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The linear logistic test model (LLTM) is a well-recognized psychometric model for

examining the components of difficulty in cognitive tests and validating construct

theories. The plausibility of the construct model, summarized in a matrix of weights,

known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM

with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2)

by examining the correlation between the Rasch model item parameters and LLTM

reconstructed item parameters. The problem with the LR test is that it is almost

always significant and, consequently, LLTM is rejected. The drawback of examining the

correlation coefficient is that there is no cut-off value or lower bound for the magnitude of

the correlation coefficient. In this article we suggest a simulationmethod to set aminimum

benchmark for the correlation between item parameters from the Raschmodel and those

reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient

between the RM-based item parameters and the LLTM-reconstructed item parameters

derived from the theoretical weight matrix should be greater than those derived from the

simulated matrices.

Keywords: linear logistic test model, Rasch model, weight matrix, validation

BACKGROUND

The linear logistic test model (LLTM; Fischer, 1973) is an extension of the Raschmodel (RM, Rasch,
1960/1980) which imposes some linear constraints on the item parameters. LLTM assumes that
item difficulty βi is a weighted sum of the basic parameters ηj. The item response function for the
standard dichotomous Rasch model is expressed as follows:

P (Xνi = 1|θν ,βi) =
exp (θν − βi)

1+ exp (θν − βi)
(1)

LLTM imposes the following linear constraint on the difficulty parameter βi:

βi =
∑p

j
qij ηj + c (2)

where qij is the given weight of the basic parameter j on item i, ηj is the estimated difficulty of
the basic parameter j, and c is a normalization constant. The motivation behind this extension of
the Rasch model is to investigate and parameterize the cognitive operations and mental processes
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that are involved in solving the items (basic parameters) (Fischer,
1995)1.

Under the LLTM, theoretically, the difficulty parameters of
the processes hypothesized to be involved in solving the items ηj
add up and constitute the Rasch model item difficulty parameters
βi. In other words, item difficulty is an additive function of
the basic parameters ηj. That is, if the construct theory suggests
that two cognitive operations with difficulty parameters of η1
and η2 are needed to solve item i then the Rasch model-based
difficulty of item i is: βi = η1 + η2. And if item j requires the
same two operations plus another operation with difficulty η3,
then βj = η1+ η2+ η3 and βj − βi = η3 (Fischer, 1995).

LLTM can also be used in investigating the impact of
construct irrelevant factors, such as test method, item position,
length of the item text, etc., on item difficulty and the impact
of experimental conditions such as training and therapy (for
applications of LLTM see Kubinger, 2009; Baghaei and Kubinger,
2015; Hohensinn and Baghaei, 2017).

To estimate LLTM a matrix of weights Q which defines the
relationship between items and cognitive operations should be
specified. The weight matrix or the Q-matrix Q contains items’
underlying cognitive operations or basic parameters ηj along
with their weights qij on each item i. The weight matrix is in
fact the construct theory under investigation or “the researcher’s
hypothesis about the factors causing differences of difficulties
between items” (Fischer, 2005, p. 509). Misspecification of the
weight matrix has profound effects on model fit and parameter
estimation (Baker, 1993; Fischer, 2005). Misspecification occurs
when researchers fail to take into account the relevant cognitive
processes which are involved in answering the items or when the
assignment of cognitive processes to items and their weights are
wrong.

One common approach to test the validity of the hypothesized
theory reflected in the weight matrix is to compare the fit of
the LLTM with the fit of the Rasch model. LLTM is a more
restricted model than the Rasch model and, therefore, the LLTM
and the Rasch model are hierarchically related or are nested
models. Likelihood ratio (LR) test can be used to compare the
fit of nested models. The deviance of −2 times log-likelihoods
of the two models is approximately chi-square distributed with
degrees of freedom equal to the difference between the numbers
of parameters in the models (Fischer, 1973). Comparing the
models entails the ratio of the two likelihoods (Lindsey, 1997;
Agresti, 2013):

D = −2log
LLLTM

LRM
(3)

1IRT models, in general, are not designed to reflect the cognitive processes which

underlie the responses. These models are commonly based on mathematical or

measurement properties such as sufficiency, separation, and additively and are

not linked with the item response generation mechanisms (van der Mass et al.,

2011). According to van der Mass et al. (2011) there is a paucity of such models

that can be problematic as validity evidence requires models that address the

information processing theories of tests (see Baghaei and Tabatabaee-Yazdi, 2016).

Other psychometric models that addresses the information processing theories of

the item responses are the class of cognitive diagnostic models (de la Torre, 2009),

diffusion model, and the race model (Tuerlinckx and De Boeck, 2005).

A condition for the LR test is that the superior model, in this case
the Rasch model, should fit the data (Fischer, 2005)2.

The problem with the LR test is that it is almost always
significant and, consequently, LLTM is rejected (Fischer and
Formann, 1982) and one wonders whether the hypothesized
cognitive model is useful in accounting for item difficulties.
Fischer and Formann (1982) state that a good fit of the
model is difficult to attain or is only attained if a test
is deliberately constructed according to a cognitive model.
Identifying meaningful cognitive operations for existing tests
not developed according to a cognitive model is extremely
challenging. Nevertheless, “...such statistical significances ought
not to be over-rated, because in many cases relatively large
samples of data were used for testing hypotheses about only a
few parameters, i.e., the tests were rather powerful; moreover,
ultimately any significance criterion is arbitrary” (Fischer and
Formann, 1982, p. 412).

For this reason researchers mostly rely on the correlation
between difficulty parameters resulted from fitting the Rasch
model and those reconstructed by the LLTM. If the weight
matrix is specified correctly, i.e., if the construct theory defined
in terms of the basic parameters and their weights is valid, the
item parameters from the Rasch model should be the same
as those reproduced by the LLTM, except for random error.
Nevertheless, there is no cut-off value for the magnitude of the
correlation coefficient to ascertain the validity of the cognitive
model. Correlations between 0.75 (Baghaei and Ravand, 2015)
and 0.98 (Sonnleitner, 2008) have been reported in the literature.

Parallel Analysis for Weight Matrix
Validation
Horn (1965) suggested parallel analysis (PA) as a technique for
deciding on the number of factors to extract in exploratory factor
analysis. The logic of PA in factor analysis is that if the extracted
factors have any substantive meaning their eigenvalues should
be greater than the eigenvalues of simulated data with the same
specifications.

Since it is very difficult to attain good fit for the LLTM
researchers almost always rely on the correlation between the
Rasch model (RM) item parameters and LLTM reconstructed
item parameters to evaluate the usefulness of their cognitive
theory in accounting for variations in item parameters. However,
there is no recommended cut-off value in the literature on
how large the correlation should be to confirm the validity
of the weight matrix and by implication the explanatory
usefulness of the cognitive model postulated. Furthermore,
there is no statistical significance test for this correlation.
Fischer and Formann (1982) note that “it is meaningless to
test such a correlation for significance since the H0 that the
LLTM holds cannot be expressed by “r = 0,” but would have
to be “r = 1,” for which no adequate test statistics exist”
(p. 412).

The empirical validity of the weight matrix is in fact
evidence for the validity of the postulated cognitive model

2For the Likelihood-Ratio test formula, the typical notation in the LLTM literature

is used here (see Fischer, 1973).
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(Baghaei and Kubinger, 2015). Based on the logic of PA,
we suggest that if the cognitive model is valid then the
correlation coefficient between the Rasch model item parameters
and the LLTM-reconstructed item parameters derived from
the theoretical weight matrix should be greater than the
correlation coefficients derived from random simulated weight
matrixes with the same number of items and cognitive
operations.

In short, we suggest that to evaluate the substantive
plausibility of the cognitive model researchers can simulate
random weight matrices with the same number of items
and operations as there are in the actual theoretical weight
matrix and feed them into the LLTM analysis and compute
the average of the correlations yielded by these “fake” weight
matrixes. We expect the correlation from the theoretical weight
matrix to be greater than 95% of these correlations. In this
case there is evidence for the usefulness and plausibility
of the cognitive model to account for variance in item
parameters.

METHODS

Simulations
To study the appropriateness and the feasibility of our approach
we ran simulations based on two empirical data sets to which
LLTM had been fitted before. Ghahramanlou et al. (2017)
analyzed 23 items in the listening comprehension section of
the International English Language Testing System (IELTS)
with LLTM. Content analysis of the test by domain experts
revealed six processes underlying the test. LLTM analysis of
the test had a poorer fit compared to the RM according to
likelihood ratio (LR) test. The correlation between the LLTM-
reconstructed item parameters and the RM item parameters was
r = 0.85.

Baghaei and Ravand (2015) analyzed a 20-item high-
stakes reading comprehension test in English as a foreign
language and derived five cognitive processes underlying the
test. The LR test showed that the LLTM analysis of the test
with 17 items (three items were deleted to attain fit to the
RM) had a poorer fit than the standard Rasch model. The
correlation between the LLTM-reconstructed item parameters
and the RM-based item parameters was r = 0.72. We applied
our proposed method to these two datasets to evaluate the
explanatory power of the Q-matrices in these two studies.
For both real data sets, the information criteria AIC and
BIC were calculated which are displayed in Table 1. All

TABLE 1 | Deviance, number of estimated parameters and information criteria

AIC and BIC for the RM and the LLTM of the two real data sets.

Deviance #Parameters AIC BIC

RM Listening 4931.68 22 4975.68 5057.81

LLTM Listening 5512.87 6 5524.87 5547.27

RM Reading 5532.41 16 5564.41 5628.24

LLTM Reading 5839.56 5 5849.56 5869.51

analyses of the empirical data sets and the simulations were
run with R (R Core Team, 2016)3. The weight matrices of
both empirical data sets are shown Table A and B in the
Appendix.

For the simulation study, three different scenarios were
implemented. In the first two scenarios, weight matrices were
intentionally misspecified with the aim of checking the impact
on the correlation between the parameters. In Scenario 1, the
weight matrix was misspecified to a high degree by simulating
the design matrices almost completely at random. In Scenario
2 another approach was taken: the empirical weight matrix
was taken as a starting point and perturbations were imposed
gradually. Thus, Scenario 1 serves to get the lowest possible
benchmark. In practice, a theoretically derived weight matrix
should show a better fit and produce a higher correlation than
a completely random matrix. Scenario 2 sets a low benchmark
(but higher than in Scenario 1). Finally, Scenario 3 serves to
get an upper benchmark for the fit of an empirical weight
matrix.

Scenario 1
The dimensions of the original weightmatricesQ of the empirical
data sets were taken and randomized weight matrices were
created with the same dimensions. In the empirical data sets,
the proportions of 0′s and 1′s in the matrix QL of the listening
test were 61.59% and 38.41%, respectively. For the reading
test the proportions of 0′s and 1′s in the weight matrix QR

were 65.88 and 34.12%, respectively. To create the random
weight matrices, each entry of the matrix qij was sampled from
qij ∈ {0; 1} and the proportion of 1′s was altered between
30 and 70%. The reason for deciding to limit the proportion
of 1′s between 0.3 and 0.7 was that in applications of the
LLTM the proportion of 1′s in design matrices of the LLTM is
smaller than the proportion of 0′s and rarely exceeds 0.7 (for
a typical example of an application of the LLTM see Freund
et al., 2008). One-thousand random weight matrices QS were
generated and the original empirical data sets were analyzed
using these 1,000 matrices. The correlations between the item
parameters from the Rasch model of the empirical data with
those reconstructed from the LLTM basic parameters using
the simulated weight matrices were calculated. In addition the
LR test and information criteria AIC and BIC comparing the
LLTM with the Rasch model were computed. If the empirical
weight matrices QR and QL are substantively valid, we expect
the majority of the QS

′ s lead to correlations lower than those
based on actual matricesQRandQL because they do not rest on a
theoretical rationale but are only randomly generated. Table C in
the Appendix shows one of the one thousand simulated weight
matrices for the reading comprehension test as an example. As
Table C in the Appendix shows, the dimensions of the simulated
matrix is equal to those of the empirical matrix (Table B in
the Appendix). The 0′s and 1′s are sampled randomly and the
proportion of 0′s and 1′s is set to 50 percent in this example
matrix.

3To perform our method we have written an R package that can be downloaded

under http://github.com/christinehohensinn/parAL.
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Scenario 2
Weight matrices created completely at random, are a rather
low benchmark for validity. Therefore, a second scenario was
implemented: the new weight matrices were not sampled
randomly; instead, the original matrices QR and QL were taken
and were modified to introduce some amount of “randomness”
or noise to them. For this purpose a varying number of rows
(representing the items) of theQR andQL were misplaced.

Misplacing the rows in the listening weight matrix QL

allowed for 3.556874e + 14 permutations, while the reading
test weight matrix QR allowed 2.585202e + 22 permutations. A
random sample of 1,000 permutations were selected as 1,000 new
modified weight matrices QM, since it was impossible to analyze
all the permutations. As in Scenario 1, these matrices were used
for an LLTM analysis on the original empirical data sets. The
correlations of the item parameters as well as the LR tests and
information criteria were computed.

Table D in the Appendix shows as an example of one of the
perturbed weight matrices for the reading comprehension test.
In this example, only two rows of the empirical weight matrix are
switched—the rows for item 1 and item 2 (compare to Table B
in the Appendix). Thus, in contrast to Scenario 1, the matrices of
Scenario 2 are much more similar to the empirical matrix. The
degree of misspecification of the matrices in Scenario 2 are much
smaller than that in Scenario 1.

Scenario 3
Scenarios 1 and 2 aimed to provide a “lower benchmark.” i.e.,
how high the correlations between item parameters can be in
the case of just “randomized” or “partly randomized” weight
matrices. Now, with Scenario 3, we wanted to get an impression
of the upper benchmark. Therefore we studied how high the
correlations could be if the weight matrix is “perfectly” specified.

The starting point was again the original weight matrices
QR and QL. Furthermore, the estimated basic parameters of the
empirical analyses were taken and the item parameters were
reconstructed. Subsequently, 1,000 data sets (with dimensions
equal to those of the empirical data sets) were simulated
on the basis of these reconstructed item parameters. That is,

data sets were generated on the basis of the LLTM which
means that they had a “perfect” fit (besides the sampling
error) to the given weight matrices. Again, these 1,000
data sets were analyzed using the LLTM with QR and QL.
The correlations between item parameter, the LR tests, AIC,
and BIC were computed. The estimation method for the
Rasch models and LLTM was conditional maximum likelihood
method.

RESULTS

Scenario 1
As mentioned in the previous section, two empirical examples
were chosen for which LLTM analyses had already been
conducted. The results in both cases showed a significant LR test.
The correlation between the RM item parameters and the item
parameters reconstructed by the LLTM was r = 0.8506 for the
listening test and r = 0.7208 for the reading test.

The proportion of 0′s and 1′s in the weight matrices were
varied from 30 to 70% 1′s in the simulations. The descriptive
statistics for the correlations between the item parameters from
the Rasch model and the LLTM are shown in Table 2. As the
table shows, the proportion of 0′s and 1′s had no impact on
the correlations of item parameters. Findings revealed that for
the listening test the empirical correlation of the original weight
matrix (r = 0.85) is within the upper 5% of the correlations
obtained from the simulated matrices. For the reading test, the
empirical correlation (r = 0.72) is just below the 95% percentile
of the randomized weight matrices. This casts some doubt on the
validity of the empirical weight matrix in explaining the cognitive
processes underlying the reading test. Table 2 shows that the
mean and the median of the correlations for random Q-matrices
are between 0.50 and 0.55. That is, a correlation coefficient
as high as 0.55 is expected between RM item parameters
and LLTM- reconstructed parameters even when the weight
matrix is developed haphazardly without any substantive theory.
Therefore, a valid weight matrix should yield a substantially
higher correlation than 0.55 to be considered meaningful from
a theoretical point of view.

TABLE 2 | Descriptive statistics for the correlations obtained from simulated weight matrices.

Min Percentil 5% 1st Quartile Median Mean 3rd Quartile Percentile 95% Max

Listening 30 0.1503 0.2892 0.4142 0.5031 0.5013 0.5890 0.7111 0.8690

Listening 40 0.1532 0.2905 0.4158 0.5075 0.5020 0.5921 0.7073 0.8819

Listening 50 0.1506 0.2960 0.4420 0.5176 0.5117 0.6054 0.7030 0.8870

Listening 60 0.0647 0.2949 0.4107 0.5037 0.5016 0.5880 0.7096 0.8252

Listening 70 0.1255 0.2891 0.4161 0.5036 0.5042 0.5925 0.7071 0.8377

Reading 30 0.1100 0.3098 0.4403 0.5507 0.5448 0.6495 0.7670 0.8955

Reading 40 0.1275 0.2879 0.4355 0.5409 0.5386 0.6467 0.7696 0.8965

Reading 50 0.1183 0.2823 0.4288 0.5434 0.5350 0.6375 0.7874 0.9292

Reading 60 0.1400 0.2882 0.4368 0.5448 0.5367 0.6329 0.7606 0.9105

Reading 70 0.0716 0.2762 0.4383 0.5337 0.5347 0.6417 0.7674 0.8919

The number in the row name refers to the proportion of 0′s and 1′s, thus Listening 30 means, that the weight matrices were simulated with a proportion of 30:70 for 0′s and 1′s.
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Besides the correlations, the LR test comparing the likelihood
of the LLTM to that of the Rasch model was performed for each
of the randomized weight matrices. As expected, all LR tests
were significant (p < 0.05) indicating a worse fit for the LLTM
compared to the Rasch model. In addition, the information
criteria AIC and BIC were calculated for the LLTM of the
simulated weight matrices and the Rasch model. Descriptive
statistics as well as the percentage of values that favored the LLTM
are provided in Table 3. In accordance to the results of the LR
test, for each simulated weight matrix, the Rasch model had a
lower AIC/BIC compared to the LLTM suggesting a worse fit for
the LLTM compared to the Rasch model. Note that two out of the
1,000 randomized generated weight matrices (with 60% 1′s) for
the listening weight matrix did not lead to a convergent solution.
For the reading test weight matrices, 18 out of the 1,000 simulated
weight matrices with 30% 1′s did not converge. The results are
based only on those matrices with convergent solutions.

Scenario 2
For Scenario 2, the rows of the empirical weight matricesQL and
QR were misplaced. The results are presented for the different
amounts of perturbations imposed. Three conditions of small,
medium, and large perturbations, depending on the number
of rows misplaced, were simulated. Small perturbation means
that the new weight matrix is very similar to the original one
whereas a high level of perturbation means that the weight

matrix is much more similar to a completely randomized weight
matrix similar to Scenario 1. For the listening test with 23 rows,
displacement of 2 to 7 rows were considered as “small,” 8 to
15 as “medium” and 16 to 23 as “large.” For the reading test
with 17 rows, displacement of 2 to 6 rows were considered as
“small,” 7 to 12 as “medium,” and 13 to 17 as “large.” The item
parameter correlations of Scenario 2 are shown in Table 4. The
correlation of item parameters gets lower with a higher number of
misplaced rows. Compared to the results of Scenario 1, the range
of the correlations is smaller. As in Scenario 1, the LR tests were
significant and indicated that the RM fits better than the LLTM.
The information criteria again confirm the results of the LR test
(see Table 5).

Scenario 3
For the LLTM-fitting data sets generated on the basis of the
empirical weight matrices, the results of the item parameter
correlations are displayed in Table 6.

Table 6 indicates that when the LLTM perfectly fits we
expect the correlation between RM item parameters and LLTM-
reconstructed parameters to be greater than r = 0.95. This
scenario of simulations sets an upper bound for the expected
correlation. Note that such a high magnitude of correlation is
rarely obtained in practice as empirical data never perfectly fit
mathematical models. For the listening data 4.7% of the LR tests
and for the reading data 4.5% of the LR tests were significant,

TABLE 3 | Descriptive statistics of the information criteria AIC and BIC for the LLTM analysis based on the simulated weight matrices.

AIC BIC

Min Mean Max Percent Min Mean Max Percent

Listening 30 5,456 6,399 6,829 0 5,478 6,421 6,852 0

Listening 40 5,432 6,400 6,836 0 5,454 6,423 6,859 0

Listening 50 5,418 6,383 6,827 0 5,441 6,406 6,850 0

Listening 60 5,628 6,400 6,866 0 5,651 6,422 6,888 0

Listening 70 5,557 6,397 6,849 0 5,580 6,419 6,871 0

Reading 30 5,673 5,976 6,169 0 5,693 5,996 6,189 0

Reading 40 5,674 5,979 6,162 0 5,694 5,999 6,182 0

Reading 50 5,686 5,986 6,161 0 5,706 6,006 6,181 0

Reading 60 5,668 6,002 6,182 0 5,668 6,002 6,182 0

Reading 70 5,679 5,982 6,170 0 5,699 6,002 6,190 0

Percent is the percentage of AIC/BIC values of the LLTM that are smaller than the AIC/BIC value of the Rasch model of the empirical data set.

TABLE 4 | Descriptive statistics for the correlations obtained from the perturbed weight matrices.

n Min Percentile 5% 1st Quartile Median Mean 3rd Quartile Percentile 95% Max

Listening small 91 0.6610 0.7572 0.7780 0.8337 0.8177 0.8487 0.8626 0.8734

Listening medium 336 0.3414 0.3814 0.4906 0.5649 0.5790 0.6746 0.7604 0.8138

Listening large 573 0.3414 0.3630 0.4229 0.4942 0.4805 0.5276 0.5744 0.6359

Reading small 137 0.5239 0.5360 0.5853 0.6570 0.6529 0.7111 0.7681 0.7966

Reading medium 419 0.2956 0.4547 0.5327 0.5837 0.5880 0.6382 0.7398 0.8195

Reading large 444 0.1634 0.3117 0.3800 0.4493 0.4470 0.5171 0.5926 0.6480

n is the number of matrices in each category, small, medium, and large.
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TABLE 5 | Descriptive statistics for AIC and BIC for the LLTM analysis based on the simulated weight matrices.

AIC BIC

Min Mean Max Percent Min Mean Max Percent

Listening small 5,461 5,722 6,172 0 5,483 5,744 6,195 0

Listening medium 5,772 6,328 6,659 0 5,795 6,350 6,681 0

Listening large 6,146 6,407 6,650 0 6,168 6,429 6,672 0

Reading small 5,779 5,907 6,009 0 5,799 5,927 6,029 0

Reading medium 5,753 5,959 6,120 0 5,773 5,979 6,140 0

Reading large 5,921 6,049 6,158 0 5,941 6,068 6,178 0

Percent is the percentage of AIC/BIC values of the LLTM that are smaller than the AIC/BIC value of the Rasch model of the empirical data set.

TABLE 6 | Descriptive statistics for the correlations for the simulated LLTM-fitting data sets based on the theoretical weight matrices QLand QR.

Min Percentile 5% 1st Quartile Median Mean 3rd Quartile Percentile 95% Max

Listening 0.9875 0.9917 0.9938 0.9951 0.9949 0.9962 0.9975 0.9984

Reading 0.9472 0.9736 0.9815 0.9860 0.9851 0.9898 0.9939 0.9972

indicating that the RM fits better than LLTM. This finding was
expected—the data were generated using the empirical weight
matrix to have a “perfect fit” (besides the random error) to
LLTM. Thus, the number of significant LR tests reflects the
type-I-risk which was set at 5% and is, therefore, satisfactorily
approximated.

In addition, information criteria AIC and BIC were calculated
for each of the simulated data sets. Because, the comparison of
AICs and BICs for model selection is only possible for identical
data sets, AICs and BICs of the Rasch model and the LLTM
were compared for each data set separately. That means, for
each data set, the Rasch model and the LLTM were estimated
and the AICs and BICs were compared. For the data simulation
that was based on the empirical weight matrix or the Listening
data, the AIC favored the LLTM in 6 of 1,000 data sets, the
BIC always preferred the RM. For the six data sets, where AIC
favored the LLTM, the difference between the AICs was very
small (with a maximum difference of 4.64). For the data sets that
were simulated according to the empirical weight matrices of the
Reading test very similar results were found: the BIC of the LLTM
was never smaller than that of the Rasch model - that is, the BIC
always preferred the Rasch model. According to the AIC, in 22
of 1,000 data sets, the AIC was smaller for the LLTM than for the
Rasch model with a maximum difference of 12.47 between the
two AIC values.

CONCLUSIONS

In this article a method for evaluating the weight matrix in the
linear logistic test model was proposed. The method is based
on parallel analysis suggested by Horn (1965) for deciding on
the number of factors to extract in exploratory factor analysis.
Our method rests on the argument that if the weight matrix is
substantively valid, i.e., the cognitive operations underlying the

test are correctly specified, the correlation coefficient between the
RM item parameters and LLTM-reconstructed item parameters
using the empirical weight matrix should be higher than the
correlations yielded by using random simulated weight matrices.
It is important to note that the procedure outlined here is not
evidence for the fit of the LLTM but evidence for the relative
usefulness of the cognitive model postulated. We showed with
two empirical examples how the method works. An R package
was also presented to perform our proposed method for any
other LLTM analysis. The simulation results can also be used
to set benchmarks for minimum and maximum correlations to
expect between RM item parameters and LLTM reconstructed
item parameters in practice as evidence for the validity of the
substantive theory underlying a test. Simulations showed that
when the weight matrix is generated completely at random a
coefficient of correlation of 0.50 is obtained. Therefore, for a
weight matrix to be meaningful it should produce a correlation
coefficient way above 0.50. The 95% percentile of the distribution
of correlations in scenario 1 for different proportion of 1′s and 0′s
was between 0.70 and 0.78. Therefore, a correlation coefficient of
0.78 can be set as a minimum cut-off value for meaningful weight
matrix.
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