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The missing not at random (MNAR) mechanism may bias parameter estimates and

even distort study results. This study compared the maximum likelihood (ML) selection

model based onmissing at random (MAR) mechanism and the Diggle–Kenward selection

model based on MNAR mechanism for handling missing data through a Monte Carlo

simulation study. Four factors were considered, including the missingness mechanism,

the dropout rate, the distribution shape (i.e., skewness and kurtosis), and the sample

size. The results indicated that: (1) Under the MAR mechanism, the Diggle–Kenward

selectionmodel yielded similar estimation results with theML approach; Under theMNAR

mechanism, the results of ML approach were underestimated, especially for the intercept

mean and intercept slope (µi and µs). (2) Under the MAR mechanism, the 95% CP

of the Diggle–Kenward selection model was lower than that of the ML method; Under

the MNAR mechanism, the 95% CP for the two methods were both under the desired

level of 95%, but the Diggle–Kenward selection model yielded much higher coverage

probabilities than the ML method. (3) The Diggle–Kenward selection model was easier

to be influenced by the non-normal degree of target variable’s distribution than the

ML approach. The level of dropout rate was the major factor affecting the parameter

estimation precision, and the dropout rate-induced difference of two methods can be

ignored only when the dropout rate falls below 10%.

Keywords: latent growth model, missing at random (MAR), missing not at random (MNAR), Diggle–Kenward

selection model, maximum likelihood approach

INTRODUCTION

A longitudinal study involves repeated observations of properties of an individual over a period of
time to explore the characteristics of the emergence, development, and change of the properties.
In contrast to cross-sectional analysis, a longitudinal study contains information on the properties
that vary with time, and thus can examine the change process of a particular property over time
and make more reasonable inferences of the causal relationships between different variables. With
the development of statistical techniques and as studies become more complex, the longitudinal
data analysis method has drawn increasing attention. In longitudinal studies, despite the efforts of
researchers to maintain the same sample throughout the process, the time-consuming nature of
such studies results in a common scenario where subjects might quit the experiments because of
individual properties or other external factors, resulting in large amounts of missing data. Although
a common problem for researchers in longitudinal studies, the appropriate methods of handling
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missing data are difficult to choose. A review of 100 longitudinal
studies conducted by Jelicic et al. (2009) found that 57 contained
missing data and that the approaches used by 87% of these studies
were inappropriate.

The choice of method to handle the missing data is dependent
on the mechanisms that lead to missing data and missingness
patterns. Little and Rubin (2002) came up with three missing
data mechanisms: (1) missing completely at random (MCAR),
the probability of missing data on a variable Y is unrelated to
other observed variables in the data set, and also unrelated to the
values of Y itself; (2) missing at random (MAR), the probability
of missing data on a variable Y is related to other observed
variables in the data set, but unrelated to the values of Y itself; (3)
missing not at random (MNAR), the probability of missingness
on Y depends on the values of Y itself. A common problem with
analyzing longitudinal data is that subjects may have dropped
out of the study prematurely in such a way that ignoring the
mechanism for dropout will lead to biased estimates and standard
errors. In such situations, the dropout mechanism is called “non-
ignorable” (Little and Rubin, 2002). Whether missing data is
considered non-ignorable depends on the method of analysis,
specifically which types of missingness it can account for. In
likelihood based estimation, MNAR is non-ignorable (Power
et al., 2012).

Research on missing data methods has been an area of
interest in recent decades. Large number of studies indicated
that some of the simple methods commonly used by researchers
for handling missing data, such as list-wise deletion (LD),
pairwise deletion, and single imputation (for example, mean
substitution, regression substitution among others), are beset
with limitations, such as biased parameter estimates and reduced
testing power, and are therefore not recommended (Jelicic et al.,
2009; Enders, 2010). Over the past decade, studies on missing
data methods have focused on discussions of the approaches
under the MARmechanism. Multiple imputation and maximum
likelihood estimation (MLE) are two of the methods that are
most widely used and frequently recommended (Carpenter et al.,
2006). MLE is a model-based method for handling missing data,
while multiple imputation is a distribution-based multiple data
replacement method. Researchers have also come up with a range
of methods for MNAR data in recent years (Wu and Carroll,
1988; Wu and Bailey, 1989; Diggle and Kenward, 1994; Follmann
and Wu, 1995; Molenberghs and Kenward, 2007; Molenberghs
et al., 2009; Enders, 2011a).

ForMNARdata, owing to the need to describe the relationship
between the missingness mechanism and the target variable, the
methods used are mostly model-based, i.e., to make an analysis
by defining the mechanism that leads to the missing data (Little
and Rubin, 2002; Enders, 2010). For analysis of longitudinal data
with MNAR-values, the practice is to add a model to describe
the characteristics of the missing data based on the growth
model (i.e., subjects response pattern or development curve) to
correct the bias (Ye et al., 2014). Selection modeling was first
applied by Heckman (1976) to handle longitudinal data with
MNAR-values and has since attracted wide interest and attention
among methodologists. Little and Rubin (2002) and Schafer and
Graham (2002) recommended the use of selection modeling and

pattern-mixture modeling to deal with MNAR data. A number
of selection models and pattern-mixture models for handling
MNAR data were derived based on the latent growth model
(LGM), such as Wu–Carroll (1988) model and Diggle–Kenward
(1994) selectionmodel. The incorporation of latent class variables
into these models has enabled better operations of growthmodels
with MNAR data. Examples of these models include latent class
selection model (Beunckens et al., 2008), Diggle and Kenward
latent class selection model (Muthén et al., 2011), Roy (2003)
latent class pattern-mixture model, Muthén-Roy latent class
pattern-mixture model (Muthén et al., 2011) among others. In
recent years, these model-based MNAR approaches have been
increasingly used in data analyses of longitudinal studies (Enders,
2011b; Muthén et al., 2011; Power et al., 2012), especially in
clinical studies. For example, Enders (2011b), Muthén et al.
(2011), and Power et al. (2012) all employed LGMs to analyze
the clinical trial data in mental illnesses treatments. They also
conducted sensitivity analyses by using the ML method, Diggle–
Kenward selection model, Wu-Carroll model (Wu and Carroll,
1988) and conventional pattern-mixture models as well as latent
class selection model (Beunckens et al., 2008), Diggle–Kenward
latent class selection model (Muthén et al., 2011), Roy (2003)
latent class pattern-mixture model, and Muthén-Roy latent class
pattern-mixture model (Muthén et al., 2011) that took the impact
of latent classes into consideration.

Although a variety of applicable methods for dealing with
MNAR data have been proposed and applied in actual research,
researchers are still finding it difficult to make appropriate
choices. First, all types of model-based approaches under the
MNAR mechanism need to satisfy certain assumptions. For
example, the Diggle–Kenward selection model (Diggle and
Kenward, 1994) requires normal distributional assumptions
for the repeated measures variables. Otherwise, the model is
inestimable. With continuous outcomes, the typical practice is
to assume a multivariate normal distribution for the individual
intercepts and slopes or for the repeated measures variables.
Some researchers noted that MNAR-based approaches might be
more sensitive to the missingness mechanism and assumptions
on normal distribution (Enders, 2011a,b). However, no evidence
supports this conclusion. Further study is still needed to decide
the robustness of these model-based approaches under the
MNAR mechanism when their assumptions cannot be satisfied
(i.e., when data are non-normal).

In addition, controversy exists over the selection of
approaches under MNAR mechanism in reality. Some
researchers argued that to ignore the MNAR mechanism
and use MAR-based methods instead could lead to biased
estimates. However, others believed that a good MAR model,
even with violated assumptions, would still be better than an
ill-designed MNAR model (Schafer, 2003). Tacksoo et al. (2009)
conducted a comparison of the methods for handling non-
normal data with MNAR-values to confirm that the LGM-based
robust MLE method yielded strikingly better results than the
LD and the pairwise asymptotically distribution-free method
(pairwise ADF). Nevertheless, the methods compared in the
study all required that data should be MAR, and there was no
discussion on whether the robust MLE method was robust in
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dealing with MNAR data. Therefore, if the MAR-based robust
MLE method is adopted under the MNAR mechanism, can
it perform as good as the MNAR-based modeling methods?
Furthermore, if MNAR-based modeling methods are adopted
under the MAR mechanism, will the results be different from
MAR-based robust MLE? As there are currently no clear data
available to test the MAR and MNAR mechanisms, a discussion
on these questions will be of great value to the selection of
missing data methods in practical longitudinal studies.

Based on the above questions, this study focus on the
following questions using Monte Carlo simulation study: Under
different missingness mechanisms, will the growth model-based
ML method and the Diggle–Kenward selection model yield
different results? When dealing with these questions, the study
takes into account the influences of the skewness and kurtosis
of data, the dropout rate and the sample size on the different
methods, and provides recommendations accordingly for the
selection and use of methods.

GROWTH MODEL-BASED METHODS FOR
DEALING WITH MISSING DATA

This study was based on LGM for longitudinal data analysis, and
a brief overview of the LGM is warranted before proceeding.
Figure 1 shows a path diagram of a linear growth model from
a longitudinal study with five equally spaced assessments. The
unit factor loadings for the intercept latent variable reflect the fact
that the intercept is a constant component of each individual’s
idealized growth trajectory, and the loadings for the linear latent
variable capture the timing of the assessments. A number of
resources are available to readers who want additional details on
LGMs (Singer and Willett, 2003; Bollen and Curran, 2006).

MAR-Based Maximum Likelihood Method
Based on the LGM model, the ML method under the MAR
assumptions is a model-based approach for dealing with missing
data, which defines a model for the observed data and makes
inferences based on the likelihood function. TheMLmethod does
not require imputation of unobserved data during the model
fitting process; instead, it uses the information of the observed
variable values to conduct parameter estimations as a way of
handling missing data. When the ML method is used to deal
with missing data, the joint distribution of the target variable
Y, and the missingness indicator d, f

(

Yi, di|θ ,φ
)

, where Yi is
the target observations of the ith individual, di is an indicator
variable used to describe whether the observation of the ith
individual is missing, θ is the parameter of latent growth model,
and ϕ is a parameter used to describe missingness mechanism.
The function f is simply factorized into the product of two
independent distributions without the need to estimate the
parameter (ϕ) for predicting the probability of missingness.

As the ML method can yield unbiased parameter estimates
under the MAR mechanism and is more efficient than
other conventional methods (e.g., LD, pairwise deletion, single
imputation), methodologists have considered it a “state-of-
art missing data technique” (Schafer and Graham, 2002).

FIGURE 1 | Illustration of a latent growth model.

Even under the MCAR mechanism, the ML method can still
yield better statistics than other methods since it can achieve
maximized estimation efficiency by “borrowing” information
from observed data (Enders and Bandalos, 2001). Although
the ideal MLE assumes that data are normally distributed, a
large number of studies show that the robust MLE with a non-
normality correction (Yuan and Bentler, 2000) can also produce
approximately unbiased results even under non-normality cases.
However, the performance of this approach under the MNAR
assumptions is not yet clearly elucidated.

METHODOLOGY

Simulation Design
To examine the factors that influence model parameter
estimations, this study consulted the factors considered in the
simulation studies conducted by former researchers (Newman,
2003; Kristman et al., 2005; Gad and Ahmed, 2007; Mazumdar
et al., 2007; Langkamp et al., 2010; Soullier et al., 2010; Yuan et al.,
2012) and came up with a simulation design as follows:

(1) Sample size. In light of the recommendations of previous
studies (Zhang and Willson, 2006) that growth models
should have a minimum sample size of 50, the present
study chose four sample levels at 100, 300, 500, and 1,000,
respectively.

(2) Dropout rate. Four drop rate levels were chosen, i.e., 5, 10,
20, and 40%.

(3) The degree of non-normal distribution of the target variable.
Four levels of skewness and kurtosis were considered. In
light of the degrees of non-normal distribution adopted by
previous simulation studies (Yuan and Bentler, 2000; Enders,
2001; Tacksoo et al., 2009; Yuan et al., 2012), the skewness
and kurtosis were set at 0 and 3 for normal data, 0.5 and 6
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for the slightly non-normal case, 2 and 15 for the moderately
non-normal case, and 3 and 33 for the extremely non-normal
case, respectively.

(4) Two missingness mechanisms, i.e., MNAR and MAR, were
involved.

The study included a total of 4 × 4 × 4 × 2 = 128 simulation
conditions. Analysis was repeated on each condition for 500
times using theMAR-based robust MLEmethod and theMNAR-
based Diggle–Kenward selection model.

Data Generation
The study consulted the data generation methods for different
types of missing data used by Tacksoo et al. (2009) and employed
the R language to generate longitudinal data sets that satisfied
different model assumptions and contained different missingness
mechanisms. The process of data generation is as follows:

First, the study generated a complete set of longitudinal data.
The simulated data set represented a longitudinal study on a
number of n subjects where measurement was repeated for t (t
= 5) times, yielding an observed value each time. An LGM was
used to generate the observed value yj of each subject at each time
point that satisfied the distribution features of the target variable,
where j= 1, ..., t. The parameters of the LGM were set as follows:

the intercept, i ∼ N(−1, 0.50)

the linear slope, s ∼ N(0.5, 0.02) and

the residuals,













ε1
ε2
ε3
ε4
ε5













∼ N













0.50
0.48
0.42
0.32
0.18













Non-normal distribution data with specific skewness and
kurtosis were generated using the generalized Lambda
distribution (GLD) (Headrick and Mugdadi, 2006). The
GLD family is defined by the following inverse distribution
function:

F−1
(

y
)

= λ1 +
yλ3 −

(

1− y
)λ4

λ2

where 0 ≤ y ≤ 1. The mean, variance, skewness, and kurtosis of
the distribution can be expressed as the following formulas:

α1 = µ = λ1+A/λ2

α2 = σ 2 =
(

B− A2
)

/λ22

α3 =
(

C − 3AB+ 2A3
)

/
(

λ32σ
3
)

α4 =
(

D− 4AC + 6A2B− 3A4
)

/
(

λ42σ
4
)

where,

A = 1/ (1+ λ3) − 1/ (1+ λ4)

B = 1/ (1+ 2λ3) + 1/ (1+ 2λ4) − 2β (1+ λ3, 1+ λ4)

C = 1/ (1+ 3λ3) − 1/ (1+ 3λ4) − 3β (1+ 2λ3, 1+ λ4)

+ 3β (1+ λ3, 1+ 2λ4)
D = 1/ (1+ 4λ3) + 1/ (1+ 4λ4) − 4β (1+ 3λ3, 1+ λ4)

+ 6β (1+ 2λ3, 1+ 2λ4) − 4β (1+ λ3, 1+ 3λ4)

According to the mean, variance, skewness, and kurtosis of the
expected generating distribution, the four parameters (λ1, λ2,
λ3, λ4) of the corresponding GLD distribution can be calculated
from the above equations, and then the random sample was
generated from the distribution.

Next, the data set under the permanent missingness
mechanisms was generated. The model for generating the
missing data is defined as follows: Define the dummy variable dt
to describe whether the observation of target variable is missing
at time t point, dt = 0means that the y is observed at time t, dt = 1
represents y is missing at time t, and all missing after time t. The
missing mechanism defined by the Probit regression model can
be expressed as a formula:

pt
(

y1, y2, . . . , yt−1, yt
)

= p
(

dk = 1|y1, y2, . . . , yt−1, yt
)

= 8
(

β1yt−1 + β2yt − c
)

where yt represents the target variable at time t,
pt

(

y1, y2, · · · , yt−1, yt
)

is the conditional probability of missing at
time t, c is the threshold of categorical variable d, and the specific
value is calculated from the dropout rate. For non-random
missingness mechanism, we set β1 = −0.5, β2 = 1; For random
missingness mechanism, we set β1 = −0.5, β2 = 0 (Gad and
Ahmed, 2007; Mazumdar et al., 2007; Soullier et al., 2010).

Evaluation Criteria
For each cell of the design, we simulated 500 sets of data. The
performance of each method was evaluated according to five
criteria, namely, (1) the convergence rates, (2) the bias and
precision of the growth parameters estimates, (3) the bias and
precision of the standard error, (4) the coverage probability (CP)
of 95% confidence interval.

Bias
The bias was measured by the average difference between the
estimation and the corresponding true value across replications.
A negative bias value means an underestimation of parameter,
while a positive bias value means an overestimation of parameter,
the zero value means an unbiased estimation.

Bias
(

θ̂

)

=

√

√

√

√

1

R

R
∑

r = 1

(

θ̂r − θ

)2

Root Mean Square Error (RMSE)
RMSE describes the difference between an estimated parameter
and its true value. A lower RMSE means a smaller difference
between the estimated value and the true value. RMSE is
calculated as follows:

RMSE
(

θ̂

)

=

√

√

√

√

1

R

R
∑

r = 1

(

θ̂r − θ

)2

For the formula of the Bias and RMSE, θ is the true population
parameter, θ̂r is the corresponding parameter estimate of the
rth repeated, and R is the number of analyzed cases for each
cell condition. Bias and RMSE were computed for both mean
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parameter estimates and estimated standard errors. For standard
error estimate recovery, empirical standard deviations of each
set of estimates were used as estimates of the true population
values; these were computed separately for each design cell.
Only successfully converged cases were used to estimate bias and
RMSE for parameters and their standard errors.

The Coverage Probability (CP) of 95% Confidence

Interval
This indicator shows the precision of an estimation and can
reflect the parameter estimation precision and the corresponding
estimated standard error to a certain extent. CP is calculated as
follows:

CP =
1

R

R
∑

r = 1

CI95

(

θ̂r

)

where CI95

(

θ̂r

)

= 1 if the value θ̂r falls within the 95%

confidence interval; otherwise, CI95

(

θ̂r

)

= 0.

Analytical Methods
The study chose the MAR-based ML method and the MNAR-
based Diggle–Kenward selection model method (MNAR-based
DK method) to handle the missing data. For parameters
estimation of the LGM, the ML estimation method was used for
both missing data methods. For LGM, the parameters of interest
were the means of latent variable (µi and µs) and the variances
of latent variable (σ 2

i and σ 2
s ). Theµi andµs describe the average

development trends of a sample, and the σ 2
i and σ 2

s indicate the
development variations of individuals. In this study, the estimates
of the parameters were obtained using Mplus7 (Muthén and
Muthén, 2008–2012).

RESULTS

Convergence
In all 64,000 replications, the non-convergence number forMAR-
based ML method and MNAR-based DK method was only 2
and 19 times, respectively. This indicated that the difference
of the convergence rate between two methods was negligible
and the convergence was not a problem for both methods. The
non-converged cases were removed prior to the analyses.

Bias and Precision of Estimation
The bias and RMSE of parameters were used to evaluate
the precision of estimators. The bias and RMSE of the four
parameters of LGM including the mean of intercept (µi), the
mean of slope (µs), the variance of intercept (σ2i ), and the
variance of slope (σ2s ) are presented in Tables 1–4.

Under the MAR mechanism, the precision of parameter
estimation conducted using the MAR-based ML method was
slightly better than that of the MNAR-based DK method; while
under the MNAR mechanism, the MNAR-based DK method
performed better than the MAR-based ML method. This is
because the MAR mechanism better fits the assumptions of
the ML method on missingness mechanism, while the MNAR

mechanism better fits the assumptions of the Diggle–Kenward
selection model on missingness mechanism. The precision of
parameter estimation of both methods can be improved with the
increasing of the sample size.

As shown in Table 1, under the MAR mechanism, the
differences of bias and RMSE for the mean of intercept
between the MNAR-based DK method and the MAR-based
ML method were small, and the estimation precision of the
intercept mean was affected by neither the dropout rate nor
the non-normal degree of the target variable. However, under
the MNAR mechanism, the differences of bias and RMSE
between two methods were relatively large, which increased with
the increasing of the dropout rate, but the differences were
unaffected by the non-normal degree of the target variable.
Overall, for the mean of intercept, the MNAR-based DK
method can obtain robust estimation even under the MAR
mechanism. However, under the MNAR mechanism, the ML
method seriously underestimated the intercept mean, except for
the case with a dropout rate of <5%.

The results for the mean of slope was similar to the intercept
mean (see Table 2). Under the MAR missingness mechanism,
the bias and RMSE of MAR-based ML method were both
lower than those of the MNAR-based DK method, and the
MNAR-based DK method slightly underestimated the slope
mean. Under the MNAR missingness mechanism, the bias and
RMSE of the MAR-based ML method were higher than those
of the MNAR-based DK Method, and MAR-based ML method
seriously underestimated the mean of the slope. The MAR-
based ML method was more sensitive to the choice of the
missingness mechanisms. The bias and RMSE of MAR-based ML
method were not affected by the degree of non-normality, but
the bias and RMSE of the MNAR-based DK method increased
with the increasing of non-normality degree. The dropout rate
was the main influential factor of the slope mean estimators,
and the estimation precision of both methods dramatically
decreased when the dropout rate reached above 20%. Moreover,
the differences between the two methods increased with the
increasing of the dropout rate.

As can be seen from Table 3, for the variance of intercept,
there was a slight difference between the two methods under
either the MAR or the MNAR mechanism. The non-normal
degree of the target variable had a significant impact on the
estimation precision of the intercept variance: the precision
of the parameter estimation was similar to that under the
normal distribution when data departed slightly from the normal
distribution. However, the parameter estimation precision
declined as data departed further from the normal distribution.

According to the results shown in Table 4, under the MNAR
mechanism, there was no difference in the bias and RMSE
between the MNAR-based DK method and the MAR-based ML
method; The RMSE of the slope variance estimators increased
as the dropout rate increased, but it was not affected by the
non-normal degree of the target variable. Under the MAR
mechanism, the differences in Bias and RMSE between the
MNAR-based DK method and the MAR-based ML method
increased with the increasing of both the dropout rate and
the non-normal degree of the target variable. Overall, the
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2 results indicate that the MAR-based ML method can obtain

robust estimation even under the MNAR mechanism, while the
MNAR-based DK method can only produce robust estimations
under the MAR mechanism when the dropout rate was below
20% or the target variable departed only slightly from normal
distribution.

Estimated Standard Error
The bias and RMSE of standard error were used to evaluate
the efficiency of the estimates, and the results are shown in
Tables 1–4. For all parameters, the bias and RMSE of SE
decreased as the sample size increased.

For the SE of the intercept mean (see Table 1), the bias
and RMSE were very small, and the differences between the
MAR-based ML method and the MNAR-based DK method were
negligible in all conditions. The dropout rate and the non-normal
degree of the target variable had no effect on the estimation
efficiency of the intercept mean.

For the SE of the slope mean (see Table 2), the bias and RMSE
of the MAR-based ML method were smaller than those of the
MNAR-based DK method. The bias and RMSE were not affected
by the non-normal degree of the target variable for the MAR-
based ML method. In contrast, the non-normal degree of the
target variable affected the bias and RMSE for the MNAR-based
DK method, especially under MAR missingness mechanisms.
The bias and RMSE increased as the dropout rate increased.
However, it can be seen from Table 2 that the standard error
was underestimated, especially for the MNAR-based DK method
under the MAR missingness mechanism.

For the SE of the intercept variance and the slope variance,
the bias and RMSE were very small, and the differences between
MAR-based ML method and the MNAR-based DK method were
also small. Moreover, both methods underestimated the standard
error of the intercept variance under whichever missingness
mechanism.

The 95% Coverage Probability (95% CP)
The study used the normal distribution method to construct the
95% confidence intervals for the estimated means and variances
of the growth parameters. Table 5 provides the 95% coverage
probabilities results.

Table 5 shows that under the MAR mechanism, the 95% CP
for the intercept mean obtained using the MNAR-based DK
method and the MAR-based ML method stood at 94.5 and
95.0%, respectively, with the difference being very small. Under
the MNAR mechanism, the 95% CP of the two methods were
87.6 and 78.7%, respectively, and the CP of the MAR-based ML
method was lower than that of the MNAR-based DK method.
Under theMNARmechanism, the CP ofMAR-basedMLmethod
decreased with increasing degree of non-normality, sample size,
and the dropout rate.

For the CP of the slope mean, under the MAR mechanism,
the 95% CP obtained using the MNAR-based DK method and
the MAR-based ML method were 87.5 and 93.9%, respectively.
Under the MNAR mechanism, the 95% CP for the two methods
were 86.1 and 38.6%, respectively, which were both under the
desired level of 95%. The MNAR-based DK method yielded
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TABLE 5 | The 95% coverage probability for parameters of latent growth model (%).

MAR MNAR

µi µs σi
2

σs
2

µi µs σi
2

σs
2

Factors DK ML DK ML DK ML DK ML DK ML DK ML DK ML DK ML

DISTRIBUTION

Normally distributed 93.7 94.9 83.8 94.6 92.1 94.5 91.2 94.5 90.8 80.9 90.1 39.2 94.2 94.4 92.7 94.5

Slightly skewed 94.3 95.3 86.9 94.5 92.7 94.3 90.9 94.0 88.9 79.2 90.4 38.8 94.6 94.7 92.6 94.5

Moderately skewed 95.1 95.2 90.0 93.7 80.0 81.8 90.0 94.5 86.0 77.8 83.9 37.6 78.9 81.2 91.4 94.2

Extremely skewed 94.8 94.6 89.0 92.7 70.8 72.5 89.3 94.4 84.6 77.2 80.0 38.8 65.9 71.6 91.0 94.3

SAMPLE SIZE

100 94.6 94.7 89.8 94.0 84.4 86.3 84.3 93.5 92.2 90.2 89.2 70.3 85.8 86.3 87.5 93.9

300 94.7 95.1 89.2 94.0 84.5 86.5 91.9 94.6 90.2 83.7 88.5 41.4 85.1 86.2 93.1 94.6

500 94.4 94.9 88.0 94.0 84.1 85.7 92.9 94.5 87.5 77.3 86.5 28.2 84.1 86.3 93.7 94.9

1,000 94.2 95.4 83.2 93.4 82.6 84.6 92.4 94.7 80.4 63.9 80.2 14.5 78.6 83.2 93.3 94.2

DROP RATIO (%)

5 95.0 95.1 89.2 94.8 83.0 85.0 92.2 94.4 90.6 91.3 88.5 72.4 83.9 85.6 93.1 94.6

10 94.7 94.9 87.6 94.7 83.0 85.6 91.4 94.2 88.2 87.4 85.2 45.9 84.2 86.0 93.2 94.7

20 94.7 95.5 87.1 93.3 84.0 86.1 90.5 94.5 85.3 75.1 85.4 22.8 83.4 85.8 92.2 94.5

40 93.5 94.7 86.3 92.7 85.7 86.3 87.4 94.2 86.3 61.3 85.3 13.3 82.1 84.5 89.3 93.9

All Replications 94.5 95.0 87.5 93.9 83.9 85.8 90.4 94.3 87.6 78.8 86.1 38.6 83.4 85.5 91.9 94.4

The value of 95% coverage probability that under 80% is printed in bold.

much higher coverage rates than theMAR-basedMLmethod, the
coverage rates of which were far below 95%.

For the estimation of the intercept variance under the
MAR mechanism, the 95% CP obtained using the MNAR-
based DK method and the MAR-based ML method were 83.9
and 85.8%, respectively, representing a very small difference.
Under the MNAR mechanism, the coverage probability for
the two methods were 83.4 and 85.5%, respectively, which
had little difference but were both under the desired level
of 95%.

For the estimation of the slope variance under the MAR
mechanism, the 95% CP calculated using the MNAR-based DK
method and the MAR-based ML method were 90.4 and 94.3%,
respectively. Under the MNAR mechanism, the 95% CP for the
two methods were 91.9 and 94.4%, respectively. Therefore, the
difference between the slope variances of the two methods was
small.

DISCUSSION AND SUGGESTIONS

Discussion
The methods used for handling missing data in longitudinal
studies are normally based on certain missingness mechanism
assumptions. Appropriate methods should be chosen to
accommodate differentmechanisms. The untestable assumptions
of the MNAR mechanism have posed some difficulties for the
selection of methods, and thus this issue is hotly debated in
the research field. This study focused on the following three
questions: (1) Under theMARmechanism, can theMNAR-based
Diggle–Kenward selection model yield similar results to the ML
method? (2) Under the MNAR mechanism, can the MAR-based

MLmethod yield similar results to the Diggle–Kenward selection
model? (3) Will the factors, such as dropout rate, normal
distribution assumption, and sample size affect the estimation
results?

The MAR-based ML method delivers better results than the
MNAR-based DKmethod under the MARmechanism; while the
MNAR-based DK method performs better than the MAR-based
ML method under the MNAR mechanism. This result further
demonstrates the importance of choosing the right model for
dealing with missing data. However, the missing data mechanism
is usually not known in practice, and no reliable method exists
to determine whether the missingness mechanism assumptions
are established. A study on the robustness of different methods
under different missingness mechanism assumptions can provide
valuable insights into the method selection in real-case
studies.

We concluded in the study, under the MAR mechanism,
there was a slight difference between the results obtained by
the two methods for the three parameters of LGM including
mean of intercept, variance of intercept, and variance of slope,
especially in the case of large sample size. However, for the
mean of slope, the MNAR-based DK method underestimated
the mean and the standard error, and the difference between
MAR-based ML method and the MNAR-based DK method
was obvious, but the difference reduced with the increasing of
the sample size. This finding indicates that for MAR data, the
MNAR-based DK method can provide a robustness result in the
estimation of slope mean under large sample sizes. However,
we should notice that the coverage rate of the MNAR-based
DK method was lower than expected rate of 95% due to the
underestimated SE.
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Under the MNAR mechanism, there was a slight difference
in the intercept variance and slope variance obtained by the two
methods, respectively. This suggests that even when the data are
MNAR, the use of the MAR-based ML method will not create
extremely biased estimates for the variance of growth parameters.
However, there were remarkable differences between the two
methods in the estimation of intercept mean and slope mean,
the MAR-based ML method produced highly biased estimates
even under large sample size. This shows that even under large
sample size, the MAR-based ML method has a large bias in the
estimation of intercept mean and slope mean under the MNAR
missingness mechanism, and a similar conclusion can be drawn
for the 95% coverage probability of confidence interval, especially
for estimation of the slope mean.

It should be noted that when the dropout rate is small
(for example under 10%), there was a slight difference between
the two methods. Generally, the MNAR-based DK method is
less influenced by missingness mechanisms. But when choosing
analytical methods in practice, factors, such as the sample size,
the skewness degree of the target variable, and the dropout rate,
should be taken into consideration simultaneously. Lu et al.
(2013) and Lu and Zhang (2014) concluded that the wrong
definition of the missingness mechanism may lead to the wrong
conclusion based on the latent growth model and the mixed
growth model, respectively, which is consistent with the result
obtained (Lu et al., 2013; Lu and Zhang, 2014).

The performance of each model was also examined in making
estimations when the assumptions on the normal distribution of
the target variable are violated. For the bias and RMSE of the
intercept mean, the non-normal degree had no impact on the two
methods. For the slope mean, the bias and RMSE of MAR-based
ML method was not affected by the degree of non-normality,
and the conclusions agree with previous studies (Enders, 2001;
Tacksoo et al., 2009; Yuan et al., 2012). But the MNAR-based DK
method was more greatly impacted by the non-normal degree.
For the intercept variance and SE, both methods were affected
greatly by the non-normal degree. For the slope variance and
SE, both methods were hardly influenced by the non-normal
degree. Overall, theMNAR-based DKmethod is more likely to be
influenced by the distribution of non-normal degree of the target
variable. As Muthén et al. (2011), and Enders (2011b) pointed
out that the parameter estimation was more dependent on the
assumption of normality for MNAR missingness data because
the missingness mechanism depended on the distribution of the
variables.

Finally, it is worth noting that the dropout rate is an important
factor that affects the accuracy and effectiveness of parameter
estimation. In the longitudinal study, the intercept-related
parameters often define the initial state of the target variable,
therefore it should not be affected by the later target variables. The
slope parameters are used to describe the developmental changes,
the dropout rate and the way how to deal with the missingness
have a great impact on it. The results of our study also supported
these conclusions. It is found that for the slope mean, slope
variance and their corresponding standard errors, the estimated
bias of the parameter increases with the increase of the dropout
rate. The difference between the two different mechanisms

can be ignored when the dropout rate is <10%. However,
a model based on the un-proper missingness mechanism
would result in a larger estimated bias if the dropout rate
exceeds 10%.

Suggestions and Further Research
As the theoretical assumptions of the MNAR mechanism are
more stringent compared withMCAR andMAR, a higher level of
care should be taken when deciding the methods for dealing with
MNAR data. For research data with missing values, it is essential
to fully understand the potential causes for the missing data
and perform a comprehensive analysis on the data by following
a specific procedure. Based on the findings of the simulation
study, we recommend that considerations should be taken of
the potential influences of the non-normal degree of the target
variable, the dropout rate, and the sample size on parameter
estimations when conducting analysis.

First, verify if the target variable follows a normal distribution.
If the target variable is moderately or highly skewed from normal
distribution, a large sample size may be needed or we should
do further research to use other robustness estimate method to
handle the non-normal missing data.

Second, check the level of dropout rate of longitudinal
data. If the dropout rate is below 10%, the MAR-based ML
method can be used based on the “simplification of model”
principle.

Third, if it cannot be decided whether missing data are
MCAR, and/or if it can be judged from existing studies or
experience that MNAR data might be present at a high level,
and then it is necessary to perform sensitivity analysis (Graham
et al., 1997; Carpenter et al., 2007; Jamshidian and Yuan, 2012;
Morenobetancur and Chavance, 2016). Many methodologists
recommend that different models or methods should be used to
analyze data that may contain MNAR-values in order to examine
the differences between the results yielded by these different
methods (Enders, 2011a; Muthén et al., 2011).

Forth, compare the results derived using the differentmethods
and choose the most reasonable assumption to interpret the
results of data analysis. For ML method and DK method,
if the conclusions are consistent, the results under the MAR
mechanism are also considered to be reliable. If the conclusions
under MNAR assumptions are inconsistent with those under
MAR assumptions, then the results under theMNARmechanism
are considered to be more credible especially for large sample
size. The reason is that the MAR hypothesis can often be seen
as a special case of the MNAR. For example, in the DK model, if
it is assumed that the effect of the target variable at time t on the
missingness dummy variable is zero, the ML method assumption
is met.

Limitation
This study mainly discussed the comparison of the ML method
under the assumption of MAR deletion mechanism and the DK
selection model under the hypothesis of the MNAR deletion
mechanism. However, it should be noted that even if the
analysis based on MNAR mechanism, there are many other
different models based on different assumptions such as selection
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models and pattern-mixture models. Subsequent studies would
focus on more other MNAR-based models and compare their
performances under the MNAR mechanism. In addition, for the
estimation method, we should consider more methods, such as
two-stageMLmethod (Yuan and Lu, 2008) and Bayesian method
(Lu et al., 2013), among others. For the model selection criteria,
the model fitness indexes such as AIC, BIC, and DIC, should be
considered for latent growth models with missing data.
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