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Working memory (WM) is a key cognitive system that is strongly related to other
cognitive domains and relevant for everyday life. However, the structure of WM is
yet to be determined. A number of WM models have been put forth especially by
factor analytical studies. In broad terms, these models vary by their emphasis on WM
contents (e.g., visuospatial, verbal) vs. WM processes (e.g., maintenance, updating) as
critical, dissociable elements. Here we conducted confirmatory and exploratory factor
analyses on a broad set of WM tasks, half of them numerical-verbal and half of them
visuospatial, representing four commonly used task paradigms: simple span, complex
span, running memory, and n-back. The tasks were selected to allow the detection of
both content-based (visuospatial, numerical-verbal) and process-based (maintenance,
updating) divisions. The data were collected online which allowed the recruitment of a
large and demographically diverse sample of adults (n = 711). Both factor analytical
methods pointed to a clear division according to task content for all paradigms except
n-back, while there was no indication for a process-based division. Besides the content-
based division, confirmatory factor analyses supported a model that also included a
general WM factor. The n-back tasks had the highest loadings on the general factor,
suggesting that this factor reflected high-level cognitive resources such as executive
functioning and fluid intelligence that are engaged with all WM tasks, and possibly even
more so with the n-back. Together with earlier findings that indicate high variability
of process-based WM divisions, we conclude that the most robust division of WM is
along its contents (visuospatial vs. numerical-verbal), rather than along its hypothetical
subprocesses.

Keywords: working memory, latent variable, confirmatory factor analysis, exploratory factor analysis, simple
span, complex span, running memory task, n-back

INTRODUCTION

Working memory (WM) is a capacity-limited short-term memory system that is engaged in the
processing of currently active information (e.g., Conway et al., 2013). The key role of WM in goal-
directed behavior makes it a significant predictor of a number of skills and abilities ranging from
fluid intelligence (Kane et al., 2005) to language learning (Baddeley et al., 1998), mathematical
skills (Raghubar et al., 2010), and academic achievement (Gathercole and Pickering, 2000). Due
to the critical role that WM plays in human behavior, considerable research effort has focused on

Frontiers in Psychology | www.frontiersin.org 1 June 2017 | Volume 8 | Article 1062

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
https://doi.org/10.3389/fpsyg.2017.01062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2017.01062
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2017.01062&domain=pdf&date_stamp=2017-06-28
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01062/abstract
http://loop.frontiersin.org/people/427127/overview
http://loop.frontiersin.org/people/28875/overview
http://loop.frontiersin.org/people/434259/overview
http://loop.frontiersin.org/people/434408/overview
http://loop.frontiersin.org/people/117160/overview
http://loop.frontiersin.org/people/7691/overview
http://loop.frontiersin.org/people/8883/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01062 June 24, 2017 Time: 15:5 # 2

Waris et al. Factor Structure of Working Memory Measures

describing its structure, that is, its cognitive building blocks and
their interrelationships, in more detail. This has led to a plethora
of models that share many features but also display important
differences.

In broad terms, models of WM can be differentiated by their
emphasis on content material (e.g., verbal and visuospatial) vs.
constituent processes (e.g., updating and maintenance). With
respect to content, previous behavioral, neuropsychological and
neuroimaging research has consistently indicated that WM can
be separated into verbal and visuospatial stores which mainly
subserve maintenance functions (e.g., Smith and Jonides, 1999;
Baddeley, 2002; Kane et al., 2004). However, consensus is lacking
whether executive WM (e.g., attentional control, interference
management, updating) is content-general or content-specific.
Previous behavioral studies have produced mixed results: some
studies support a more content-general view (Kane et al.,
2004; Alloway et al., 2006), while others support content-
specificity not only in maintenance but also in executive WM
(e.g., Shah and Miyake, 1996; McKintosh and Bennett, 2003;
Vuong and Martin, 2013). The content-general viewpoint has
received some support from functional neuroimaging research
(Chein et al., 2011), but a more recent comprehensive meta-
analysis of neuroimaging data supports a model where executive
WM is divided into dorsal “where” (visuospatial) and ventral
“what” (verbal and object-based information) systems, thus
indicating content-specificity (Nee et al., 2013). With respect
to the processes that constitute WM, their number and quality
have been discussed extensively. Suggested processes include, for
example, combined storage, transformation, and coordination
separate from supervision/mental speed (Oberauer et al., 2000);
capacity, attention control, and secondary memory (Unsworth
et al., 2014); inhibition, updating, and shifting (Miyake et al.,
2000); and selection and updating (Bledowski et al., 2009). While
many of the proposed process classifications listed above show
overlap (e.g., attention control is closely related to inhibition),
it is evident that a consensus is still lacking concerning the
fundamental processes of WM.

Many of the studies listed above have employed factor analysis
to investigate the functional structure of WM. The studies can
be divided according to their respective analysis method into
data-driven exploratory factor analyses (EFA) and hypothesis-
driven confirmatory factor analyses (CFA), including structural
equation modeling. In CFA, the fit of specific researcher-selected
models is tested with the data. Given the existence of a number
of theoretical models on WM, many relevant factor analytic
studies have employed CFA to compare the explanatory value of
several model architectures against their data. However, also EFA
has been employed. The outcomes of previous factor analytical
studies to determine the structure of WM have been mixed as
to whether WM should primarily be divided according to the
content material, the hypothetical processes, or both, or whether
a single general latent WM factor accounts for much of the
variance in WM behavior (e.g., Oberauer et al., 2000; Handley
et al., 2002; Colom et al., 2006b; McCabe et al., 2010; Wilhelm
et al., 2013; Dang et al., 2014). All in all, there is considerable
variability in the outcomes of the previous factor analytical work
on the structure of WM, and they fail to converge on whether

WM should be described by content, by process, by a mixture of
these factors, or as a single non-divisible system. There are several
possible reasons for these discrepancies. For example, some
researchers have limited their CFAs to certain model alternatives
that did not cover all viable model options. Another key feature,
which affects the results of any factor analysis, is the selection
of tasks that are included in the analysis, and the test batteries
in previous studies have varied considerably. Finally, somewhat
limited sample sizes may also have affected some of the earlier
factor solutions.

In the present study, we employed a latent factor approach
using both CFA and EFA to investigate the structure of WM. EFA
was included in order to control for possible confirmatory biases
(i.e., not testing all viable models) because it allows for a model-
free examination of candidate factors. In contrast to some earlier
studies, we included an extensive WM test battery and a large
and diverse adult sample. The present tasks represented typical
hypothetical WM processes: simple span tasks have been argued
to primarily tap WM maintenance (Kane et al., 2004), complex
span tasks have been considered to reflect both maintenance
and manipulation (Conway et al., 2005), and running memory
tasks as well as n-back tasks are thought to measure higher-
order WM processes, including updating and attention control
(Morrison and Jones, 1990; Owen et al., 2005). With our
CFAs, we sought to establish the functional separation between
maintenance and updating division. With regard to content,
each task paradigm was represented by two tasks variants: one
consisting of numerical-verbal stimuli and one of visuospatial
material. Thus, our test battery was designed to enable analyses
of both content-based and a process-based latent structure.

MATERIALS AND METHODS

Ethics Statement
The study was approved by the Joint Ethics Committee at
the Departments of Psychology and Logopedics, Åbo Akademi
University, and by the Human Research Review Board at
the University of California, Riverside. Informed consent was
obtained from all participants, participation was anonymous, and
all participants were informed of their right to stop at any time.

Participants
Participants were recruited through the online crowdsourcing
forum Amazon Mechanical Turk (MTurk). MTurk has been
shown to provide data with comparable quality to those obtained
via traditional college student samples, while affording a more
diverse and representative population (Berinsky et al., 2012;
Casler et al., 2013; Goodman et al., 2013; Paolacci and Chandler,
2014). While we are not aware of similar research on WM that
would have used MTurk workers, we aimed at recruiting active
but not test-savvy participants by restricting our data collection
to those who had completed more than 100, but less than
1000 work assignments (so-called HITs) (for possible effects of
repeated testing, see Chandler et al., 2014). To minimize possible
language-related issues, workers were restricted to the United
States as identified by MTurk’s requirement of a United States
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bank location. To promote consistent and adequate data quality, a
further restriction was that the participants were required to have
a 95% work approval rating or higher (Peer et al., 2014).

Participants were paid $10 for the estimated 1.5–2 h
participation in order to increase the recruitment rate of
motivated participants and to provide compensation comparable
to in-lab sessions. This rate of pay ($5–6.67 per hour) is well above
the $1.38 median hourly wage that workers are willing to accept
on MTurk (Horton and Chilton, 2010). At the end of the study,
participants received a unique code to enter into the MTurk HIT
to verify their participation. To ensure that each participant was
a unique worker, a free online HTML scripting tool1 was used to
track each participant HIT attempt and deny multiple attempts.

Altogether, 711 participants completed the entire study. 55
participants were excluded for having either missing values on
the tasks (n = 4), for reporting the use of external aids such as
note-taking during any of the WM tasks (n = 38), for spending
over 1 day to complete the study (n = 1), and/or for being a
multivariate outlier on task performance (n = 12) according to
Mahalanobis distance [χ2 cutoff= 32.909, df = 12; note that the
complex span task distractor tasks (see below) were included in
this analysis]. Thus, the final sample consisted of 656 participants
(see Table 1 for demographic information)2.

Procedure
The study consisted of a background questionnaire and 10 WM
tests. The entire study was administered online using an in-
house developed web-based test platform that allows researchers
to create, distribute, and manage psychological experiments.
The platform employs a domain-specific programming language
tailored to building psychological tasks, and it includes functions
for handling the data, randomization, time measurement, and
participant response. The experiment was conducted online by
sending a link to the participants who completed the experiment
on a computer of their choosing. All participants first completed
the background questionnaire after which they completed the

1http://uniqueturker.myleott.com/
2A more restricted sample consisting of 360 participants that remained after an
extensive exclusion due to several background factors (e.g., medical diagnoses and
depression scores), univariate outlier analyses using Leys’ method (Leys et al.,
2013), and the current exclusion criteria, yielded very similar EFA results, and
therefore, only the larger sample was used here.

TABLE 1 | Demographic information of the study sample, n = 656.

Age in years M = 33.50 (SD = 10.30), range = 18–71

Gender 58.8% female, 40.5% male, 0.6% other

Years of education M = 15.69 (SD = 3.12), range = 0–30

Occupation statusa 66.9% employed, 28.0% unemployed, 20.0%
studying, 2.3% retired

QIDS total score M = 6.61 (SD = 4.87), range = 0–26

QIDS score classification 48.9% none, 28.0% mild, 14.5% moderate,
5.0% severe, 1.1% very severe, 2.4% missing

Time spent on study
(minutes)

M = 93.82 (SD = 33.52), range = 52–347

aParticipants could select multiple options regarding occupation status. QIDS,
Quick Inventory of Depressive Symptomatology (Rush et al., 2003).

ten WM tests (average completion time: 1 h 34 min). The order
of the WM tests was randomized for each participant in order
to control for possible test order effects. The only exception
to this rule was that the forward simple span task was always
administered immediately before the backward simple span task.
The participants were reminded several times not to use any
external tools, such as note taking, during any of the tests,
and they were queried about this at the end of the study (it
was emphasized that their response would not have negative
repercussions of any kind).

Working Memory Tests
The WM test battery included ten WM tests that encompassed
four different task paradigms, namely, simple span, complex
span, running memory, and n-back tasks. All task paradigms
were administered in two variants: one numerical-verbal variant
involving the digits 1–9 and one visuospatial variant involving
visuospatial locations within a 3 × 3 grid. Scores were calculated
separately for the different tests and test variants. The numerical-
verbal and visuospatial task variants were specifically designed
to closely mirror each other in order to minimize the variance
caused by stimulus-specific factors. The response screen was
virtually identical in the respective verbal and visuospatial simple
span, complex span, and running memory tasks, and consisted of
the numbers 1–9 presented in a row of horizontally aligned boxes
in the numerical-verbal tasks, and an empty 3 × 3 grid in their
visuospatial equivalents (see Figure 1).

Simple Span Tasks
Simple span tasks are assumed to predominantly tap WM storage
(Conway et al., 2005). In simple span tasks, lists of stimulus items
with varying length are to be reproduced while maintaining the
order of presentation. Both forward versions (repeating the list
in the same order) and backward versions (repeating the list in
the reverse order) have been used extensively in the literature,
and they are part of common standardized neuropsychological
and IQ tests (Wechsler, 1997a,b). Within the verbal domain, the
backward version is generally more difficult than its forward
counterpart, while the pattern is somewhat less clear when it
comes to visuospatial material (Vandierendonck et al., 2004;
Kessels et al., 2008; Monaco et al., 2013).

For the simple span tasks used here, stimulus lists (digits or
spatial locations) of unpredictable length were presented. At the
end of each list, participants were required to report the items in
the exact order in which they had been presented in the forward
version of the task, while the items were to be reported in the
reverse order in the backward version of the task. Each test
included two initial practice trials that consisted of one three-
item list and one four-item list. In case of error, the practice
trials were repeated until the participant answered correctly or
until the practice was presented three times. This practice was
followed by an additional practice trial consisting of a list with
nine items (longest list length) to demonstrate the range. None of
the practice trials were included in the dependent measures. The
actual tests included seven trials involving list lengths ranging
from three to nine.
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FIGURE 1 | Response screens in the simple span tasks, complex span tasks, and running memory tasks. Numerical-verbal response screen on the left, visuospatial
on the right. The “Ok” box was not present in the running memory tasks.

All participants received the same set of lists; however, the
lists were presented in a random order. The to-be-remembered
item lists were pseudo-randomly generated in order to fulfill
the following criteria: duplicate items (digits/locations) were not
allowed to appear within the same list, directly ascending or
descending items were not allowed to appear consecutively in
the numerical-verbal version, while directly adjacent item triplets
where not allowed to appear consecutively in the visuospatial
version (e.g., the lower left matrix location followed by the lower
middle matrix location followed by the central matrix location),
ascending or descending odd or even item pairs were not allowed
to appear consecutively in the numerical-verbal version, and only
up to two identical items in the same serial position were allowed
to appear in separate lists. Each item was presented for 1000 ms.
In the verbal test, an asterisk was presented for 500 ms between
every digit, while an empty matrix was presented for 500 ms
between every item in the visuospatial test. At the end of each list,
the response screen was displayed (see Figure 1). The participant
selected the items by clicking on the digits or spatial locations
displayed on the screen. No time limit was set to recalling the to-
be-remembered items at the end of each list. The next list was
presented once the participant clicked on an “Ok” box on the
screen.

The total number of correctly recalled items, irrespective of
list length and separately for the forward and backward tasks, was
used as the dependent measure.

Complex Span Tasks
Complex span tasks were originally introduced to better capture
WM capacity than the simple span tasks (Daneman and
Carpenter, 1980) due to the demands they set on both storage
and processing. In the complex span, the to-be-remembered span
items are interleaved with processing requirements (e.g., mental
arithmetic) that are not present in simple span tasks. Nowadays,
complex span tasks have become one of the most commonly used
measures of WM capacity in the research literature (Oberauer
et al., 2012), especially since it has been argued that complex
span tasks are better at predicting individual differences in
higher cognitive functions than simple span (Engle et al., 1999).
However, more recent studies have indicated that complex and
simple span represent the same construct (Oberauer et al., 2000;

Colom et al., 2006b), and that both predict Gf equally well,
especially when certain issues in, for example, administration
(implementing no discontinue rule) and scoring (including
variability from all lists) are taken into account (Colom et al.,
2006a; Unsworth and Engle, 2007). Nevertheless, given that both
task types are actively used in the current literature, both simple
and complex span tasks were included in the present study.

For the complex span tasks, stimulus lists of unpredictable
length were presented. As in the forward simple span, the
participant was required to recall the items in the same order
as they were presented. However, after each to-be-remembered
item, the participant had to make a true/false judgment about
a distractor item (for examples, see Figure 2). At the end
of each list, the participant was required to report the to-be-
remembered stimuli in the exact order in which they had been
presented. In the numerical-verbal version, the distractor items
consisted of simple arithmetic problems involving additions and
subtractions. Each arithmetic item required the performance
of two operations on a single-digit number that was between
two and nine. The suggested responses varied between one
and eleven. Incorrect suggestions were numbers within 1–3 in
numerical value of the true answer. In the visuospatial version,
the distractor items required participants to mentally combine
two 3 × 3 matrix patterns in order to decide whether their
combination corresponded to a suggested third pattern. Each to-
be-combined matrix pattern included 1–4 filled matrix locations,
and the final actual combination included 3–6 filled locations.
Incorrect suggestions deviated from correct answers in total
squares by at most one, but the deviation could also be due to
only the spatial placement of filled locations (in which case one
square was incorrectly placed). A blue timer bar displayed the
remaining time to solve each distractor item (see Figure 2). The
task continued automatically to the next to-be-remembered item
once a true or false button was clicked or once a maximum of 6 s
had elapsed on a distractor item. The to-be-remembered items
and distractor items were always from the same stimulus category
(i.e., digits or matrices) in order to maximize the likelihood of
participants employing only content-specific processing during
each respective complex span task. Each test included two initial
practice trials that consisted of one list with three items and one
list with four items. The practice trials were repeated until the
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FIGURE 2 | Examples of distractor items in the complex span tasks. Numerical-verbal example item on the left, visuospatial on the right. A timer bar above each
item depicts the remaining response time.

participant gave the correct answers or until the practice trials
were presented three times. The practice trials were followed by
an additional practice trial with a list length of seven (longest list
length) to familiarize participants with the range of list lengths.
None of the practice trials were included in the dependent
measures. The actual tests included five trials that consisted of
list lengths ranging from three to seven.

All participants received the same set of lists; however, the lists
were presented in a random order. The to-be-remembered item
lists were pseudo-randomly generated in an identical fashion as
for the simple span tasks. The task progressed as follows: fixation
point (500 ms), to-be-remembered item (1000 ms), fixation point
(500 ms), distractor item (up to 6000 ms), and this sequence was
looped until the end of a list. At the end of each list, the response
screen was displayed (see Figure 1). Participants selected items
by clicking on the corresponding digits or spatial locations. No
time limit was set to recalling the to-be-remembered items at the
end of each list. The next list was presented once the participant
clicked on an “Ok” box on the screen.

The total number of correctly recalled items, irrespective of list
length, was used as the dependent measure.

Running Memory Tasks
The running memory task was first introduced by Pollack et al.
(1959). In the running memory task, a list of items is presented,
and the participant is required to recall the n last items in
correct order once the list ends. As the list length is unknown
to the participant, the last n items should be constantly updated,
making the running memory task a prototypical measure of
WM updating. Nonetheless, there is some controversy around
whether or not running memory performance actually requires
active updating (see e.g., Elosúa and Ruiz, 2008; Broadway and
Engle, 2010; Botto et al., 2014). However, regardless of whether
participants perform the running memory task by using an active
or passive strategy, Broadway and Engle (2010) observed that
running memory correlated well with both complex span tasks
and Gf.

For the running memory tasks used here, stimulus lists of
unpredictable length were shown. At the end of each list, the

participant was required to report the last four items in the exact
order in which they had been presented. Each test included two
practice trials that consisted of one five-item list and one six-
item list. The actual test started once the participant answered
correctly on both of the practice trials or once a total of three
attempts at the practice trials had been made. The actual test
included eight lists that consisted of 4–11 items (one trial per list
length).

All participants received the same set of lists; however, the lists
were presented in a random order. The item lists were pseudo-
randomly generated to fulfill the following criteria: the same item
(digit/location) was only allowed to appear twice in a given list,
the same item was not allowed to appear consecutively, directly
ascending or descending items were not allowed to appear
consecutively in the numerical-verbal version, while directly
adjacent item triplets where not allowed to appear consecutively
in the visuospatial version, and only up to two identical items in
the same locations were allowed to appear within the target items
in separate lists. Each item was presented for 1000 ms. In the
verbal test, an asterisk was presented for 500 ms between every
item, while the matrix was empty for 500 ms in the visuospatial
test. At the end of each list, the response screen was displayed (see
Figure 1). However, here the “Ok” box was not present as the
program required a full four-item response in order to proceed
to the next list. In the spatial test, the text “Please respond” was
inserted on the screen in order to clearly indicate that a response
was required. The participant selected items by clicking on the
digits or spatial locations presented on the screen. Participants
had no time limit while recalling the to-be-remembered items at
the end of each list.

The number of correctly recalled items was used as the
dependent measure; however, the list with only four items was
excluded as it does not require any updating.

N-Back Tasks
In this task, participants are required to indicate whether the
currently presented item matches an item that was presented
n steps back. Thus, WM updating is assumed to be critical
for successful performance on this task. The n-back task has
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been especially popular in neuroimaging research, but the task
has been noted to correlate only weakly with other WM tasks,
especially complex span tasks, raising questions as to what the
n-back measures (e.g., Kane et al., 2007; Miller et al., 2009; Jaeggi
et al., 2010a; Redick and Lindsey, 2013). Latent variable studies
have, however, indicated that the n-back is more closely related
to the complex span than previously suggested (see Schmiedek
et al., 2014, and also Schmiedek et al., 2009; Wilhelm et al., 2013).

The n-back tests used here consisted of a 1- and 2-back
task. In the 1-back task, the participant was to respond whether
the currently visible item was the same (target), or not (no-
target), as the previous item by pressing the N (target) and M
(no-target) keys on the computer keyboard. In the 2-back task,
the participant was required to indicate whether the currently
presented item was the same as the item that was presented two
steps back. The order of the actual tasks (1-back or 2-back) was
randomized for every participant. Both tasks were preceded by a
corresponding practice block that consisted of twelve items [four
targets, four no-targets, and four lures (see below)]. Each practice
block was administered up to three times, or until two out of four
target items and half of the total items were answered correctly.

All participants received the same set of items. The item lists
for the actual tests were pseudorandomly generated in order to
include 16 target items, 16 no-target items, and 16 so-called lure
items (i.e., 48 responses per task). Lure items in the 1-back task
were n+1 items, that is, items that matched the item that was
presented two steps back (e.g., in the list 4-8-3-8, the last 8 is
an n+1 lure). In the 2-back task, lure items consisted of n+1
(n = 4), n−1 (n = 4), and n+ and −1 (n = 8, e.g., in the list
4-2-4-4, the last 4 is an n+ and −1 lure) items. Of the target
items, three items also matched the item presented three steps
back, three items also matched the item presented one step back,
and ten items only matched the target item (when considering
the most recently presented items). Each item was presented for
1500 ms. In the verbal test, an asterisk was presented for 450 ms
between every digit, while the matrix was empty for 450 ms
between every item in the visuospatial test. The participant had
1950 ms (item presentation+ fixation) to respond to each item.

The proportion of hits (correct targets) minus the proportion
of false alarms (“same” responses on no-target items) on the 2-
back task was used as the dependent measure. We did not use
the 1-back tasks as outcome measures due to accuracy rates being
close to ceiling which distorted distributions (numerical-verbal
M = 90.00%, skewness = −3.03, kurtosis = 9.86; visuospatial
M = 87.21%, skewness=−2.32, kurtosis= 5.64).

Statistical Analyses
Factor analysis was used to investigate the latent structure of
the data. Prior to performing the factor analyses, the dependent
variables were Box-Cox transformed in order to improve
normality by decreasing the skewness of the distributions
(Osborne, 2010, see Table 2). The CFAs were performed with
MPlus version 7.4. The CFA models were estimated using
maximum likelihood with the Satorra-Bentler rescaled chi-square
statistic (Satorra and Bentler, 1994) due to multivariate non-
normality (Korkmaz et al., 2014). The models were parameterized
by fixing factor means to 0 and variances to 1.

Several fit indices were used to assess model fit. The χ2-
statistic shows the magnitude of discrepancy between the model-
implied and the observed data matrix where a non-significant
result (p > 0.05) indicates a well-fitting model. However, the
power of the χ2-statistic is directly related to sample size,
and thus a trivial discrepancy may lead to the rejection of
a model in large samples. Therefore, we also report and
interpret additional fit indices. The Root Mean Square Error of
Approximation (RMSEA) is an absolute measure of fit following
a non-central χ2-distribution, which allows for discrepancies
between estimated and observed covariances as a function of
degrees of freedom. RMSEA favors parsimonious models (more
degrees of freedom) and large sample sizes (Kline, 2011). The
Comparative Fit Index (CFI) builds on the relative difference
between the non-centrality parameters (i.e., the χ2 statistic minus
degrees of freedom) of the estimated model and a baseline
independence model (Bentler, 1990). The Standardized Root
Mean Square Residual (SRMR) is a measure of the mean absolute
correlation residual, that is, the overall difference between
estimated and observed standardized covariances (Kline, 2011).
Cut-off levels for approximate fit indexes considered to indicate
an acceptable model fit were RMSEA < 0.08, CFI ≥ 0.90, and
SRMR=< 0.05 (Hooper et al., 2008). Akaike (AIC) and Bayesian
(BIC) information criteria allows for comparisons of non-nested
models, where the model with the lowest value is preferred. Both
criteria are based on minus two times the loglikelihood value,
and favor parsimony by adding a penalty term of the number
of estimated parameters multiplied by 2 (AIC) or by the natural
logarithm of N (BIC).

An EFA was also used to investigate the latent factor structure
of the data from a data-driven perspective. The EFAs were
conducted with IBM SPSS version 21.0.0.0 using principal axis
factoring with oblique Promax rotation (Osborne and Costello,
2009).

RESULTS

Descriptive statistics for the WM tasks are summarized in
Table 2, and task intercorrelations are presented in Table 3. It
is important to note that the task reliabilities range between
acceptable and very high values, despite the fact that the tasks
were fairly short and that participants completed the tasks at
home without experimenter explanation or supervision. The
reliabilities are also comparable to those of previous laboratory-
based studies (e.g., Engle et al., 1999).

Confirmatory Factor Analyses
On the basis of previous empirical and theoretical work, we tested
10 different models that are graphically depicted in Figure 3.
We focused on two divisions, one content-based and one
process-based, both of which are prominent in previous research:
visuospatial vs. numerical-verbal, as well as maintenance vs.
updating. Nevertheless, Model 1 consisted of a single general
WM factor that encompassed all the WM tests, following the
alternative view of WM as a unitary capacity. Model 2 included
two latent process factors: maintenance (all simple and complex
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TABLE 2 | Descriptive statistics and reliability estimates for each of the WM accuracy rate measures.

Variable M (SD) Skewness BT Kurtosis BT Skewness AT Kurtosis AT α

Numerical-verbal

SSTF 73.19 (17.06) −0.79 1.23 0.01 −0.56 0.66

SSTB 62.93 (18.66) −0.18 −0.17 0.00 −0.42 0.71

CST 70.96 (29.01) −0.99 −0.10 0.00 −1.43 0.83

RMT 70.49 (21.32) −0.94 0.79 −0.01 −0.78 0.72

2-back 57.68 (26.37) −0.82 0.43 −0.00 −0.82 0.98

Visuospatial

SSTF 62.06 (18.37) −0.36 0.20 0.05 −0.27 0.71

SSTB 64.66 (20.13) −0.91 0.82 −0.02 −0.46 0.79

CST 42.15 (30.34) 0.37 −0.96 0.03 −1.02 0.85

RMT 54.15 (24.35) −0.33 −0.67 0.02 −0.77 0.77

2-back 53.04 (30.23) −0.66 −0.04 0.01 −0.94 0.98

SSTF, simple span task forward; SSTB, simple span task backward; CST, complex span task; RMT, running memory task; BT, before Box-Cox transformation; AT, after
Box-Cox transformation; α, Cronbach’s alpha. Test scores are provided in percent correct, except for the 2-back tasks, where we employed the corrected recognition
score, i.e., percent hits minus percent false alarms. n = 656.

TABLE 3 | Test intercorrelations (Pearson two-tailed).

Numerical-verbal Visuospatial

SSTF SSTB CST RMT 2-back SSTF SSTB CST RMT 2-back

Numerical-verbal SSTF –

SSTB 0.55 –

CST 0.41 0.44 –

RMT 0.35 0.45 0.31 –

2-back 0.21 0.29 0.31 0.26 –

Visuospatial SSTF 0.32 0.32 0.28 0.28 0.37 –

SSTB 0.27 0.36 0.35 0.29 0.44 0.56 –

CST 0.30 0.39 0.34 0.31 0.37 0.46 0.40 –

RMT 0.22 0.33 0.30 0.33 0.39 0.42 0.44 0.43 –

2-back 0.23 0.29 0.36 0.27 0.57 0.33 0.39 0.39 0.40 –

SSTF, simple span task forward; SSTB, simple span task backward; CST, complex span task; RMT, running memory task. The correlations were calculated using the
Box-Cox transformed test data. n = 656 in all correlations. All correlations are significant at p < 0.01.

span tasks) vs. updating (all running memory and 2-back tasks).
Model 3 was identical to Model 2, except that the two process
factors were correlated to represent facilitation between the two
processes (e.g., effective updating of new items should support
the maintenance and rehearsal of the items in question). Model
4 involved a process distinction where only the n-back tasks
represent updating (for the discussion concerning the role of
active updating in running memory tasks, see e.g., Broadway
and Engle, 2010), while all other tasks represent maintenance.
Model 5 included two content factors: one visuospatial and one
numerical-verbal. Model 6 was identical to Model 5, except
that the latent visuospatial and numerical-verbal factors were
correlated to represent facilitation across content domains, for
example, through verbalization of visuospatial items. Model 7
represented a facet model that included the abovementioned
content factors and one general factor that loaded on all
tasks. Again, Model 8 was identical to Model 7, except that
the visuospatial and numerical-verbal factors were correlated.
Model 9 also represented a facet model that included the

abovementioned content factors as well as the two process factors
(for this specific model, the number of iterations was increased
from 1000 to 5000 in order to achieve convergence). Model 10
was identical to Model 9, except that the two content factors
were correlated and the process factors were correlated (for
detailed model scripts and outputs, see Supplementary Material).
We originally planned to also test a model that included
uncorrelated content factors (visuospatial and numerical-verbal)
with a hierarchically superordinate factor reflecting a central
executive (and also a nearly identical model where the content
factors were correlated), but this model could not be identified
(i.e., did not converge) with the present data set due to the limited
number of indicators of the hierarchically superordinate general
WM factor.

Out of the 10 models, Models 8 and 10 provided the
best fit to the data (Table 4). When comparing model 10
to model 8 by constraining the correlation between the
maintenance and updating factors to 1, model 8 did not fit the
data significantly worse [Satorra-Bentler scaled χ2(1) = 0.05,
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FIGURE 3 | Models tested with confirmatory factor analysis. 1 = Visuospatial simple span forward, 2 = Visuospatial simple span backward, 3 = Visuospatial complex
span task, 4 = Visuospatial running memory task, 5 = Visuospatial 2-back, 6 = Numerical-verbal 2-back, 7 = Numerical-verbal running memory task,
8 = Numerical-verbal complex span task, 9 = Numerical-verbal simple span backward, 10 = Numerical-verbal simple span forward.

p = 0.82]. Additionally, Model 8 had the lowest AIC and
BIC values. Therefore, Model 8 was interpreted to be a more
parsimonious indicator of the latent structure (see Figure 4). It
is noteworthy that in this model, the 2-back tasks did not load
significantly on their respective content factors.

Exploratory Factor Analyses
To complement the CFAs with a data-driven approach, we
explored the factor structure of the complete dataset (including
all 10 WM measures) using EFA. The Kaiser-Meyer-Olkin
measure of sampling adequacy was 0.87, Bartlett’s test of
sphericity was significant, χ2(45, N = 656)= 2027.39, p < 0.001,
and the diagonal values of the anti-image correlation matrix were
all above 0.8, suggesting that the data were adequate for factor
analysis. A Scree test (see e.g., Zwick and Velicer, 1986) indicated
the extraction of two or three factors. We report both solutions
due to their perceived relevance, even though the two-factor

solution was supported by parallel analysis (Horn, 1965; Hayton
et al., 2004) and the Kaiser criterion (i.e., Eigenvalues > 1). The
resulting factor loadings in the two- and three-factor pattern
matrices are presented in Table 5, along with the correlations
between the resulting factors. The two-factor model accounted
for 54.25% of the variance while the three-factor model accounted
for an additional 8.38%. In the two-factor model, the first factor
was interpreted to jointly reflect visuospatial WM and n-back,
while the second factor encompassed numerical-verbal WM. The
three-factor model was similar to the two-factor model, but here
the n-back tasks represented their own factor.

DISCUSSION

We set out to explore the latent structure of WM by administering
an extensive test battery to a large sample of adult participants.
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FIGURE 4 | Best fitting structural equation model (Model 8). 1 = Visuospatial simple span forward, 2 = Visuospatial simple span backward, 3 = Visuospatial complex
span task, 4 = Visuospatial running memory task, 5 = Visuospatial 2-back, 6 = Numerical-verbal 2-back, 7 = Numerical-verbal running memory task,
8 = Numerical-verbal complex span task, 9 = Numerical-verbal simple span backward, 10 = Numerical-verbal simple span forward.

Our focus was on two fundamental distinctions of WM, namely
whether the structure of WM is driven by content-specific and/or
process-based factors. The analyses provided several interesting
results. Our most robust finding, observed in both the best fitting
CFA model and the EFAs, is that the content-based division
(spatial, numerical-verbal) is a pervasive aspect of the WM
system. Starting from the multicomponent model by Baddeley
and Hitch (1974), our data are in line with a number of studies
and theoretical accounts that divide WM according to this
particular content division. However, the associations between
our tasks and the two content factors were not uniform as the
n-back tasks did not load on their respective content factors in
either our best fitting CFA or in the three-factor EFA solution.
One reason for this discrepancy might be related to the retrieval
demands in the various tasks: the simple span, running memory,
and complex span tasks all require free recall at the end of
each list, whereas the n-back task requires speeded recognition
(Kane et al., 2007). Of future interest would be to investigate the
association between the n-back task and other speeded and/or
recognition-based WM tasks (see e.g., Parmenter et al., 2006),

especially considering that the n-back has been criticized for a
lack of convergent validity with the complex span (Redick and
Lindsey, 2013; however, see Schmiedek et al., 2009, 2014).

Although the n-back tasks did not load on the content factors
in the CFA, they did load on the general WM factor. This,
together with the EFA factor intercorrelations, indicates that the
n-back shares a significant amount of variance with the other
WM tasks. We can, however, only speculate what this general
factor represents. First, it may represent a general aspect of the
WM system such as the central executive (Baddeley and Hitch,
1974) or the focus of attention (Cowan, 1999). The fact that
the n-back tasks load highly with this factor might be related to
the nature of the n-back tasks which, in contrast to the other
WM paradigms employed here, require continuous monitoring
and decision-making. Second, the general WM factor could
encompass fluid intelligence that is related to WM (Conway
et al., 2002; Jaeggi et al., 2010b; Shelton et al., 2010). According
to this hypothesis, the highest loadings of the n-back tasks on
this factor might be related to their higher inherent novelty, as
participants probably had less experience with this type of task

Frontiers in Psychology | www.frontiersin.org 9 June 2017 | Volume 8 | Article 1062

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01062 June 24, 2017 Time: 15:5 # 10

Waris et al. Factor Structure of Working Memory Measures

TA
B

LE
4

|M
od

el
fit

in
de

xe
s

of
th

e
10

te
st

ed
m

od
el

s
w

ith
be

st
fit

tin
g

m
od

el
bo

ld
fa

ce
d.

C
hi

-s
q

ua
re

te
st

o
f

m
o

d
el

fi
t

R
M

S
E

A

M
o

d
el

N
um

b
er

o
f

es
ti

m
at

ed
p

ar
am

et
er

s

Va
lu

e
d

f
p

S
ca

lin
g

co
rr

ec
ti

o
n

fa
ct

o
r

fo
r

M
LR

C
FI

T
LI

S
R

M
R

E
st

.
90

%
C

I
P

r.
R

M
S

E
A

≤
0.

05
1

A
IC

1
B

IC

1
30

33
1.

49
5

35
0.

00
00

1.
05

23
0.

84
0

0.
79

4
0.

06
2

0.
11

4
0.

10
3–

0.
12

5
0.

00
0

27
5.

4
22

6.
1

2
30

64
6.

46
3

35
0.

00
00

1.
04

23
0.

66
9

0.
57

5
0.

21
4

0.
16

3
0.

15
2–

0.
17

4
0.

00
0

60
0.

4
55

1.
1

3
31

30
8.

52
9

34
0.

00
00

1.
04

46
0.

85
2

0.
80

4
0.

06
1

0.
11

1
0.

10
0–

0.
12

2
0.

00
0

25
0.

9
20

6.
1

4
31

25
0.

77
6

34
0.

00
00

1.
05

38
0.

88
3

0.
84

5
0.

05
5

0.
09

9
0.

08
7–

0.
11

0
0.

00
0

19
2.

9
14

8.
1

5
30

55
0.

69
3

35
0.

00
00

1.
04

46
0.

72
1

0.
64

2
0.

21
1

0.
15

0
0.

13
9–

0.
16

1
0.

00
0

50
1.

9
45

2.
6

6
31

27
8.

57
3

34
0.

00
00

1.
02

77
0.

86
8

0.
82

5
0.

06
3

0.
10

5
0.

09
4–

0.
11

6
0.

00
0

21
4.

9
17

0.
1

7
40

69
.5

46
25

0.
00

00
1.

02
29

0.
97

6
0.

95
7

0.
03

0
0.

05
2

0.
03

8–
0.

06
7

0.
38

2
17

.8
13

.3

8
41

50
.9

14
24

0.
00

11
1.

00
88

0.
98

5
0.

97
3

0.
02

2
0.

04
1

0.
02

5–
0.

05
7

0.
80

4
0

0

9
40

40
2.

49
4

25
0.

00
00

0.
97

61
0.

79
6

0.
63

3
0.

17
7

0.
15

2
0.

13
9–

0.
16

5
0.

00
0

33
9.

5
33

5.
0

10
42

50
.9

06
23

0.
00

07
1.

00
79

0.
98

5
0.

97
0

0.
02

2
0.

04
3

0.
02

7–
0.

05
9

0.
74

7
1.

9
6.

4

D
f,

de
gr

ee
s

of
fre

ed
om

;
C

FI
,

C
om

pa
ra

tiv
e

Fi
t

In
de

x;
TL

I,
Tu

ck
er

-L
ew

is
In

de
x;

S
R

M
R

,
S

ta
nd

ar
di

ze
d

R
oo

t
M

ea
n

S
qu

ar
e

R
es

id
ua

l;
R

M
S

EA
,

R
oo

t
M

ea
n

S
qu

ar
e

Er
ro

r
of

A
pp

ro
xi

m
at

io
n;

Es
t.,

es
tim

at
ed

va
lu

e
of

R
M

S
EA

;
A

IC
,a

ka
ik

e
in

fo
rm

at
io

n
cr

ite
rio

n;
B

IC
,B

ay
es

ia
n

in
fo

rm
at

io
n

cr
ite

rio
n,

1
A

IC
an

d
1

B
IC

re
pr

es
en

tt
he

di
ffe

re
nc

e
be

tw
ee

n
th

e
m

od
el

’s
va

lu
es

an
d

th
e

be
st

fit
tin

g
m

od
el

’s
va

lu
es

.

than with active recall tasks. Also, visuospatial tasks in general
tend to have a higher novelty value than verbal ones (perhaps
even affecting their proneness to compensatory strategies such
as chunking), which is reflected by the current loadings on
the general WM factor (Baddeley, 1996; Miyake et al., 2001).
Third, the general WM factor could be a combination of some
unique n-back features coupled with elements of content-general
executive attention and/or fluid intelligence. This interpretation
would conform to the current three-factor EFA model where
the n-back factor has a higher correlation with the visuospatial
than the numerical-verbal factor (r= 0.68 and 0.55, respectively).
Previous research has indicated that even verbal n-back tasks
recruit spatial processes (Meegan et al., 2004) which this
interpretation would seem to support. Furthermore, some n-back
training work has shown that the most consistent transfer effects
are observed in visuospatial domains, regardless of whether the
n-back training consists of spatial and/or verbal material (Colom
et al., 2013; Jaeggi et al., 2014; Au et al., 2015, 2016, but see
Soveri et al., 2017). Also, Redick and Lindsey (2013) noted in their
meta-analysis that the correlation between n-back and complex
span is greater when the complex span is non-verbal and lowest
when both rely on verbal stimuli, which may also indicate spatial
processing in the n-back irrespective of stimulus materials. The
nature of a possible spatial component in verbal n-back is not
clear, but it might be related to the use of spatial strategies
(encoding the stimulus sequence as an unfolding row of items in
space) to keep track of the item positions.

In contrast to the robust division into visuospatial and
numerical-verbal WM, we failed to find support for a distinction
between maintenance (represented by simple and complex span
tasks) and updating (represented by running memory and
n-back) in either our CFAs or EFAs, albeit this process-based
distinction has been prominent in WM research. It could be
that such a distinction is indeed non-existent (cf. Schmiedek
et al., 2009), or the two processes are too closely related to be
differentiated in the current setup, or the present task selection
was not optimal for the emergence of such a distinction. As to the
last alternative, the current tasks might have been more similar
in their processing demands in comparison to the single verbal-
visuospatial content distinction that divided the battery of tasks in
two equal halves. The issue of task selection concerns every factor
analytical study, as the extracted factor structure is dependent on
the measures that are fed into the analysis. Future work is needed
to replicate our results with different task constellations and
paradigms. Systematic replication attempts of previous models
are not that common, although it is highly crucial in order to
ascertain the generality, rather than sample- or task-specificity,
of a model.

On a different note, the present study demonstrates the
feasibility of online data collection in obtaining larger and
demographically more diverse participant samples. Our findings
revealed robust effects of WM load (1-back vs. 2-back, and
digit span forward vs. backward)3, and most importantly, they

3Paired samples t-tests Verbal Simple span task Forward vs. Backward,
t(394) = 12.38, p < 0.001; Verbal 1-back vs. 2-back, t(394) = 19.83, p < 0.001;
Visuospatial 1-back vs. 2-back, t(394)= 16.38, p < 0.001.
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TABLE 5 | Exploratory factor analysis with all 10 WM measures: factor loadings (loadings > 0.30 are boldfaced), commonalities, and factor correlations.

Two-factor solution Three-factor solution

Factor 1 Factor 2 Communality Factor 1 Factor 2 Factor 3 Communality

Visuospatial SSTF 0.58 0.09 0.41 −0.04 0.90 −0.13 0.63

Visuospatial SSTB 0.65 0.05 0.47 0.01 0.63 0.11 0.51

Visuospatial CST 0.51 0.17 0.40 0.18 0.37 0.17 0.39

Visuospatial RMT 0.61 0.04 0.41 0.06 0.39 0.25 0.39

Visuospatial 2back 0.69 −0.05 0.43 −0.01 −0.09 0.86 0.63

Numerical-verbal 2back 0.74 −0.10 0.46 −0.05 0.11 0.66 0.51

Numerical-verbal RMT 0.15 0.44 0.30 0.46 0.07 0.07 0.30

Numerical-verbal CST 0.21 0.44 0.35 0.48 −0.02 0.21 0.37

Numerical-verbal SSTB −0.02 0.81 0.63 0.84 −0.02 −0.04 0.64

Numerical-verbal SSTF −0.11 0.76 0.49 0.74 0.01 −0.12 0.48

Factor 1 1 1

Factor 2 0.63 1 0.62 1

Factor 3 NA NA 0.55 0.68 1

SSTF, simple span task forward; SSTB, simple span task backward; CST, complex span task; RMT, running memory task. n = 656.

showed comparable task reliabilities as has been observed in
the laboratory (e.g., Engle et al., 1999; Conway et al., 2002).
Furthermore, earlier online cognitive studies have provided
results that are comparable to laboratory findings (Germine et al.,
2012; Crump et al., 2013; Enochson and Culbertson, 2015).
However, possible error variance resulting from the uncontrolled
testing conditions cannot be dismissed.

A limitation concerning the current study should be
mentioned. The numerical-verbal complex span task was strongly
negatively skewed, and 126 out of the 656 participants obtained
a maximum score. One might suspect that this reflects cheating
on the task; however, such a pattern was not observed in any
of the other span tasks, which would seem to contradict this
suspicion. Instead it might be that the interfering items were too
easy and/or too much time was allotted to solving each interfering
item (6 s per interfering task), which possibly enabled rehearsal of
the to-be-remembered span items.

CONCLUSION

The present results indicate that a fundamental division in
WM goes along its contents. With our test battery, this
emerged as numerical-verbal and visuospatial factors, but it
is also possible that it is better characterized as a “what”
and “where” distinction where the former encompasses both
verbal and object information, and the latter encompasses
spatial information (Nee et al., 2013). Our results also indicate
that all the measured WM tasks share a significant amount
of variance, which suggests the presence of a general WM
factor that possibly reflects content-general attention or fluid
intelligence needed for performing novel tasks. Finally, the
n-back tasks exhibited some unique features: they loaded more
strongly on the visuospatial domain (irrespective of stimulus
materials), and especially on a general WM factor in the final
CFA model. We speculated that this pattern of n-back results

may relate to the use of visuospatial strategies in solving all
n-back tasks, higher demands on executive/attentional resources,
or higher task novelty that calls for fluid intelligence in
finding optimal ways to perform the task. Given the present
findings and previous studies, it appears that a content-based
numerical-verbal vs. visuospatial division of WM is more
robust than process-based divisions such as maintenance vs.
updating.
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