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Tonal melody can imply vertical harmony through a sequence of tones. Current methods

for automatic chord estimation commonly use chroma-based features extracted from

audio signals. However, the implied harmony of unaccompanied melodies can be difficult

to estimate on the basis of chroma content in the presence of frequent nonchord tones.

Here we present a novel approach to automatic chord estimation based on the human

perception of pitch sequences. We use cohesion and inhibition between pitches in

auditory short-term memory to differentiate chord tones and nonchord tones in tonal

melodies. We model short-term pitch memory as a gradient frequency neural network,

which is a biologically realistic model of auditory neural processing. The model is a

dynamical system consisting of a network of tonotopically tuned nonlinear oscillators

driven by audio signals. The oscillators interact with each other through nonlinear

resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the

interactions is taken as a measure of pitch salience. We test the model with a collection of

unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation.

We show that chord tones are selectively enhanced in the response of the model, thereby

increasing the accuracy of implied harmony estimation. We also find that, like other

existing features for chord estimation, the performance of the model can be improved by

using segmented input signals. We discuss possible ways to expand the present model

into a full chord estimation system within the dynamical systems framework.

Keywords: implied harmony, tonal melody, automatic chord estimation, pitch memory, dynamical system, neural

oscillation, gradient frequency neural network

INTRODUCTION

Melody is a succession of pitched sounds arranged to form a coherent musical pattern (Bingham,
1910; Apel, 1969). In Western tonal melodies, coherence is often achieved by organizing melodic
tones to imply harmonic progressions. Although tones in a melody sound successively in time, they
can convey the sense of harmony, which is a relationship among simultaneously sounding pitches,
by arpeggiating a chord and connecting chord tones via nonchord tones such as passing tones and
neighbor tones (Schenker, 1956; Thomson, 1999). Psychological studies have shown that implied
harmony is an important feature of the perception and cognition of tonal melodies (Cuddy et al.,
1981; Tan et al., 1981; Trainor and Trehub, 1994; Holleran et al., 1995; Povel and Jansen, 2002).

Automatic chord estimation is a classic research area in music informatics aimed at identifying
a sequence of chords that best matches the harmonic progression of a given music signal. Current
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signal-based approaches commonly employ chroma-based
features such as chromagram which carry information on the
energy distribution across 12 pitch classes or chromas (Jiang et al.,
2011; Cho and Bello, 2014). Thus, chord estimation using these
features is based on the duration and intensity of tones without
taking their temporal order into account, which is consistent
with the prevalent view of tonality perception and key-finding
mechanisms based on pitch-class distributions (Krumhansl,
1990; Krumhansl and Cuddy, 2010). Chroma distributions are
expected to be a reliable basis for chord estimation when there
are more chord tones than nonchord tones in the frame of
analysis. This is generally the case for harmonized music with
explicit chordal support but not necessarily for unaccompanied
melodies with frequent nonchord tones. Indeed, nonchord tones
are recognized as a common source of errors in automatic chord
estimation (Pardo and Birmingham, 2002; Lee and Slaney, 2006).

Here we present a novel feature extractor for automatic chord
estimation that selectively enhances chord tones over nonchord
tones on the basis of human perception of pitch sequences.
Instead of analyzing chroma distributions in the acoustic signal,
we use a model of human short-term pitch memory to determine
the relative perceptual salience of individual tones in the signal.
Psychological experiments have shown that pitches within a
whole-tone range inhibit each other so that short-term retention
of a pitch deteriorates when it is followed by a pitch neighbor
(Deutsch, 1972, 1973; Deutsch and Feroe, 1975). Also, it has
been shown that the memory of a melodic interval based on a
simple frequency ratio (e.g., the perfect fifth based on 3:2) is more
stable than the memory of a melodic interval based on a more
complex ratio (e.g., the tritone which is approximated by 45:32)
(Schellenberg and Trehub, 1994, 1996a,b). These findings suggest
that melodic steps (a semitone and a whole tone) and leaps
(intervals greater than a whole tone) have distinct perceptual
properties: A pitch is weakened when it is followed by a step,
while it becomes more salient when it forms a consonant leap
with another pitch. Therefore, the salience of melodic pitches is
determined not only by their duration but also by their temporal
order (Bharucha, 1984; Brown, 1988) since the latter determines
the pattern of steps and leaps. The differentiation between chord
tones and nonchord tones may arise from the pattern of cohesion
and competition among melodic pitches in short-term auditory
memory, such that salient pitches that cohere together are heard
as chord tones whereas pitches suppressed by others serve as
nonchord tones (Kim, 2011; Kim and Large, under revision).

In this paper, we test pitch interactions arising from the
pattern of melodic steps and leaps as a basis for automatic
chord estimation. To model the interaction of melodic pitches
in auditory memory, we use a network of tonotopically
tuned nonlinear oscillators. This is not an arbitrary choice of
implementation. Rather, it is based on the observation that
the two distinct types of pitch interaction discussed above—
inhibition by pitch neighbors and coherence based on simple
frequency relationships—correspond with the two characteristic
behaviors of nonlinear systems: lateral inhibition and nonlinear
resonance. The model, which is described below, is a dynamical
system; it is run by numerically integrating a set of differential
equations which specify the dynamics and interactions of its

components. Therefore, it runs forward in time (i.e., it can
potentially run in realtime) and does not involve any search
procedures or optimization steps that require access to an entire
time series. The model is driven by audio signals, and acoustic
frequencies are transformed into a complex pattern of oscillations
which we take as a measure of pitch salience. We test the model
with unaccompanied tonal melodies and show that chord tones
are selectively enhanced in the response of the model compared
to the distribution of physical tone durations.

GENERAL MATERIAL AND METHODS

Model
We model short-term pitch memory with a network of
tonotopically tuned nonlinear oscillators, which is known as a
gradient frequency neural network (abbreviated as GrFNN and
pronounced griffin; Large et al., 2010). Nonlinear oscillation is
found in many parts of the auditory system, including critical
oscillations in the cochlea (Camalet et al., 2000; Hudspeth et al.,
2010) and mode-locked firing of auditory subcortical neurons
(Large et al., 1998; Laudanski et al., 2010). We use a generic
mathematical form of nonlinear oscillation, called the canonical
model, which describes oscillatory activities with complex-valued
state variables (Kim and Large, 2015). GrFNNs have been used
successfully to model auditory neural processing (Lerud et al.,
2014, 2015) as well as music cognition (Large et al., 2015, 2016).

Here we describe the structure and function of the short-
term pitch memory model with an example. (The differential
equations governing the dynamics of the model are given
below, along with the parameter values used in this study, but
understanding of the mathematical details is not required to
comprehend the results and implications of this study.) The
model consists of two layers of nonlinear oscillators tuned to a
chromatic scale (Figure 1). Layer 1 is driven by an audio signal
and performs frequency analysis. Figure 2 shows the response
of the model to a passage composed by J. S. Bach for solo
violin. Layer 1 oscillators resonate to different frequencies so
that they separate out individual frequencies in the signal. The
parameters for Layer 1 oscillators were chosen to capture the
critical oscillations observed in the cochlea (see Equation 1 below
for more details).

Layer 2 is a model of short-term pitch memory. High-
amplitude oscillations above the on-threshold (see below) are
considered active pitch traces that are salient in auditory
memory. Layer 2 receives input from Layer 1 and includes
internal pairwise connections between all oscillators (see
Figure 1 and Equation 2 below). Through these connections,
Layer 2 oscillators either inhibit or resonate with each other
depending on their frequency relationships. Two oscillators
inhibit each other if their natural frequencies are a semitone or
a whole tone apart. So a Layer 2 oscillation is suppressed when
its stimulus tone is followed by another tone within a whole-
tone distance. For example, the memory trace for the second
tone (D♯6) in the Bach melody is suppressed at the onset of
the following tone (E6) which is a semitone apart (Figure 2B).
When the natural frequencies are more than a whole tone apart,
the oscillators resonate together by synchronizing in an integer
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FIGURE 1 | Schematic of the dynamical model of short-term pitch

memory. The colors and line widths used for different connection types are

only for visual distinction and do not indicate their relative strengths.

ratio (called mode-locking). Nonlinear resonance is stronger for
simpler frequency relationships such as 2:1 (an octave) and 3:2
(a perfect fifth) so that oscillations driven by a consonant leap
last longer than oscillations for a dissonant leap. For example,
the oscillatory traces at E6 and B5, which are a perfect fifth
apart, are sustained long beyond the physical duration of the
tones (Figure 2B). The parameters for Layer 2 oscillators were
chosen so that they have thresholds for turning on and off which
simulates the persistence and loss of memory traces.

The pairwise connections between Layer 2 oscillators are
governed by a Hebbian learning rule (Equation 3). The plastic
connections model short-term adaptation in the auditory system
rather than long-term learning. The connections strengthen
and weaken quickly depending on the current amplitude and
frequency relationship of their source and target oscillators.
When two Layer 2 oscillators in a simple frequency relationship
have high amplitudes at the same time, the plastic connections
between them quickly strengthen and let the oscillators reinforce
each other through nonlinear resonance (i.e., mode-locking).
When two oscillators within a whole-tone range are activated
simultaneously, the connections between them grow quickly but
they introduce lateral inhibition so that the oscillator with higher
amplitude (typically the one currently driven by a stimulus tone)
suppresses the other oscillator. The plastic connections decay
quickly as either of the oscillators goes below the off-threshold.

Let us discuss how the pitch memory model can improve the
estimation of implied harmony by selectively enhancing chord
tones over nonchord tones. Bach’s pieces for solo instruments,
such as the passage shown in Figure 2A, are well known for
creating an impression of vertical harmony out of a single
unaccompanied line (Davis, 2006). The oscillatory patterns
formed in Layer 2 show how this may be possible (Figure 2B).

FIGURE 2 | The model’s response to the opening of J. S. Bach’s Violin

Partita No. 3, BWV 1006, Prelude: (A) the musical score and (B) the

amplitudes of Layer 1 and Layer 2 oscillators and stimulus tones. The stimulus

(an audio signal) is depicted in a piano-roll representation. High-amplitude

oscillations in Layer 2 (depicted with dark colors) are considered active pitch

traces in auditory memory.

The first group of notes (E-D♯-E) leaves one oscillatory trace at
E6, with the trace for the neighbor tone (D♯6) confined to the
time of physical sounding due to lateral inhibition. The next three
notes (B-G♯-B) form consonant leaps, so their traces prolong
together without inhibiting each other (note that the trace at B5
is sustained through a temporal gap). The last five notes form a
turn figure made of only steps, so only the trace for the last note
(E5) is extended. At the end of the passage, the oscillations at
E6, B5 and E5 remain active. Along with the trace at G♯5, which
prolongs beyond the note duration before being suppressed by
the following F♯5, the active oscillatory traces suggest that the
melody implies an E-major harmony. It is possible to estimate
the chord from note durations (the chord tones take up 81% of
total notated duration), but chord tones are made more salient in
the response of the model (the chord tones take up 92% of total
trace duration, excluding prolongations past the offset of the last
note). Below we take the length of oscillatory traces as a measure
of pitch salience and test if it can serve as a better basis for chord
estimation than note durations.

Equations (1–3) specify the time evolution of each component
in the dynamical model. (The readers may skip the equations
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and proceed to the Material section.) Equation (1) describes the
interaction of Layer 1 oscillators with an external signal.

τ1
dz1i

dt
= z1i

(

α1 + i2π fi + β11|z1i|2 +
ǫ1β12|z1i|4

1− ǫ1|z1i|2

)

+ x(t),

(1)
where z1i is a complex-valued state variable specifying the
amplitude and phase of the ith oscillator in Layer 1, fi is its natural
frequency, x(t) is a complex-valued external signal which can be
obtained by applying the Hilbert transform to a real-valued audio
signal, and the roman i is the imaginary unit. The parameters
α1, β11, β12, and ǫ1 determine the intrinsic dynamics of the
oscillators, and τ1 is the time constant (see Kim and Large, 2015,
for an analysis of all intrinsic dynamics available in the canonical
model). The parameter values used are α1 = 0, β11 = −0.1,
β12 = −0.1, ǫ1 = 1, and τ1 = 0.0025 (this is the critical
Hopf regime, known to underlie cochlear dynamics; see Kim and
Large, 2015).

Equation (2) determines the dynamics of Layer 2 oscillators
(z2i) which receive input from Layer 1 oscillators of identical
natural frequencies (z1i) as well as from all other oscillators in
Layer 2 (z2j).

τ2i
dz2i

dt
= z2i

(

α2 + i2π + β21|z2i|2 +
ǫ2β22|z2i|4

1− ǫ2|z2i|2

)

+ caffz1i

+
∑

j 6=i

√
ǫ2

kij+mij−2
cijz

kij
2j z̄

mij−1

2i ,

(2)

where cij is a complex state variable for the plastic connection
from the jth oscillator to the ith oscillator, and caff is the strength
of afferent connections. kij and mij are integers that approximate
the frequency ratio of the ith and jth oscillators (i.e., kij : mij ≈
fi : fj), which corresponds to the ratio of mode-locking. The
parameter values used are α2 = −1.6, β21 = 2.2, β22 = −0.1,
ǫ2 = 1, τ2i = 1/fi, and caff = 1.5 (this is the subcritical double
limit cycle regime which exhibits hysteresis with different on- and
off-thresholds; see Kim and Large, 2015).

The evolution of plastic connections between Layer 2
oscillators (cij) is determined by a Hebbian learning rule,

τij
dcij

dt
= cij

(

λij + µ1ij|cij|2 +
ǫcµ2ij|cij|4

1− ǫc|cij|2

)

+
√

ǫc
kij+mij−2

κijz
mij

2i z̄
kij
2j . (3)

Different parameter values were used depending on the interval
between the natural frequencies of the source and target
oscillators. For a semitone difference: λij = −1, µ1ij = 0, µ2ij =
−1 and κij = −0.5 (inhibitory). For a whole tone difference:
λij = −1, µ1ij = 0, µ2ij = −1 and κij = −1 (inhibitory). For
a difference greater than a whole tone: λij = −0.1, µ1ij = 0,
µ2ij = −10000 and κij = 0.02 (excitatory). For all three cases:

ǫc = 1 and τij =
kij +mij

kijfj +mijfi
.

Material
We tested the dynamical model with tonal melodies from
seven Mozart piano sonatas (K. 279, K. 280, K. 281, K. 282,
K. 283, K. 331, and K. 545). We took the top voice from
the expositions of the first movements in sonata form. For
K. 311, which is a theme and variations, the melody was
taken from the theme. We selected these melodies because
they are accompanied by mostly unambiguous chordal support
in the left hand. We relied on both the melody and the
accompaniment to annotate each note in the melody with the
underlying chord and whether the note is a chord tone or a
nonchord tone. The Mozart melodies include ample nonchord
tones (593 nonchord tones out of 2,020 notes, comprising 29%
of total notes) compared to other collections we considered
(e.g., nonchord tones represent only 7% of the notes in the
vocal part of Schumann’s Dichterliebe). This makes the Mozart
melodies good materials to test for the differentiation between
chord tones and nonchord tones. We used the annotations
(based on both the melody and the accompaniment) to evaluate
the model’s responses to the unaccompanied melodies. The
annotations should not be considered as the only possible
harmonic interpretations since the harmony implied by a melody
(without accompaniment) could differ from the harmony of
the accompaniment (Temperley, 2007). Also, it is common
knowledge that the same melody can be harmonized in many
different ways. These potential discrepancies, however, would
only make the model’s predictions less accurate. Thus, the tests
reported below should be considered conservative tests.

For each Mozart melody, we created an audio signal made of
pure tones (complex-valued sinusoids) that match the notated
pitches and durations in the score. An amplitude envelope was
applied to each stimulus tone, with sustained amplitude of 0.04
and linear ramps of 5 ms at the onset and the offset. The use of
pure tones, instead of complex tones, is due to the limitation of
Layer 1 in the current form. Layer 2 is a model of short-term pitch
memory which takes oscillations at individual pitches as input.
Layer 1, however, separates individual spectral components in
the audio signal rather than extracting individual pitches (or
fundamental frequencies) from them. Instead of incorporating
pitch estimation into the model (which requires more than
frequency analysis; see, e.g., de Cheveigné, 2006), here we use
audio signals containing only pure tones for which pitches
can be obtained by frequency analysis alone. Currently we are
developing a GrFNN pitch estimator, and the future versions of
the present model will include a pitch estimator and thus be able
to handle signals containing complex sounds.

Methods
For each stimulus signal, the model was run by numerically
integrating Equations (1–3) using GrFNN Toolbox (Large et al.,
2014), which is a software library for building and running
GrFNNmodels. Before each integration, all oscillators and plastic
connections in the model were set to random initial conditions
with small amplitudes. The range of natural frequencies in the
model was determined by the pitch range of the stimulus melody.
The natural frequencies of the oscillators spanned from three
semitones below the lowest note in the melody up to three
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semitones above the highest note. For stable fixed-step numerical
integration, the sampling frequency was set to 20 times the
highest natural frequency in the model.

The duration of oscillatory traces in Layer 2 was taken as
a measure of pitch salience. Trace duration was defined as the
length of time from themoment a Layer 2 oscillation jumps above
the on-threshold until either the moment it drops below the off-
threshold or the next note onset at the same pitch or the offset
of the last note in the signal (or the last note in the chord span
for Test 2), whichever occurs first. So if a trace is extended into
another trace at the same pitch, the trace duration for the first
tone is counted only up to the onset of the second tone. For the
parameter values used in this study, the on- and off-thresholds
were 0.89 and 0.50 respectively. Note duration was defined as the
length of time for which the stimulus tone stays above 50% of its
maximum amplitude.

TEST 1: TRACE PROLONGATION FOR
CHORD TONES AND NONCHORD TONES

To test whether chord tones are selectively emphasized in
the model’s response, we compared the trace durations for
chord tones and nonchord tones. Given the high probability of
nonchord tones being followed by a step (Bharucha, 1996), we
predicted that the oscillatory traces driven by nonchord tones
would mostly end soon after the note offsets while the traces
for chord tones would often prolong beyond the note durations.
We tested this prediction by comparing the difference between
trace duration and note duration (hereafter, trace prolongation)
for chord tones and nonchord tones.

Methods
The model was run for each of the Mozart melodies separately
(see General Material and Methods above for details). For
each note in the melodies (marked either as a chord tone
or a nonchord tone), note duration, trace duration and
trace prolongation (= trace duration − note duration) were
determined. A t-test was performed to determine if chord
tones and nonchord tones had significantly different trace
prolongations.

Results and Discussion
The chord tones in the Mozart melodies had significantly longer
trace prolongations than the nonchord tones [two-sample t-test:
t(2, 018) = 12.07, p < 0.001]. The mean trace prolongations
for chord tones and nonchord tones were 420 and 76ms,
respectively (see Figure 3). This means that the chord tones were
more emphasized in the pitch memory model than in the note
durations. The note durations for chord tones and nonchord
tones were also significantly different [mean durations: 224 and
151 ms; t(2, 018) = 8.57, p < 0.001]. However, this difference
does not explain the difference in trace prolongation because the
trace prolongation for an isolated tone does not depend on the
note duration, provided that the tone is long enough to activate
an oscillatory trace (which is true for all notes in the Mozart
melodies). Thus, longer trace prolongations for chord tones are
attributed to the nonlinear interaction between oscillatory traces

FIGURE 3 | Comparison of the trace prolongations for chord tones and

nonchord tones in the Mozart melodies. Mean note duration, mean trace

duration and mean trace prolongation (i.e., trace duration − note duration) are

shown. The error bars indicate standard errors.

(i.e., inhibition and resonance) in conjunction with the fact that
nonchord tones are followed by step more often (91% of the time
in the Mozart melodies) than chord tones are (52%).

It is important to note that chord tones are selectively
enhanced in the pitch memory model because of the regularities
in the use of chord tones and nonchord tones in tonal music.
A basic rule of counterpoint states that a nonchord tone (or
a dissonance) must be resolved by step motion (Zarlino, 1558;
Fux, 1725). The pitch traces for nonchord tones are prolonged
to a lesser extent than the traces for chord tones because
nonchord tones are mostly followed by a step whereas chord
tones have no such restriction. If the opposite was true (i.e.,
chord tones were followed by a step while nonchord tones had
no constraint), nonchord tones would be emphasized in the
response of the model. Then, one could ask why chord tones and
nonchord tones are used in certain ways, which is by no means
limited to Western tonal music (Erickson, 1984; Thomson,
1999). It is reasonable to assume that the way melodic pitches
interact in auditory memory has guided and constrained the way
chord tones and nonchord tones are used in tonal music. The
function of nonchord tones is to embellish chord tones without
undermining their structural and perceptual prominence. Thus,
one would want to limit the salience of nonchord tones while
highlighting chord tones. Stepwise resolution of nonchord
tones, which leads to the suppression of their pitch salience,
may be viewed as a compositional practice evolved under the
selective pressure by the principles of pitch organization in
auditory memory.

TEST 2: TRACE DURATIONS WITHIN
CHORD SPANS

The comparison of trace prolongations illustrates an important
difference in the way chord tones and nonchord tones are used
and perceived in tonal melodies, but it does not necessarily show
that the prolonged traces contribute to better chord estimation.
This is because the above analysis associates the entire length
of a trace with the annotated function of the stimulus tone
within the chord span in which its note duration falls. It is
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possible that the oscillatory trace for a chord tone extends into
the next chord span where it is not a chord tone, and this
would compromise the accuracy of chord estimation. As shown
in Figure 4, trace prolongations beyond the current chord span
may strengthen or weaken the prominence of chord tones in
the next chord span. For example, the trace at E5 starting in
the first chord span prolongs into the second span where it
remains a chord tone, thereby enhancing the representation of
the chord tones. On the other hand, the trace at D5 that begins
in the second chord span becomes a nonchord-tone trace in
the next span. (It could be argued that this response is not
necessarily wrong because the chord annotation is based on both
the melody and the accompaniment, while the model is driven
by the melody only. It is an empirical question, which is beyond
the scope of this study, to what extent the model’s response
corresponds with the human perception of unaccompanied
melodies.)

To investigate the effect of trace prolongation across chord
spans, we compared the traces at chord pitches and nonchord
pitches within individual chord spans regardless of the origin of
the traces. The difference between the total trace durations for
chord pitches and the total trace durations for nonchord pitches
was taken as the perceptual salience of the annotated chord in the
model’s response. To evaluate the model’s contribution to chord
estimation over note durations, the difference in trace duration
was then compared to the difference in total note duration
between chord tones and nonchord tones in each chord span.

Methods
The simulation data obtained for Test 1 were used for the
analysis of individual chord spans. For each annotated chord
span, trace durations and note durations were summed for
chord pitches and nonchord pitches separately. The chord
boundaries used for calculating trace durations were shifted
forward by 40 ms to reflect the typical rise time of Layer 2

oscillations after the stimulus onset. For each chord span, the
differences between chord tones and nonchord tones in total
trace duration and total note duration were calculated. A t-
test was performed to determine whether the trace duration
differences and the note duration differences are significantly
different.

Results and Discussion
Figure 5 (top) shows the trace duration difference and the
note duration difference for each chord span in the theme of
K. 331. The graph reflects our observations above. For the
second chord span, the trace duration difference is greater
than the note duration difference (meaning chord pitches are
more emphasized in the model response than in the note
durations), while it is the opposite for the third chord span (chord
pitches less prominent in the model). For K. 331, the mean
trace duration difference between chord pitches and nonchord
pitches was 1304 ms, and the mean note duration difference was
973ms.

Considering all 405 chord spans in the sevenMozart melodies,
trace duration differences and note duration differences were
significantly different [paired-sample t-test: t(404) = 6.21,
p < 0.001], with the mean values of 1056ms (trace
duration differences) and 567ms (note duration differences) (see
Figure 6). This suggests that, overall, the dynamical model’s
response can provide a better basis for chord estimation than note
durations.

TEST 3: TRACE DURATIONS WITHIN
SEGMENTED CHORD SPANS

Despite the overall advantage of trace duration over note
duration, there are chord spans for which trace duration
performs worse than note duration (see Figure 5, top). As
discussed above, the prolongation of pitch traces across chord

FIGURE 4 | Oscillatory traces formed in Layer 2 in response to the first two phrases (the first 15 chord spans) in Mozart Piano Sonata No. 11, K. 331,

Theme. Vertical red lines demarcate chord spans, and horizontal lines indicate the pitches belonging to the chords. Chord annotations are based on both the melody

and the accompaniment.
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FIGURE 5 | Difference between chord pitches and nonchord pitches in

total trace duration and total note duration within each chord span in

Mozart Piano Sonata, K. 331, Theme. The top panel shows a single

simulation run with the entire melody, and the bottom panel shows simulations

for individual chord spans run separately. CT and NCT denote chord tones and

nonchord tones.

FIGURE 6 | Mean difference between chord pitches and nonchord

pitches in note duration, trace duration in single simulations and trace

duration in segmented simulations, averaged over all chord spans in

the seven Mozart melodies. The error bars indicate standard errors. CT and

NCT denote chord tones and nonchord tones.

boundaries could result in less accurate chord representations.
This issue points to the importance of segmentation in chord
estimation. Previous studies have shown that the accuracy
of chord estimation can be improved by synchronizing
analysis frames to the beat of the music being analyzed,
which tends to align with harmonic changes (Bartsch and
Wakefield, 2001; Bello and Pickens, 2005). We tested whether
chord estimation based on the pitch memory model could

be improved by using segmented stimulus signals. Instead
of running the model for entire melodies, we chopped the
melodies into individual chord spans and ran the model
for each segment separately. This would prevent previous
oscillatory traces from extending into the current chord span
because each simulation starts anew from small random initial
values.

Methods
A separate stimulus signal was prepared for each chord span
in the Mozart melodies (total 405 segments; see General
Material and Methods for the general procedures of stimulus
preparation), and the model was run for each individual segment
separately. As was done for Test 2, the total trace durations
and total note durations for chord pitches and nonchord
pitches were calculated for each chord span. A t-test was
performed to determine if trace duration differences and note
duration differences are significantly different in segmented
chord spans.

Results and Discussion
Figure 5 (bottom) shows trace duration differences and note
duration differences for the segmented simulations of K. 331.
It can be seen that the trace duration difference is either
comparable or greater than the note duration difference for
all chord spans. Over all seven melodies, the trace duration
differences for segmented simulations (1,211ms on average)
were significantly greater than those for single simulations
in Test 2 [t(404) = 3.16, p < 0.01; see Figure 6].
This shows that, as was found for previous methods using
chroma-based features, chord estimation based on the pitch
memory model can benefit from processing each chord span
separately.

GENERAL DISCUSSION

In this paper, we presented a first step toward automatic chord
estimation based on nonlinear dynamics, which draws on
research in music cognition and auditory neuroscience. As
an alternative to the current methods of feature extraction
for chord estimation, we used a dynamical model of
short-term pitch memory to predict the relative salience
of pitches in tonal melodies. We modeled cohesion and
competition between melodic pitches as dynamic pattern
formation in a gradient frequency neural network, which is
a biologically realistic model of auditory neural processing.
We tested the model with a collection of unaccompanied
melodies and showed that it can provide better mid-level
representations for chord estimation than the distribution
of note durations which current chroma-based features are
aimed to extract from the music signal. It was shown that
chord tones are rendered more prominent in the model’s
response than in the note durations and that the advantage
of the model can be increased by using segmented input
signals.

The present study is an attempt to bridge music informatics
with music cognition by developing a chord estimation method
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based on the human perception of implied harmony. Much
progress has been made in automatic chord estimation, with
state-of-the-art systems employing cutting-edge techniques
in signal processing and machine learning (see Cho and
Bello, 2014; McVicar et al., 2014, for reviews). Recently,
however, a plateau in performance was observed despite
continuous incorporation of new data-driven methods
which have proven to be successful in other machine
learning domains (Humphrey and Bello, 2015). This calls
for examination of the underlying assumptions of current
chord estimation methods and also encourages incorporation
of the findings in other related disciplines such as music
cognition and auditory neuroscience. Here we showed that
the pattern of pitch salience in the dynamical model of
auditory short-term memory can provide a better feature for
automatic chord estimation than the chroma distribution
in the audio signal. The success of the present method
demonstrates that human perception and underlying neural
mechanisms can provide foundations for breakthroughs
in music informatics research. It also warrants further
investigation as to whether the dynamical models of auditory
neural processing can improve the retrieval of other musical
information.

The dynamical model of short-term pitch memory presented
in this paper differs from previous models of echoic memory
in which individual pitch traces, once initiated, decay
monotonically independent of each other (e.g., Huron and
Parncutt, 1993; Leman, 2000; Toiviainen and Krumhansl, 2003).
In the present model, a pitch trace may sustain for a long
time or be suppressed quickly at the offset of the stimulus
tone depending on its interaction with other pitch traces,
which is consistent with experimental findings on short-term
pitch memory (Deutsch, 1972, 1973; Deutsch and Feroe, 1975;
Schellenberg and Trehub, 1994, 1996a,b). The pitch dynamics
observed in the present model also provides a psychological
basis for the music-theoretical concept of prolongation, a
central principle of the hierarchical organization of tonal music.
In Schekerian analysis, prolongation refers to the ways in
which a pitch or harmony remains active without physically
sounding (Katz, 1935; Forte and Gilbert, 1982; Larson, 1997).
The prolongation of pitch traces beyond note durations and the
subordination of pitch traces to strong neighbors in the present
model correspond directly with the idea of prolongation in
music theory.

The dynamical model presented in this paper acts as a feature
extractor that provides a novel mid-level representation for chord
estimation. Hence, it does not perform chord estimation or
labeling by itself. There are multiple ways to use the model for
automatic chord estimation. For example, the current methods
for estimating chords from feature representations (e.g., template
matching and stochastic models) could be applied to the output
of the present model. However, our ultimate goal is to expand the
current model to perform chord estimation within the dynamical
systems framework. This may be done by adding another layer
of oscillators that holds information about common chord types
by means of long-term Hebbian learning. The present model
utilizes short-term plasticity to capture the interaction between

pitch traces in short-term auditory memory. Adding long-
term plastic connections to the model would lead to pattern
formation in two different time scales, and the learning and
recognition of common chord types could be modeled in terms
of the interaction between layers with plasticity of different time
scales.

The introduction of long-term plasticity also means the
incorporation of the top-down influence of learned knowledge
into the dynamical model. Cognitive psychologists have shown
that listeners internalize regularities in tonal music through
passive exposure and that the implicit knowledge thus acquired
influences subsequent perceptions (Krumhansl, 1990; Tillmann
et al., 2000; Pearce andWiggins, 2012; Rohrmeier and Rebuschat,
2012). The model presented in this paper includes only afferent
connections from the stimulus to Layer 1 and then to Layer
2, and the plastic connections adjust quickly to the current
states of the oscillators. Thus, the response of the model
reflects only the pattern of pitch salience in the short-term
context. An extra layer with long-term plastic connections
could carry information about frequently encountered chord
types beyond the short-term context and modulate the activities
in Layer 2 through efferent (top-down) connections. In this
way, the influence of both short-term context and long-term
knowledge could be accounted for within the dynamical systems
framework.

We showed that the prominence of chord tones in the
model’s response could be raised by using segmented signals.
This is because running the model separately for each segment
prevents oscillatory traces from intruding into the next segment.
The same effect can be achieved by deactivating (or resetting)
oscillatory traces at segmentation boundaries while running
the model continuously with the entire (unsegmented) signal.
Segmentation would benefit chord estimation the most if it
aligns with chord span boundaries. Above we used segmentations
based on chord annotations, but this information is not available
to a system performing automatic chord estimation (actually,
that is the information such a system aims to obtain). One
possible way to incorporate segmentation into the present model
is to couple it with a rhythm model that synchronizes to a
musical beat and meter (e.g., Large et al., 2015). In the same
spirit as the use of beat-synchronized frames for chroma-based
features, the pitch memory model could receive a modulatory
signal from the rhythm model which deactivates pitch traces at
the time of each downbeat. The pitch memory model, on the
other hand, could provide input to the rhythm model at the
time of harmonic change, which is an important cue for the
perception of rhythm and meter (cf. Papadopoulos and Peeters,
2008).

Here we tested the dynamical model with unaccompanied
melodies to focus on the differentiation of chord tones and
nonchord tones in the absence of explicit chordal context.
We found that the model selectively enhanced chord tones
in the melodies, thus raising the probability of correct
chord estimation. The results of this study prompt us to
ask how well the model would handle music with multiple
voices. We predict that the model would still show an
advantage over raw pitch-class content. The presence of
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vertical consonant intervals, which typically form between
chord tones, would facilitate the suppression of nonchord
tones. Also, we expect the model to capture pitch dynamics
within individual voices as it did for single unaccompanied
melodies. This prediction will have to be tested in future
studies.
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