experiences as the control group, but they were
trained with exercises involving tetrahedrons before they were
given the main task.

We conceptualized successful priming as an effect on
participants initial hypotheses about the task. This is a starting
point for subsequent hypotheses, as it initializes the thought
process. Successful priming with tetrahedrons results in initial
hypotheses that are close to tetrahedrons. No priming means that
the misleading presentation of the task takes over, and the initial
hypotheses are two-dimensional. In this sense, we can think of
the control group in Kershaw et al’s (2013) experiment as a
group that received two-dimensional priming in the form of the
misleading presentation of the task. To reflect this difference, our
control group was “primed” (initialized) with two-dimensional
patterns (sparseness = [0.38, 0.5, 0.0]), and the combined
group was initialized with patterns representing tetrahedrons
(sparseness = [0.38, 0.50, 0.65]). The sparseness of the initializing
patterns for the control group was derived from the coordinates
of the already planted three trees: the x, y, and z sparseness values
were calculated as the averages of the x, y, and z coordinates of
the trees. This meant to model that when there is no deliberate
priming, participants draw their initial assumptions from the
presentation of the task.

In both conditions, we ran 30 simulations, initialized with the
same random seed across conditions, to be able to easily compare
our results with the results of Kershaw et al. (2013) who had 31
participants in their control condition and 28 participants who
received combined training and picture clues.

Experiment 2
In this experiment, we investigated the effect of prior experiences
and priming in a two-by-two design: Table 1 shows the resulting
four conditions.

Condition 2DD (2D pre-training, Derived patterns for
initializing) was identical to the control condition in Experiment
1 (but initialized with different random seeds): it was pre-trained
with two-dimensional patterns (sparseness = [0.5, 0.5, 0]) and
initialized with two-dimensional patterns derived from the task
(sparseness = [0.38, 0.5, 0], calculated as the averages of the
coordinates of the three planted trees).

Condition 2DR (2D pre-training, Random patterns for
initializing) received the same two-dimensional pre-training
patterns (sparseness = [0.5, 0.5, 0]) as condition 2DD, but was
initialized with three-dimensional patterns with sparseness =
[0.5, 0.5, 0.5]. These patterns model the result of either priming
with three-dimensional shapes, or a less misleading presentation
of the task (sandbox).

Condition 3DD (3D pre-training, Derived patterns for
initializing) was pre-trained with three-dimensional patterns
(sparseness = [0.5, 0.5, 0.5]) and initialized with two-dimensional
patterns derived from the task (sparseness = [0.38, 0.5, 0], just
like condition 2DD).

Condition 3DR (3D pre-training, Random patterns for
initializing) was pre-trained with three-dimensional patterns
(sparseness = [0.5, 0.5, 0.5]) and initialized with three-
dimensional patterns (sparseness = [0.5, 0.5, 0.5]). In some
sense, this condition is similar to the combined condition
of Experiment 1 as both training and priming were three-
dimensional, but both manipulations were weaker (meaning,
probably less effective in increasing performance compared to

Frontiers in Psychology | www.frontiersin.org

March 2017 | Volume 8 | Article 427


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Fedor et al.

Evolutionary Dynamics Solves Insight Problem

TABLE 1 | Treatment conditions in Experiment 2.

Initialized with 2D provoking patterns derived from the

task presentation:
sparseness = [0.38, 0.5, 0]

Initialized with 3D random provoking patterns
independently of the task presentation:
sparseness = [0.5, 0.5, 0.5]

Pre-trained on 2D random patterns: Condition 2DD

sparseness = [0.5, 0.5, 0]
Pre-trained on 3D random patterns: Condition 3DD

sparseness = [0.5, 0.5, 0.5]

(2D pre-training + Derived initial patterns)

(3D pre-training 4 Derived initial patterns)

Condition 2DR
(2D pre-training 4+ Random initial patterns)
Condition 3DR
(3D pre-training + Random initial patterns)

the control condition). Here, three-dimensional pre-training
involved general three-dimensional patterns, not tetrahedrons
as in Experiment 1 and was not mixed with two-dimensional
patterns. Three-dimensional priming was also more general than
in Experiment 1, because it did not involve tetrahedrons per se,
but general three-dimensional patterns.

In each condition, we ran 30 simulations. Simulations were
initialized with the same random seed across conditions, thus
conditions can be thought of as repeated manipulations on the
same group of participants (but the effects of previous conditions
erased).

Experiment 3

In this experiment, we modified some parameters of the model
in a way that we suspected to cause a deficit in the problem
solving abilities of the model. The result of deficits could be
lower probability of solving the problem, or slower problem
solving. These modifications model the problem solving abilities
of different human problem solvers.

To model these differences, we ran simulations in four
different groups of models. The control group (CC) had identical
parameters to the control condition in Experiment 1, but
was initialized with a different random seed. In each of the
other three groups one of the default parameters was changed
(all the default parameters can be seen at the repository link
given at the beginning of the methods section). The MC
group (Memory Capacity) had a lower memory capacity: the
number of attractor networks was 10 instead of 100. The
MR (Mutation Rate) group had 10 times higher mutation
rate (0.3 instead of 0.03) on the copying connections than
the CC group. The RR group (Retraining Rate) had 10 times
lower retraining probability than the control group (0.07
instead of 0.7).

Similarly to the previous experiments, in each group we ran 30
simulations, initialized with the same random seed.

Analysis

Each simulation was run for a maximum of 200 generations,
i.e., 200 subsequent candidate solutions were selected. This
timeframe was chosen because our previous simulations showed
that in most simulations, fitness reached a plateau by this point.
We do not assert that this timeframe is equivalent to the time
limit given to human participants in experiments, for example, 4
min in Kershaw et al.’s experiment (Kershaw et al., 2013). We do
not know of any study that measures how human solution rates
change with time in a more extended timeframe, but we speculate

that 200 generations are equivalent to several hours of thinking
time in humans. A simulation was scored as a “solver” if the
model found the correct position for the fourth tree within this
timeframe. We would like to point out that by setting a time out,
we turn a possibly quantitative difference between individuals
(the speed of problem solving) into a qualitative difference (solver
vs. non-solver). To make our results more comparable to human
data, we also calculated solution rates at the time point when the
first solver appeared in the control condition, because that is how
many people solved the task in the control condition of Kershaw
et al. (2013) within 4 min.

We also looked at the time spent with the task, measured as
the number of generations that the model went through until it
either solved the task, or it reached time out. In the former case,
time spent with the task equals solution time, in the latter case,
time spent with the task equals time out (200 generations). Of
course, we cannot assume, that every person comes up with new
candidate solutions at the same rate, but this is a simplification
we made, because we did not want to overcomplicate the model
at this initial stage by modeling time. Time spent with the task
can be broken down to selection phase and evolution phase.
Selection phase starts with the first generation and lasts until
switching to evolution phase. Evolution phase starts from the
switch and lasts until the model either solved the problem or
reached time out.

Since simulations in each condition were initialized with
the same random seed within experiments, conditions can be
thought of as different treatments given to the same group
of individuals. Thus, we used repeated measures statistics to
compare time spent with the task, the length of selection
phase and the length of evolution phase. The data in one or
more conditions were not normally distributed so we used
nonparametric tests.

We also looked at the number of repetitions. A repetition is
a candidate solution that has already been selected before. It is a
repetition of the coordinates of the fourth tree, not a repetition
of output patterns, i.e., many output patterns can code the same
coordinates.

Finally, we also looked at the dimensions of candidate
solutions. The interesting questions is whether three-
dimensional candidate solutions are present from the beginning,
or they only appear later during problem solving. If candidate
solutions are three-dimensional from the beginning, it means
that the problem solver did not need representational
change, because the initial search space was already
three-dimensional.
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RESULTS AND DISCUSSION

Experiment 1

Number of Solvers

Almost all simulations found the solution: 28 in the control
condition (out of 30) and 29 in the combined condition (also out
of 30). This means that 200 generations are too long compared
to the 4 min given to human participants, because only one
human participant (out of 31 participants; 3.2%) solved the task
in the control condition (Kershaw et al., 2013) in the given 4
min. In our simulations, the first solution (3.3%) in the control
condition appeared at generation 33. In the combined condition,
there were already 22 solutions by that time (73.3%), see Figure 4.
We compared the number of solvers in the two conditions at
generation 33 with a chi-square test and we found a significant
interaction: x () = 28.202, p < 0.0001.

Dimension of Candidate Solutions

When we looked at the candidate solutions, we found that
all simulations in the control condition had two-dimensional
candidate solutions at the beginning, and successful problem
solvers later started to use three-dimensional patterns. In
contrast, all simulations in the combined condition used three-
dimensional patterns from the very beginning. This means
that priming and pre-training with three-dimensional patterns
removed the bias to solve the task in two dimensions. We have
no comparable data from the human experiment.

Experiment 2

Number of Solvers

The number of solvers was 25, 29, 26, 23 in the 2DD, 2DR,
3DD, and 3DR conditions out of 30 simulations, respectively.
According to the x? test the row and column variables are not
significantly associated in the contingency table: x*(df = 3) =
5.140, p = 0.1618.

301

Control Condition
Combined Condition

251

Number of solvers
i [N}
o =)
T T

=)
T

Looking at the number of solvers through time (Figure 5)
shows that earlier differences between conditions tend to
disappear halfway through the simulations, except for condition
2DR, which always has the highest number of solvers. To reveal
earlier differences, we also compared the number of solvers at
the time point, where the first solver appeared in the control
condition. This happened in generation 35, when the number
of solvers was 2, 26, 17, 11 in the 2DD, 2DR, 3DD, and 3DR
conditions out of 30 simulations, respectively. According to the
x? test the row and column variables are significantly associated
in the contingency table: Xé) =40.982, p < 0.0001.

The number of solvers at generation 35 shows an unexpected
rank order: 2DD < 3DR < 3DD < 2DR. Table 2 shows the
results of pair-wise comparisons with a series of six x? tests.
We used Bonferroni correction to compensate for multiple
comparisons: o = 0.05/6 = 0.0083. The difference between
consecutive conditions in the rank order was not significant, but
all other differences were significant. The 2DD condition had the
least number of solvers, as we predicted, but the order of the 3DR
and 2DR conditions were swapped compared to our predictions.

Length of Selection and Evolution Phases
To reveal what could have caused superior performance in the
2DR condition, we checked when the switch between selection
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FIGURE 5 | Number of solvers through time (generations) in the four
conditions of Experiment 2.

TABLE 2 | Results of pair-wise comparisons with a series of X2 tests on
the number of solvers at generation 35 in Experiment 2.
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mode and evolution mode happened and how long each phase
took (Figure 6). The models were not pre-trained with the
solution, so finding the solution without switching to evolution
mode was very unlikely. It seems that the 2DR group performed
better than expected, because only one simulation did not switch
to evolution mode (it is the outlier in the figure, for which the
evolution phase was 0 generations long). In the 2DD, 3DD, and
3DR conditions, 4, 3 and 6 simulations failed to switch. Figure 6
also shows that most simulations in the 2DR condition switched
very early to evolution mode, whereas the time of switching is
more widely spread in the other conditions.

For the length of the selection phase, according to the
Friedman test, variation among condition medians is
significantly greater than expected by chance, Fr = 8.883,
p 0.309, but pairwise comparisons with Dunn’s multiple
comparisons test did not show significant differences between
conditions. For the evolution phase, the Friedman test was
also significant, Fr = 37.653, p < 0.0001, and Dunn’s pairwise
comparisons showed that the evolution phase in the 2DD
condition was significantly longer than in the other conditions
(rank sum difference was 45.5, 38.5, and 56.0 for 2DD vs. 2DR,
2DD vs. 3DD, and 2DD vs. 3DR, the p < 0.001 for all three
comparisons), and there were no other significant differences
between conditions.

Number of Repetitions

The probability of switching depends on the number of
repetitions before the switch, so we compared the number of
repeated candidate solutions during the selection phase in the
four conditions to see whether this could have caused the
advantage of the 2DR condition, see Figure7 and Table 3.
According to the Friedman test, variation among column
medians was significantly greater than expected by chance, Fr
= 28.093, p < 0.0001. Dunn’s multiple comparisons test showed
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FIGURE 6 | Length of selection phase and evolution phase in the four
conditions of Experiment 2. On each box, the central mark is the median,
the edges of the box are the 25 and 75 percentiles, the whiskers extend to the
most extreme data points not considered outliers and outliers are plotted
individually (red +). Notches represent comparison intervals: two medians are

significantly different at the 5% significance level if their intervals do not overlap.

that condition 2DR had significantly fewer repetitions than the
other conditions, and there were no more significant differences
between conditions.

This means, that the advantage of condition 2DR came
from earlier switching to evolution mode because of very
few repetitions. Probably the weight matrix trained on two-
dimensional patterns and then provoked with three-dimensional
patterns resulted in very hectic behavior, where the selected
patterns of subsequent generations were very dissimilar. This is
because the provoking patterns were very far from the attractor
basins of the networks so that the output was more or less
random, until evolution was switched on. Figure 8 shows the
first simulation from each condition: it can be seen that in
condition 2DR the fitness is very variable at the beginning,
compared to the other conditions. The reason for condition 3DR
performing worse than expected is the opposite: the interaction
of three-dimensional pre-training and three-dimensional initial
provoking patterns resulted in too uniform candidate solutions
and many repetitions, thus late switching to evolution. Even
though the initial fitness was the highest among conditions, late
switching resulted in inferior performance.
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FIGURE 7 | Number of repeated candidate solutions during the
selection phase in the four conditions of Experiment 2. On each box, the
central mark is the median, the edges of the box are the 25 and 75
percentiles, the whiskers extend to the most extreme data points not
considered outliers and outliers are plotted individually (red +). Notches
represent comparison intervals: two medians are significantly different at the
5% significance level if their intervals do not overlap.

TABLE 3 | Results of Dunn’s multiple comparisons test on the number of
repeated candidate solutions during the selection phase in Experiment 2.

Comparison Rank sum difference p-value
2DD vs. 2DR 42.000 p < 0.001
2DD vs. 3DD 4.000 ns
2DD vs. 3DR 2.000 ns
2DR vs. 3DD —38.000 p < 0.001
2DR vs. 3DR —40.000 p < 0.001
3DD vs. 3DR —2.000 ns
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FIGURE 8 | The first simulation from each condition of Experiment 2. The red curve shows the maximum fitness (i.e., the fitness of the candidate solution) and
the blue curve shows the average fitness of all patterns in the given generation. The vertical line indicates the time of switching from selection mode to evolution mode.

Dimensions of Candidate Solutions

We also looked at the dimensions of candidate solutions. All
simulations in the 2DD condition started with two-dimensional
candidate solutions, whereas the rest of the conditions had
three-dimensional candidate solutions from the very beginning.
This explains why evolution phase in the 2DD condition was
longer than in the other conditions: because when evolution
started, candidate solutions were still two-dimensional, and it
took longer to gather activations in the z coordinate starting
from 0 through mutations than in the other conditions, where
the z coordinate was already a higher than 0 value at the time of
switching.

Experiment 3

Number of Solvers

The number of solvers after 200 generations was 26, 17, 2, and 25
in the CC, MC, MR, and RR groups. According to the x2-square

test, the row and column variables are significantly associated in
the contingency table: x2(df = 3) = 50.606, p < 0.0001. Figure 9
shows that group CC had the most solvers at all generations as
expected, group MC was the second until about generation 110,
when group RR caught up with it, and group MR had the least
number of solvers most of the time.

Time Spent with the Task

We compared the time spent with the task in the four
conditions (Figure 10). We used Friedman test because the
data were not normally distributed and then compared all
groups to the control group with Dunn’s multiple comparisons
test. The Friedman test showed that variation among group
medians is significantly greater than expected by chance, Fr =
54.477, p < 0.0001. Pairwise comparisons showed significant
difference between the control group and all deficit groups, see
Table 4.
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FIGURE 9 | Number of solvers through time (generations) in the four
conditions of Experiment 3.

Length of Selection and Evolution Phase

We also compared the length of selection and evolution
phase between groups, as in Experiment 2, see Figure11.
Since mutation rate and retraining rate did not influence the
simulations in the selection mode, all simulations in the CC,
MR and RR groups were identical until evolution switched on.
That is why we only compared the length of the selection phase
in the control group and group MC. The Wilcoxon matched-
pairs signed ranks test showed that the median of the differences
between the two groups differed significantly from zero: W =
—185, p = 0.0176. For the evolution phase, the Friedman test
showed that variation among group medians was significantly
greater than expected by chance, Fr = 56.740, p < 0.0001, and
pairwise comparisons with Dunn’s multiple comparisons test
between the deficit groups and the control group revealed that the
MR and RR groups spent more time with the task in the evolution
phase than the control group, see Table 4.

CONCLUSIONS

Summary of Results

We developed a model for human problem solving that is based
on the selection and evolution of hypotheses (de Vladar et al.,
2016; Szilagyi et al., 2016). The model is a possible cognitive
architecture for Darwinian Neurodynamics and it is based on a
population of attractor networks that store and reproduce the
hypotheses which are then selected for reproduction according
to their fitness. We assumed that search for the solution starts
in a computationally cheaper selection mode, when the model
only explores previously learnt candidate solution patterns. If the
model has not met the given task before, selection generally does
not find the solution. If the model switches to evolution mode,
it can explore new hypotheses, and has a chance to go through
restructuring. In evolution mode (1) better candidate solutions
get stored in more and more attractor networks by cross-network
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FIGURE 10 | Time spent with the task in the four conditions of
Experiment 3. On each box, the central mark is the median, the edges of the
box are the 25 and 75 percentiles, the whiskers extend to the most extreme
data points not considered outliers and outliers are plotted individually (red +).
Notches represent comparison intervals: two medians are significantly different
at the 5% significance level if their intervals do not overlap.

TABLE 4 | Results of Dunn’s multiple comparisons test on the time spent
with the task and on the length of evolution phase in Experiment 3.

Comparison Task time Evolution phase
Rank sum p-value Rank sum p-value
difference difference

CCvs. MC —39.000 p < 0.001 —14.000 ns

CC vs. MR —69.000 p < 0.001 —66.500 p < 0.001

CCvs. RR —38.000 p < 0.001 —41.500 p < 0.001

learning and (2) novel candidate solutions are introduced by
mutations. The probability of switching between selection and
evolution increases with time, but decreases with the number of
repeated candidate solutions because of a self-induced mental set.

In this paper, we applied this cognitive architecture to an
insight task, the four-tree problem. Experiment 1 served as a
benchmark to test our model against human data from Kershaw
et al.’s experiment (Kershaw et al., 2013). The model performed
similarly to human participants, i.e., there were more solvers in
the combined group, which was pre-trained and primed with
tetrahedrons than in the control group, which did not receive
these treatments. In Experiment 2, three-dimensional training
and priming were supposedly less efficient than in Experiment 1.
That is, because they involved three dimensional patterns instead
of tetrahedrons per se. However, we predicted that training and
priming would still have a positive effect on problem solving.
This proved to be true, however, combined pretraining and
priming with three-dimensional patterns was not as effective as
we thought, instead the group that received two-dimensional
pretraining and three-dimensional priming performed best. This
is a prediction that we plan to test in human experiments. In
Experiment 3, we showed that deficits in computational capacity
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FIGURE 11 | Length of selection phase and evolution phase in the four
conditions of Experiment 3. On each box, the central mark is the median,
the edges of the box are the 25 and 75 percentiles, the whiskers extend to the
most extreme data points not considered outliers and outliers are plotted
individually (red +). Notches represent comparison intervals: two medians are
significantly different at the 5% significance level if their intervals do not overlap.

and learning abilities of the model decreased solution rate, as it
was expected.

Limitations and Future Work

The simplification (plant only the fourth tree) and the
representation of the problem (100 neurons code additively each
coordinate) might be overly simplistic in this study. We plan
to work out a more complex representation, where the model
searches for the position of all four trees, and with a more realistic
coding. We would like to implement this in embodied robots that
could physically solve the problem.

We did not explicitly model time in this model (time
steps equalled generations). This makes it impossible to model
inactivity, which is an important behavioral correlate of impasse.
In fact, we did not model impasse per se in these simulations.
However, we propose that impasse starts sometime before the
switch to evolution mode and ends around representational
change, because impasse is the phase of problem solving where
unconscious thought processes lead to representational change.

Future work should address sampling of candidate solutions
to represent solution attempts of human participants. The
apparent jump between the goodness of solution attempts of
human problem solvers right before the solution can be a result
of two different processes. One possibility is that hypotheses
gradually increase their fitness through time, but a series of
solution attempts does not become conscious, so when one
emerges into consciousness, there is an apparent discontinuity.
Another possibility is that there is a real jump in the fitness of
unconscious hypotheses.

In the present paper, a switch from selectionist to evolutionary
dynamics leads to representational change. We are aware
of other possibilities, however. A prime candidate could
be the re-rendering of the associated adaptive landscape
(going beyond adding one more dimension), which would
correspond to representational change. Analysis of such
alternatives is a task for the future. Another limitation is
that switching is unidirectional and happens only once. It
would be more realistic to implement a mechanism that can
switch back and forth between selection mode and evolution
mode.

In Experiment 2, we found that the group that was pretrained
with two-dimensional patterns and initialized with three-
dimensional patterns performed best, which is unexpected. This
might be a limitation of the model, or a valid prediction about
a behavior that is like beginner’s luck. We plan to test human
participants in conditions similar to our Experiment 2 to find out.

We think that the realization of evolutionary processes in
the human brain is not impossible. We speculate about the
possible components of the cognitive architecture elsewhere
(Szilagyi et al, 2016). Here, we would just like to point
out that it should be different from Neural Darwinism as it
was proposed by Edelman (1987), because he only proposes
selection on pre-existing variants, which is a mere one-shot
game.

This study shows how semi-neurally implemented
evolutionary processes can solve the four-tree problem,
and that manipulations lead to increased solution rates just
like in human problem solvers. We have some interesting
predictions about human behavior, which we will test
later. We would also like to implement a more realistic
version of the four-tree problem, as well as implementing
other insight problems. Our investigations so far show that
Darwinian Neurodynamics and its implementation in our
cognitive architecture is a promising model for human problem
solving.
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