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People tend to update beliefs about their future outcomes in a valence-dependent way:

they are likely to incorporate good news and to neglect bad news. However, belief

formation is a complex process which depends not only on motivational factors such

as the desire for favorable conclusions, but also on multiple cognitive variables such as

prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the

probabilities and estimation errors. Thus, we applied computational modeling in order to

test for valence-induced biases in updating while formally controlling for relevant cognitive

factors. We compared biased and unbiased Bayesian models of belief updating, and

specified alternative models based on reinforcement learning. The experiment consisted

of 80 trials with 80 different adverse future life events. In each trial, participants estimated

the base rate of one of these events and estimated their own risk of experiencing

the event before and after being confronted with the actual base rate. Belief updates

corresponded to the difference between the two self-risk estimates. Valence-dependent

updating was assessed by comparing trials with good news (better-than-expected

base rates) with trials with bad news (worse-than-expected base rates). After receiving

bad relative to good news, participants’ updates were smaller and deviated more

strongly from rational Bayesian predictions, indicating a valence-induced bias. Model

comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating

better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming

that the valence of the new information influenced the amount of updating. Moreover,

alternative computational modeling based on reinforcement learning demonstrated

higher learning rates for good than for bad news, as well as a moderating role of

personal knowledge. Finally, in this specific experimental context, the approach based

on reinforcement learning was superior to the Bayesian approach. The computational

validation of valence-dependent belief updating represents a novel support for a genuine

optimism bias in human belief formation. Moreover, the precise control of relevant

cognitive variables justifies the conclusion that the motivation to adopt the most favorable

self-referential conclusions biases human judgments.
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INTRODUCTION

A growing body of research has demonstrated that people
update their beliefs about future outcomes in an asymmetric
manner: they tend to neglect undesirable information, but take
desirable information more readily into account (Eil and Rao,
2011; Sharot et al., 2011; Korn et al., 2012; Garrett and Sharot,
2014; Kuzmanovic et al., 2015, 2016a,b; Sharot and Garrett,
2016a). Similar asymmetric belief updating has been shown in the
context of reinforcement learning. When learning about reward
probabilities of different choice options (represented by neutral
stimuli), people tended to learn more from better-than-expected
outcomes (positive prediction errors) than from worse-than-
expected outcomes (negative prediction error) (Palminteri et al.,
2016; Lefebvre et al., 2017)1.

As proposed by the differential scrutiny account, people tend
to accept easily information with favorable implications (“Can
I believe this?”), but are likely to apply an effortful scrutiny
when considering unfavorable information (“Must I believe
this?”) (Gilovich, 1991; Krizan and Windschitl, 2007; Shepperd
et al., 2008). Such standards of proof need not be voluntary,
as the good news-bad news effect does not rely on a conscious
report. Rather, it is quantified by exploiting actual belief updating
behavior at the individual level. Moreover, even those individuals
who demonstrate biased belief updating were not aware of
it (Kuzmanovic et al., 2015, 2016a). However, in contrast to
reinforcement learning studies, where belief updating is informed
solely by the history of previous choices, predictions about
future life events are determined by multiple and interrelated
factors. Thus, differential information evaluation could result
from the motivation to draw desirable conclusions and to
adopt the most favorable future outlook (Kunda, 1990; Shepperd
et al., 2002; Sharot et al., 2011). Alternatively, it could also be
explained by cognitive factors relating to various aspects of the
available information such as the size of expected and presented
probabilities, as well as prior knowledge about hazards under
consideration, and about personal vulnerabilities and resources
(Krizan and Windschitl, 2007; Shah et al., 2016).

In the context of such complex processing, modeling acts as a
computational microscope and provides an efficient method for
isolating influential factors with maximal precision. Formalizing
competing models with varying components of belief updating
allows for the exact specification of hypotheses about possible
mechanistic causes of the observed behavior, and for the
identification of those components that substantially influence
update dynamics. Moreover, the possibility of controlling for
relevant cognitive variables on a trial-by-trial basis increases the
confidence in conclusions about motivational explanations for
asymmetric updating.

Hence, in order to provide a formal proof that belief updates
are biased by the valence of new information, the present
study combines an established belief update paradigm with

1In addition to the valence-dependent bias, i.e., the tendency to draw the

conclusion that a choice option is rewarding, Palminteri and colleagues also

demonstrated a confirmatory bias, i.e., the tendency to draw a conclusion that one

made the correct choice. Thus, confirming a preexisting belief seems to be similarly

desirable as obtaining an external reward.

computational modeling. We assessed beliefs about average and
personal risks of negative future life events (e.g., cancer or
car theft) and their updates in response to good news (e.g., a
lower base rate of cancer than expected), or bad news (e.g.,
a higher base rate of cancer than expected). First, we applied
previous formalizations of unbiased Bayesian belief updating
(according to Shah et al., 2016) to compare actual participants’
behavior to a normative benchmark. Second, we specified a
competitive Bayesian model that allows for biased belief updating
to investigate whether actual updates are better explained by a
biased or by an unbiased model. And third, we formalized an
alternative computational model of belief updating that relied on
reinforcement learning. The selection of the alternative model
that best fits the data allowed us to test formally whether learning
rates were higher in response to good news than to bad news,
and whether participants’ personal knowledge (how they perceive
their risk relative to the average risk) systematically affected
the consideration of the new information (actual base rates).
Together, these analyses validated the optimism bias in human
belief formation. Participants’ belief updates were asymmetric,
and deviated more from the normative Bayesian benchmark
in response to bad news relative to good news. Moreover,
comparison of the different computational models confirmed the
valence-induced bias in belief updating, and the need to include
personal knowledge in update dynamics.

MATERIALS AND METHODS

Participants
The Exploratory Software for Confidence Intervals (Cumming,
2014) indicated a sample size of N = 27 to be required to achieve
an average target margin of error in standard deviation units of
0.4, with the correlation between repeated measures of 0.5, based
on prior work on optimism bias in belief updating, that also
assessed participants’ beliefs about base rates (but in a separate
experimental session and not within one trial, Kuzmanovic et al.,
2015, Study 2). Thirty participants were recruited from the Max
Planck Institute for Metabolism Research subject pool. One
participant was excluded because she recognized that the base
rates were manipulated (see Section Procedure), one because he
made no updates in 84% of trials, and one because she made
updates away from the presented BR in 18% of trials indicating
problems with understanding the task (for instance, if eBR =

10% and E1 = 10% and the presented BR is 5%, the update away
from the BR would be 15%). Consequently, 27 participants were
included in the analysis (age M = 28.67, SD = 5.17, 15 males).
All procedures were in accordance with the World Medical
Association Declaration of Helsinki and were approved by the
local ethics committee of the Medical Faculty of the University of
Cologne, Germany. All subjects gave written informed consent.

Procedure
The experiment was conducted during an acquisition of fMRI
scans (neuroimaging data not reported here) using Presentation
18.1 (Neurobehavioral Systems), and consisted of 80 trials
with 80 different adverse life events (e.g., cancer or car theft;
for a complete list see Supplementary Material). Before the
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experiment, all participants received written instructions, and
completed six practice trials with stimulus events not used in the
experiment.

The task relied on the belief update methodology used
in previous studies (see Figure 1; e.g., Sharot et al., 2011;
Kuzmanovic et al., 2016a). Participants began each trial with
estimating the base rate (eBR) of a negative life event (i.e.,
the average probability of the respective event happening to an
individual living in the same socio-cultural environment). Next,
they were asked to estimate their own likelihood of experiencing
the life event in their lifetime (first estimate, E1), and were
subsequently presented with the actual base rate (BR). At the
end of each trial, participants had to re-estimate their own risk
(second estimate, E2).

The difference between E1 and E2 corresponds to the size of
the update. The difference between eBR and BR indicates the
size of the estimation error (EE), and whether BR was favorable
(better than expected), or unfavorable (worse than expected).
Moreover, the difference between eBR and E1 allows to infer
how similar a participant perceives herself relative to the average
person (e.g., E1 < eBR indicates that a person believes that she
is less at risk than the average person, and vice versa). This
may be important as base rates may become irrelevant if one
assumes oneself to be very different from the average person
(e.g., somebody without a car will not be concerned about the
average risk of car theft, see Shah et al., 2016). Such personal
knowledge can be protective (e.g., having a healthy lifestyle), or
can make a person more vulnerable to a hazard (e.g., having a
family history of cancer). Further methodological implications
related to eBR are described in detail elsewhere (see Garrett and
Sharot, 2014; Kuzmanovic et al., 2015; Shah et al., 2016; Sharot
andGarrett, 2016b). Hence, we included personal knowledge into
the formalization of the alternative computational models (see
Section Computational Modeling).

All events (eBR, E1, BR, E2) were incorporated into one trial,
and the full history of outcomes was displayed at all times, in
order to avoid confounds by memory load and errors. Were
these estimates assessed in separate sessions, participants would
not be able to remember their exact previous estimates and the
presented base rates for all 80 stimulus events. Such memory
errors have been reported to be equal for trials with good and
bad news (Sharot et al., 2011; Garrett and Sharot, 2014), so that
they do not represent a confound for the valence-induced bias in
updating. However, in the context of computational modeling,
they would increase the noise in the data and thus impede
the computational inference of the most likely parameter values
causing the observed updates, and should therefore be avoided.

Unbeknownst to participants, we manipulated BR in order
to be able to control the number of trials and the size of
EE across conditions (see Table 1 for mean EE, and for more
details about the algorithm used to generate manipulated EE, see
Supplementary Material). Moreover, this allowed us to randomly
assign the 80 stimulus events to different valences and error sizes,
anew for each subject. In this way, cognitive effects such as prior
experiences with the future events or their personal meanings
were likely to be balanced across conditions (e.g., see Kuzmanovic
et al., 2015 for tests of equal distributions). BRs were capped

between 1 and 90% (because base rates greater than 90% would
not be credible for the majority of stimulus events), and were
introduced as the probability of the respective event occurring
to persons of the same sex and age, living in the same socio-
cultural environment as the participant. In a final debriefing after
the experiment, a funneled procedure was used to ensure that
subjects did not suspect the manipulation of the base rates, or
the purpose of the study.

Participants were free to report a probability anywhere
between 1 and 99%. Starting from 50% in eBR, they selected
the desired probability within this range by using two buttons
to increase or decrease the number displayed on the screen
(Figure 1B, yellow font color), and a third button to affirm finally
the selected choice. The final confirmation of the selected number
with a button press aimed to reduce response noise. In E1, the
starting number equaled the one selected in eBR, and in E2, the
starting number corresponded to the one selected in E1.

Analysis of Task Performance
Statistics for all task-related parameters are listed in Table 1. In
each trial, update (UPD) was computed as the difference between
E1 and E2 such that positive values indicated an update in the
direction suggested by the new information (i.e., lower BR than
expected suggested lower E2 than E1 and vice versa; see Table 1).
Trials were divided into those in which participants received
“good news” (GOOD; BR < eBR, BR lower than expected),
and those in which participants received “bad news” (BAD; BR
> eBR, BR higher than expected). Given that in a normative
sense estimation errors generally signal that related beliefs need
to be updated (independently of the valence of the error),
biased updating was assessed by comparing updates in GOOD-
trials with those made in BAD-trials. Furthermore, for each
participant, we conducted a linear regression to predict his or her
updates on each trial using valence of news (GOOD vs. BAD),
while including eBR, E1, and EE as covariates (all measures z-
scored within subject; note that the additional inclusion of BR is
obsolete as it is a linear combination of E1 and EE). Finally, in
addition to extracting participants’ actual updates, we simulated
rational Bayesian updates—according to Shah et al. (2016), to
establish a normative benchmark for belief updating (“Bayesian
updates,” UPDb, see Table 1).

When comparing repeated measures throughout the study,
we used paired t-tests (two-tailed), and the standard deviation of
the paired differences as a standardizer for Cohen’s d (Cumming,
2014). Following trials were excluded prior to all analysis: (i) trials
with a missing response (on average 1.3 trials per subject), (ii)
trials with EE = 0 (on average 1.0 trial per subject; e.g., in a
GOOD trial, when eBR was 1%, no lower BR than 1% could be
presented), and (iii) trials with updates deviating more than 4 SD
from subject’s mean update (2 excluded trials in total).

Computational Modeling
We implemented competing computational cognitive models,
and assessed which model provided the best account for
participants’ actual data. More precisely, each model was first
fitted to the data using Bayesian variational inference. This
procedure yields for each hypothesis (a) a posterior distribution
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FIGURE 1 | The general structure of the experimental design (A) and example trials with good and bad news (B). (A) In each trial and with respect to each of the 80

stimulus events, participants (i) estimated the base rate (eBR), (ii) estimated their lifetime risk (E1), (iii) were provided with the “actual” base rate (BR), and (iv)

re-estimated their lifetime risk (E2). Estimation errors (EE) were computed as the absolute difference between eBR and BR, and updates (UPD) as the expected shift

from E1 to E2 (i.e., E1–E2 when BR < eBR, and E2–E1 when BR > eBR). The difference between eBR and E1 indicates how much the participant believes that he or

she deviates from the average (personal knowledge, P). (B) In the upper row, a participant is presented with a lower base rate than expected (BR < eBR), providing

her with good news. In the upper row, the presented base rate is higher than expected, indicating bad news.

across the parameters, and (b) an approximation to the evidence
of the model. The posterior provides sufficient statistics (i.e.,
mean and variance) of the parameter estimates. The model
evidence reflects the goodness of fit of the model, which is
penalized for the complexity of the parametrization. Here, we
use the Free-energy approximation that has been shown to be
superior to other approximations like AIC or BIC (Penny, 2012).
For each analysis, (approximate) model evidences of all subjects
and all tested models were then entered in a random-effect
Bayesian model comparison procedure. This scheme allows us
to infer the probability of each subject to be best described
by the respective models (model attributions), and therefore
to estimate the frequency of each model in the population
(estimated model frequency, Ef ). From there, we computed the
protected exceedance probability (pxp) of each model, which
is the probability that the hypothesis predominates in the
population, above and beyond chance (see Rigoux et al., 2014 for
more details). Notably, the model-based approach allows us to
control formally for potential differences in trial-wise eBR, E1,
and EE across conditions. The Bayesian model comparison was
performed using the VBA toolbox (Daunizeau et al., 2014).

“Rational” and “Optimistic” Bayesian Models of

Belief Updating
We compared models formalizing “rational” (according to Shah
et al., 2016) and “optimistic” (i.e., valence-dependent) Bayesian
updating. Starting from the “rational” Bayesian model (see
Table 1, UPDb), we included two free parameters, Scaling and
Asymmetry (S and A; see Table 1, UPDbo), that were estimated
separately for each participant dependent on their trial-by-trial
behavior. Scaling indicates the average tendency of a participant
to update initial beliefs due to the presented base rate relative to
what is predicted by Bayes’ rule (S < 1 leads to lower updating,
and S > 1 to greater updating). Asymmetry renders Scaling
differentially for bad and good news. More precisely, A > 0 leads
to larger updates for good than for bad news, representing an
optimism bias, again relative to the rational Bayesian prediction.
Thus, setting the prior values strictly to 1 for Scaling and 0 for
Asymmetry specifies the null hypothesis that update is equal to
the predictions of the “rational” Bayesian model. The alternative
hypothesis is that these parameters are different from the null
hypothesis and have an influence on the update, and thus need to
be estimated for each participant (i.e., included into the model as
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TABLE 1 | Task and model parameters, their statistics and sources.

Parameter M (SD) p Source

Good news Bad news

Number of trials 39.37 (2.24) 37.96 (1.85) 0.015

Estimated base rate (eBR) 47.90 (11.57) 44.81 (10.82) 0.002 Participant’s response

First estimate (E1) 41.77 (12.38) 37.85 (10.83) 0.004 Participant’s response

Personal knowledge (P) 6.12 (6.13) 6.96 (7.81) 0.282 P = eBR - E1

Presented base rate (BR) 34.44 (11.24) 58.69 (10.85) 0.000 Base rate algorithm
†

Estimation error (EE) 13.45 (0.91) 13.86 (0.65) 0.006 EE = |eBR - BR|

Second estimate (E2) 34.24 (11.55) 44.30 (12.21) 0.000 Participant’s response

RT E2 in sec 3.19 (1.04) 3.17 (1.06) 0.960 Participant’s response

Actual update (UPD) 7.53 (2.66) 6.45 (2.49) 0.024 UPDGOOD = E1 - E2,

UPDBAD = E2 - E1

Likelihood ratio (LHR) 1.56 (1.19) 1.54 (2.32) 0.964 LHR = E1
1−E1 ÷ eBR

1−eBR

% of trials with LHR < 1 55.92 (19.29) 56.00 (19.98) 0.976

Bayesian E2 (E2b) 30.74 (10.86) 49.82 (12.15) 0.000 E2b = BR * LHR
BR * LHR +(1 − BR)

Bayesian UPD (UPDb) 11.04 (1.95) 11.97 (1.90) 0.003 UPDbGOOD = E1 - E2b,

UPDbBAD = Eb2 - E1

‘Optimistic’ UPDb (UPDbo) 7.60 (2.47) 6.48 (2.38) 0.006 UPDboGOOD = UPDb * (S + A),

UPDboBAD = UPDb * (S – A)

All measures (except for number of trials) were provided by participants or computed at each trial, and were then averaged separately for the conditions GOOD and BAD, separately for

each participant. Positive UPD values indicated updates toward the BR, and negative values updates away from the BR (<2% of the trials). P: scores > 0 indicate lower risk than the

average person, 0 indicates an equal risk, scores < 0 indicate greater risk. LHR, likelihood ratio; LHR scores < 1 indicate lower risk than the average person, 1 indicates an equal risk,

scores > 1 indicate greater risk. LHR, E2b and UPDb: according to Shah et al. (2016). S and A, free model parameters Scaling (µ = 1) and Asymmetry (µ = 0). p values refer to paired

two-tailed t-tests with n = 27.
†
see Supplementary Material.

free parameters). We formalized four models that resulted from
the possible parameter combinations (S+A, S, A, Ø; S and A
indicate that the respective parameter was estimated instead of
being fixed), and applied Bayesian model comparison (Rigoux
et al., 2014) to assess which of these models best accounted for
participants’ behavior.

Alternative Computational Models of Belief Updating
Furthermore, we formalized an alternative, more simple
computational model of belief updating. It relied on the generic
form of reinforcement learning (Sutton and Bart, 1998) with
remarkably simple interpretability: belief update is proportional
to the prediction error (weighted by the learning rate Alpha,
indicating the general tendency of each participant to take
prediction errors into account). In the context of belief updating,
EE can be considered as equivalent to the prediction error
in classical reinforcement learning. To account for valence-
dependent asymmetry in belief updating, the learning rate Alpha
was estimated separately for good and bad news (Palminteri
et al., 2016; Lefebvre et al., 2017). In addition, we took personal
knowledge into account by weighting EE by the relative personal
knowledge (rP). Thus, the alternative computational model (m1)
takes the following form:

UPD = LR∗EE∗(1− rP∗W)

LRGOOD = Alpha+ Asymmetry

LRBAD = Alpha− Asymmetry

Learning rate (LR, general tendency of each participant to
update her beliefs in response to EE) smaller than 1 indicates
updates smaller than EE, and LR greater than 1 indicates updates
greater than EE (while EE is also weighted by a function of rP,
see below). Furthermore, the learning rate was formalized as a
function of the valence of news. That is, it was expected to differ
systematically for GOOD and BAD (i.e., lower learning rates
and smaller updates for BAD than for GOOD). If Asymmetry is
different from zero, then there is an effect of Valence, and the
influence of EE is different for GOOD and BAD.

RP stands for relative personal knowledge, i.e., the difference
between eBR and E1 relative to themaximal possible difference in
each trial. It weights the impact of EE, because the more a person
thinks that she deviates from the average, the less influential the
presented BR should be for her judgment. Weight (W) influences
rP to allow for a formal testing of the potential effect of rP on
belief updating. IfWeight is different from 0, then rP has an effect
on belief updating. RP ranged from 0 to 1, with rP= 0 when eBR
= E1, and rP = 1 when |eBR – E1| is maximal. For instance,
when eBR = 15%, E1 of 1% generates the maximal possible
difference lower than eBR of 14%, and E1 of 99% generates
the maximal possible difference higher than eBR of 84%, given
that participants’ estimates were capped between 1 and 99%.
Therefore, for each trial, rP was computed as follows:

if E1 < eBR : rP = (eBR− E1)/(eBR− 1)

if E1 > eBR : rP = (E1− eBR)/(99− eBR)

if E1 = eBR : rP = 0

Frontiers in Psychology | www.frontiersin.org 5 June 2017 | Volume 8 | Article 1087

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Kuzmanovic and Rigoux Modeling Optimistic Belief Updating

In order to test the respective effects of learning rate, valence,
and personal knowledge, we generated all possible variations of
the update equation by switching on (by letting the parameter
free), or off (by fixing the parameter’s prior variance to zero)
the parameters Alpha, Asymmetry, and Weight. Note that by
setting Asymmetry and Weight to 0 we obtain the classical
reinforcement learning rule (UPD = Alpha ∗ EE), and prior
expectations of 0 for Asymmetry and Weight and 1 for Alpha
specify the null hypothesis UPD = EE. In the alternative
hypothesis, those parameters have an influence on update, and
thus need to be estimated for each participant (i.e., included into
the model as free parameters).

Eight models with all possible parameter combinations
(α+A+W, α+A, α+W, α, A+W, A, W, Ø; α, A and W indicate
that the respective parameter was estimated instead of being
fixed) were estimated for each subject and were then entered in a
random effect Bayesianmodel comparison procedure. Finally, we
compared the winning alternative model to the winning Bayesian
model.

RESULTS

Comparison of Actual Updates and
Bayesian Updates
With respect to actual behavior, bad news led to smaller updates
than good news indicating an optimism bias, t(26) = 2.42, p
= 0.024, d = 0.48, M = 1.08, SD = 2.31, 95% CI [0.16,
1.99], see Figure 2A for mean updates and Figure 2C for the
respective difference measures. By contrast, simulated Bayesian
updates showed the opposite asymmetry in updating, t(26) =

−3.28, p = 0.003, d = 0.63, M = −0.93, SD = 1.48, [−1.51,
−0.35]. Moreover, while the actual updates generally deviated
from Bayesian updates (dUPD = UPDb – UPD), dUPDGOOD:
t(26) = 8.48, p < 0.001, d = 1.63, M = 3.51, SD = 2.15, [2.66,
4.36], dUPDBAD: t(26) = 11.36, p < 0.001, d = 2.19, M =

5.51, SD = 2.52, [4.52, 6.51], this deviation was greater in BAD
than in GOOD, t(26) = 3.91, p = 0.001, d = 0.76, M = 2.01,
SD = 2.66, [0.95, 3.06], see Figures 2B,C. This indicates that
participants’ updates deviated more strongly from the Bayes’
normative benchmark after bad news than after good news (see
also Figure 2D, first two plots, for greater descriptive deviations
from Bayesian updates for BAD than for GOOD). The larger
deviation from the normative benchmark in BAD than in GOOD
trials reflects a relative optimism bias, that contrasts (i) the actual
asymmetry in updating with (ii) the asymmetry predicted by the
Bayes’ theorem, see Figure 2C, “Actual vs. Bayesian.” Figure 2D
(bottom) can be examined for examples of participants with
similar actual asymmetry in updating but different Bayesian
asymmetry, resulting in different relative optimism biases (e.g.,
subjects 25 and 26).

Linear regression analyses revealed that updates were larger in
BAD than in GOOD trials even after controlling for trial-wise EE,
t(26) =−2.73, p= 0.012, d = 0.53,Mβvalence =−0.18, SD= 0.35,
95% CI [−0.32, −0.05], or for eBR, E1 and EE, t(26) = −2.49, p
= 0.020, d = 0.48,Mβvalence =−0.18, SD= 0.38, [−0.34,−0.03],
confirming the optimism bias in the observed data.

Comparison of “Rational” and “Optimistic”
Bayesian Models of Belief Updating
Bayesian model comparison of all four Bayesian models revealed
that the “optimistic” Bayesian model that included both Scaling
and Asymmetry as free parameters best accounted for the actual
participants’ behavior (Ef = 0.88, pxp = 1; see Figures 2D,E).
Moreover, t-tests showed that Scaling was considerably smaller
than 1, t(26) = −13.05, p < 0.001, d = −2.60, mean difference
to 1 was −0.39, SD = 0.15, 95% CI [−0.45, −0.33], showing that
participants indeed updated less than predicted by Bayes’ rule.
Furthermore, Asymmetry was considerably larger than zero, t(26)
= 4.12, p < 0.001, d = 0.78, M = 0.07, SD = 0.09, [0.03, 0.10],
confirming that participants made smaller updates after bad news
than after good news.

Alternative Computational Models of Belief
Updating
Bayesian model comparison of all eight alternative models
revealed that the alternative model that included the effects
of learing rate, valence and personal knowledge (m1, free
parameters α, A, and W) predicted actual belief updates better
than all simpler versions of the model, Ef = 0.75, pxp =

1 (see Figure 3A). Subsequent t-tests showed that Alpha was
considerably smaller than 1 {M = 0.73, SD = 0.17, t(26) =

−8.33, p = 0.000, d = 4.35, estimated difference to 1 was −0.27,
95% CI [-0.34, −0.20]}, showing that participants were indeed
updating less than predicted by EE. Furthermore, Asymmetry
was considerably larger than zero {M = 0.06, SD = 0.10, t(26) =
2.99, p = 0.006, d = 0.57, 95% CI [0.02, 0.09]}, indicating that
participants disregarded EE even more in response to bad news
than good news. And finally, Wwas considerably larger than zero
{M = 0.86, SD = 0.25, t(26) = 18.11, p = 0.000, d = 3.48, 95%
CI [0.76, 0.95]}, demonstrating that personal knowledge indeed
influenced participants’ update behavior.

However, because W was relatively close to 1, and because α

and Wmay not be completely orthogonal, we tested whetherm1
(all three parameters free) or m2 (α and A are free parameters,
but W is fixed to 1) provides a better explanation of the data.
Indeed, m2 had a better performance than m1, Ef = 0.83, pxp =
0.967, see Figure 3B. Comparison of all four possible versions of
m2 (α either free or 1, A either free or 0) also confirmed that m2
including the effects of learning rate and valence outperformed
simpler m2 versions (Ef = 0.78, pxp = 1). This shows that
the influence of personal knowledge on updating can simply be
formalized as (1 – rP) instead of (1 – rP ∗ W) because W is equal
1. In other words, there is no need to allow for deviations from the
(1 – rP) rule, or for inter-individual variance in these deviations.
As a consequence, the finally resulting model of belief updating
(m2) takes the following form:

UPD = LR∗EE∗(1− rP)

Finally, Bayesian model comparison revealed that m2 (free
parameters α and A, W =1) predicted actual belief updates even
better than the “optimistic” Bayesian model (free parameters S
and A), Ef = 0.80, pxp= 0.987, see Figure 3C.
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FIGURE 2 | Comparison of actual and Bayesian updates, and of “rational” and “optimistic” Bayesian models of belief updating. (A) Actual updates were larger after

good news (GOOD) than after bad news (BAD), indicating an optimism bias, but Bayesian updates were larger after bad than after good news. (B) The difference

between the Bayesian and the actual update was greater for BAD than for GOOD trials. Note that Bayesian updates were generally higher than actual updates. (C)

Measures of asymmetric updating (mean update in GOOD—mean update in BAD), that are derived from (A,B). While there is an optimistic asymmetry in actual

updates, and an opposite asymmetry in Bayesian updates, contrasting the asymmetry in actual updates with the one in Bayesian updates reveals a larger optimism

bias than when considering the actual updates alone. (A–C) Error bars show 95% CI. (D) Differences in mean updates and asymmetry in updating between the actual

data and the predictions by the two computational models: “rational” Bayesian (according to Shah et al., 2016), and “optimistic” Bayesian including the free

parameters Asymmetry (A) and Scaling (S, Bayesian+A+S). Subjects are sorted by asymmetry in updating based on actual data (bottom, gray line) in ascending

order. (E) “Optimistic” Bayesian model (“A+S”) accounts better for actual data than the “rational” Bayesian model (“Ø,” according to Shah et al., 2016), or other less

complex models (“S” and “A”). Labels at the x-axis indicate which parameters are left free. Posterior model attribution (top): Each colored cell gives the posterior

probability that a given subject (y-axis) is best explained by a specific model (x-axis). The more contrasted a line, the better the confidence in the attribution. Posterior

model frequencies (bottom): Each bar represents the expected frequency of a model in the tested sample, i.e., how many subjects are expected to be best described

by a model (error bars show standard deviation). The gray dashed line represents the null hypothesis, namely that all models are equally likely in the population

(chance level). *p < 0.05, **p < 0.01, ***p < 0.001.

Fitting m2 to data across subjects again revealed that α was
considerably smaller than 1 {M = 0.75, SD= 0.17, t(26) =−7.85,
p =.000, d = −1.47, estimated difference to 1 was −0.25, 95%
CI [-0.32, −0.19]}, confirming that participants updated less
than predicted by EE, see Figure 3D. Furthermore, Asymmetry
was again considerably larger than zero {M = 0.06, SD = 0.10,
t(26) = 3.00, p = 0.006, d = 0.60, 95% CI [0.02, 0.10]; see

Figure 3D}, indicating that participants disregarded EE even
more in response to bad news than good news (Figure 3D). In
consequence, learning rates were lower in BAD (M = 0.69, SD=

0.20) than in GOOD (M = 0.81, SD= 0.19) trials, see Figure 3E.
In addition, Asymmetry (r = 0.80, p < 0.001), but not α (r = −

0.04, p= 0.837) correlated with the optimism bias (asymmetry in
updating) across subjects (see Figure 3F).
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FIGURE 3 | Alternative model of belief updating based on classical reinforcement learning. (A) The alternative model that incorporated the effects of learning rate (α 6=

1), valence (Asymmetry, A 6= 0) and personal knowledge (W 6= 0) best accounted for the actual data (“α+A+W,” m1). Thus, it provided a formal test that all three

factors are influential components in belief updating. Labels α, A and W indicate which parameters are left free. Ø indicates the null hypothesis, namely that there is no

effect of learning rate (α = 1), valence (A = 0) or personal knowledge (W = 0), and thus that update is simply proportional to estimation error. (B) The simpler version of

the alternative model that fixes W to 1 (m2; i.e., personal knowledge is influential, but equally across subjects) outperformed m1 (W formalized as a free parameter

with a prior of 0). Thus, m2 is the finally resulting alternative model of belief updating. (C) The winning alternative model (m2) accounts better for the actual data than

the winning “optimistic” Bayesian model (“Bayesian: S+A”). (A–C) Posterior model attribution (top): Each colored cell gives the posterior probability that a given

subject (y-axis) is best explained by a specific model (x-axis). Posterior model frequencies (bottom): Each bar represents the expected frequency of a model in the

tested sample, i.e., how many subjects are expected to be best described by a model (error bars show standard deviation). The gray dashed line represents the null

hypothesis, namely that all models are equally likely in the population (chance level). (D) Mean posterior parameter estimates of the learning rate resulting from model

m2. Alpha (α) was significantly smaller than 1, indicating that updates were lower than the estimation error (weighted by personal knowledge). Asymmetry (A) was

significantly greater than 0, supporting the effect of valence as learning rates were larger for good than for bad news. (E) Learning rates resulting from model m2 were

larger in response to good than to bad news (GOOD and BAD trials), confirming the effect of valence on belief updating. (D,E) Error bars show 95% CI. (F) Across

subjects, estimated Asymmetry in learning rate (A) derived from m2 correlated with the asymmetry in updating derived from the actual data. **p < 0.01, **p < 0.001.

DISCUSSION

The present study provides converging evidence for valence-
dependent belief updating. Participants updated their beliefs
about hazards more in response to desirable new information
than in response to undesirable information. The good news-bad
news effect was significant even after controlling for prior beliefs
and their violations (by including estimation errors and initial
estimates of risks and base rates as covariates in a regression
analysis). Moreover, participants updates were compared to
simulated belief updates expected to be made by a “dispassionate

thinker—one who is not swayed by desires for any particular
outcome” (Krizan and Windschitl, 2007, p. 107), according to a
Bayesian model of belief updating (Shah et al., 2016). Optimism
bias was present only in actual updates, but not in simulated
updates. Furthermore, in line with previous results (Sharot and
Garrett, 2016b), participants showed an increased resistance to
rationally expected belief change particularly when they received
bad news compared to good news. Thus, the valence-dependent
belief updating supports the notion that motivational factors may
guide information processing to allow to discredit threatening
news (Kunda, 1990).
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Our findings differ from what has been reported by Shah
et al. (2016) in some instances. First, while our Bayesian update
simulation showed larger updates in response to bad than to
good news, some of the Bayesian update simulations reported
by Shah and colleagues showed the opposite pattern. This is
not a true inconsistency because these specific simulations by
Shah and colleagues were based on ad hoc samples of artificial
agents with predefined personal knowledge and estimation
error distributions. In contrast, our Bayesian update simulations
were informed by actual data recorded during the experiments
(presented base rates and likelihood ratios, the latter calculated
based on participants’ initial self-estimates and their base rate
estimates). Importantly, the assumptions by Shah et al. (2016)
about the distribution of the personal knowledge have been
challenged by our data, which showed that participants assumed
to be less at risk than average only for a half of events (56%
likelihood ratio < 1), see also Sharot and Garrett (2016b) for
similar findings. We also showed that the stimulus events were
not perceived to be extremely rare (mean estimated average
likelihood was 46%). Second, greater deviation of participants’
updates from the Bayesian benchmark in response to bad than
to good news was not consistently evident in experiments by
Shah and colleagues (calculated based on actual experimental
data with negative life events, experiments 2–4; see Sharot and
Garrett (2016b) for the discussion of positive events)2. Such
inconsistencies are likely to be caused by methodological factors
(e.g., highly variable numbers of events and subjects; memory
errors due to task structure with two separate sessions for first
and second self-estimates), that reduced the statistical power and
yielded nonsignificant results, which is no proof for an absence of
effect.

The conclusion that the differential evaluation of available
evidence mediates the influence of desires on predictions
is in line with recent neuroscientific research (Sharot and
Garrett, 2016a). Persons scoring high on trait optimism
demonstrated reduced neural tracking of undesirable estimation
errors relative to low-optimistic individuals (Sharot et al.,
2011). Furthermore, differential processing of desirable and
undesirable errors has been related to differences in the
structural connectivity of frontal-subcortical circuits linking
cognitive and emotional processing (Moutsiana et al., 2015).
Motivational explanations are also supported by the finding
of an enhanced optimism bias after dopaminergic intervention
(Sharot et al., 2012). Moreover, favorable updating indeed seems
to have a positive subjective value as it has been associated
with an increased activation of the ventromedial prefrontal
cortex known to represent reward values (Kuzmanovic et al.,
2016a).

The valence-induced asymmetry in updating was additionally
validated by the refinement of existing computational models of

2Difference measure (predicted belief change—observed belief change, values

closer to zero represent more normative belief updating) was valence-dependent

only in two of four experiments: experiment 2 [good news: M = 1.72, SD = 1.95,

bad news:M= 7.62, SD= 5.96, t(16) = 4.37, p< 0.001, d=1.12] and experiment 3B

[descriptive statistics not reported, but t(111) = 1.95, p= 0.054, only a trend-level];

descriptive statistics for experiment 3A and 4 not reported.

belief updating under formal control of trial-wise task parameters
(i.e., own risk estimate, estimated base rate, actual base rate
and the resulting estimation error). First, we demonstrated that
an optimistically biased Bayesian model better accounted for
the data than the fully rational Bayesian model (according to
Shah et al., 2016). More precisely, two influential parameters
(Scaling and Asymmetry) indicated respectively that participants
updated less than predicted by Bayes’ rule, and that the
rationality was even more reduced (i.e., updates were even
smaller) after bad news relative to good news. Particularly the
influence of Asymmetry confirms the effect of valence on belief
updating.

Moreover, we demonstrated that belief updates can be
formalized in a simpler and superior way than suggested by
Shah et al. (2016). This alternative formalization based on
reinforcement learning framework confirmed the importance
of three aspects of belief updating: (i) valence-dependent
asymmetry in updates, (ii) the influence of personal knowledge,
and (iii) lower updates than predicted by the estimation error.
The first aspect is in line with the task performance results and
the “optimistic” Bayesian model. The comparison of alternative
models showed that learning from estimation errors was indeed
asymmetric. Learning rates were greater in response to positive
errors (i.e., good news) than negative errors (i.e., bad news),
confirming again the influence of valence on belief formation
while formally controlling for other trial-wise task parameters.
Moreover, this asymmetry in learning rates was strongly related
to the asymmetry in participants’ updates. Thus, the valence-
dependent updating was determined by how much bad news
was taken into account during belief formation relative to good
news, but not by other features of the belief formation relating to
cognitive factors.

Furthermore, model selection revealed that personal
knowledge indeed played a significant role during the updating
of beliefs about future outcomes. This means that the more
participants perceived themselves to be different from average,
the less they took the information about the average risk into
account. Notably, the winning formalization (“1 – rP” instead
of “1 – rP ∗ W”) implicates that extreme values of personal
knowledge will lead either to full consideration of estimation
error (when one is equally at risk as the average person; however,
there is still an influence of learning rate and valence), or to
no consideration at all and thus no updating (when one is
maximally different from the average person, independent of
learning rate and valence). While this appears trivial at first
glance, it does not necessarily represent a reasonable updating
in the context of the present task. Even if there is an a priori
perceived difference between the estimated base rate (e.g., 20%)
and the own risk (e.g., 10%), learning about the actual base
rate (e.g., 25%) may be expected to shift the estimate of the
own risk by the size of the estimation error (from 10 to 15%
due to the difference between the estimated and the actual
base rate of 5%). Personal knowledge has long been considered
to play an important role in the research area of unrealistic
optimism (Shepperd et al., 2002; note that the focus here is on
beliefs per se, independent of their updating). While personal
information was already considered by Shah et al. (2016),
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however by using different formalizations, they did not explicitly
test whether it indeed made a significant contribution to the
update dynamics. Providing this proof within a belief update
task has important clinical implications. Health promotion
and disease prevention management need to take into account
that changes in existing beliefs may be affected by perceived
personal distance to the referred populations (Shepperd et al.,
2002).

The third aspect of belief updating—the updates lower
than predicted by the error—may relate to varying degrees of
precision, or uncertainty, of beliefs and new information. For
instance, generally reduced updating could result from low trust
of presented base rates relative to high certainty of initial beliefs
about base rates and own risks. Indeed, while none of the
included participants doubted the general creditability of the
presented (manipulated) base rates, 60% reported that some of
them appeared odd. Thus, assessment of participants’ certainty
about their probability estimates, and their trust in the presented
base rates could help to optimize further computational models.
Moreover, using expressions of certainty as dependent variables
may improve the understanding of motivational influences on
expectations (Krizan and Windschitl, 2007). For instance, higher
certainty about subjective probability estimates after desired
updates than after unfavorable updates could provide a further
support for the influence of valence on predictions.

Related to this, the superiority of the alternative model does
not suggest that reinforcement learning is a better mechanistic
explanation for belief updating than the Bayesian theorem. The
two frameworks share central assumptions and differmainly with
respect to the consideration of precision (included in Bayesian
models, but not in reinforcement learning ones). Therefore, the
model based on reinforcement learning might be justified merely
by limited data obtained with the current design, which does
not include measures of subjective belief precision. Another
reason that might explain the failure of the Bayesian model
(beyond the valence effect) relates to the way belief precision is
formally implemented. Building on the work of Shah et al. (2016),
we captured beliefs probabilities as simple point estimates.
Mathematically, this corresponds to representing life events as
following a Bernouilli distribution. This assumption, the simplest
model for representing the probability of a binary outcome,
enforces a specific relationship between the believed expected
probability of an event and the precision of that belief. More
precisely, beliefs about extreme probabilities, such as 2 or 97%
risks, will always be associated with a high degree of certainty,
whereas a belief of a 50% risk will always be the most uncertain
(formally, if an event is believed to happen with a probability
p, the uncertainty about this event is p(1-p)). However, this
assumption is unlikely to hold in real life: one can be quite
certain that a coin toss has a 50% chance to land tail, or be
very uncertain about the probability of receiving a pine cone on
their head, although knowing this event should be rater rare3.
A way to overcome this problem is to model beliefs utilizing
a distribution having a parametric variance, e.g., a Beta

3http://www.wired.com/2010/11/what-are-the-chances-of-getting-hit-by-a-

falling-pine-cone/

distribution. Practically, this means that the experimenter
would have to ask for each event how confident the subject
is about the estimates (eBR, E1, E2, and also BR). In a
Bayesian setting, the different estimates will then be weighted
according to their respective precision when entering the update
rule. Such models could be useful to explain the trial-by-
trial variations in update size (corresponding to varying levels
of certainty about estimated base rates) or why subjects do
not fully correct their estimation error (because they don’t
completely trust the numbers given by the experimenter).
However, this added complexity is unlikely to explain the
optimism bias we observed in our data. As all events and
errors are randomized within and between subjects, the effects
of belief precision should cancel each other out across the
conditions.

While the psychological and neurobiological evidence
for differential processing of desirable and undesirable new
information and resulting belief updates (Yacubian et al., 2006;
Sharot et al., 2011; Moutsiana et al., 2015; Palminteri et al., 2015,
2016; Kuzmanovic et al., 2016a; Lefebvre et al., 2017) emphasizes
the need to find a principled computational explanation of the
valence-induced bias per se, this endeavor is more difficult.
Here, we adopted a bottom-up approach to try to single out
the mechanistic components on which a more general theory
of belief updating could build upon. Another approach is to
start from conceptual axioms to derive a normative theory
of valence-dependent cognition. Some authors have already
proposed promising reflections in this direction by attributing
emotional value to beliefs (Mobius et al., 2011), or by integrating
agency into belief updating (active inference, Friston et al., 2013).
However, those theories rely on (sometimes implicit) theoretical
assumptions and make intricate predictions that need further
experimental consideration.
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