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Complexity Level Analysis Revisited:
What Can 30 Years of Hindsight Tell
Us about How the Brain Might
Represent Visual Information?
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Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada

Much has been written about how the biological brain might represent and process

visual information, and how this might inspire and informmachine vision systems. Indeed,

tremendous progress has been made, and especially during the last decade in the latter

area. However, a key question seems too often, if not mostly, be ignored. This question

is simply: do proposed solutions scale with the reality of the brain’s resources? This

scaling question applies equally to brain and to machine solutions. A number of papers

have examined the inherent computational difficulty of visual information processing using

theoretical and empirical methods. The main goal of this activity had three components:

to understand the deep nature of the computational problem of visual information

processing; to discover howwell the computational difficulty of visionmatches to the fixed

resources of biological seeing systems; and, to abstract from the matching exercise the

key principles that lead to the observed characteristics of biological visual performance.

This set of components was termed complexity level analysis in Tsotsos (1987) and was

proposed as an important complement to Marr’s three levels of analysis. This paper

revisits that work with the advantage that decades of hindsight can provide.

Keywords: vision, attention, complexity, pyramid representations, selective tuning model

INTRODUCTION

This paper has two main parts. In the first, there is a brief recapitulation of 30 years of research1

that addresses the question: do proposed solutions to how the brain processes visual information
match the reality of the brain’s resources? The main goal of this activity had three components:
to understand the deep nature of the computational problem of visual information processing; to
discover how well the computational difficulty of vision matches to the fixed resources of biological
seeing systems; and, to abstract from the matching exercise the key principles that lead to the
observed characteristics of biological visual performance. The second part of the paper uses the
results of that analysis and extends them to specifically connect to how the brain represents visual
information. We begin by motivating the analysis as presented three decades ago.

1There is a distinct focus on our own work throughout this paper simply because the goal of this presentation is to examine

that old work and how its conclusions have stood the test of time. This is not to say that no other work has appeared since nor

that all other work is unimportant. Far from it! However, most other developments along complexity theoretic lines do not

line up with the main thread of this paper, namely, what can this analysis tell us about representations in the brain.
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Tsotsos Revisiting Complexity of Visual Processing

A universally acclaimed landmark in the development of
computational theories of intelligence is the presentation of the
three levels of analysis defined by Marr (1982). Marr presents the
three levels, now quoted, at which any machine carrying out an
information-processing task must be understood:

• Computational theory: What is the goal of the computation,
why is it appropriate, and what is the logic of the strategy by
which it can be carried out?

• Representation and algorithm: How can this computational
theory be implemented? In particular, what is the
representation for the input and output, and what is the
algorithm for the transformation?

• Hardware implementation: How can the representation and
algorithm be realized physically?

This prescription has been used effectively ever since not only
in vision modeling but throughout computational neuroscience
and cognitive science. Unfortunately, Marr, not being a computer
scientist, missed an important issue. He did not realize that it
is not difficult to pose perfectly sensible computational solutions
that are physically unrealizable. As argued in Tsotsos (1990) and
elsewhere, there are a large number of perfectly well-defined
computational problems whose general solution is provably
intractable—unrealizable on available physical resources or
requiring time longer than the age of the universe2. Even worse,
there are well-defined problems that are undecidable, meaning
there provably exists no algorithm to determine the result3. As
argued in Tsotsos (1993, 2011), such results that seem impossible
do not negate their main impact: our brains seem to deal with
all the problems they face remarkably well so it can only be
the case that the formal definitions of the problems that lead to
such intractable or impossible results cannot be the ones that our
brains are actually solving.

This matching process as an idea has its roots in earlier
works. Uhr (1972, 1975) describes “recognition cones” as a
representation for perception. Although his papers are clear in
their inspiration from neural systems, Uhr only hinted at their
resource implications. Feldman and Ballard (1982), however,
explicitly linked computational complexity to neural processes
saying “Contemporary computer science has sharpened our
notions of what is ‘computable’ to include bounds on time,
storage, and other resources. It does not seem unreasonable to
require that computational models in cognitive science be at least
plausible in their postulated resource requirements.” They go on
to examine the resources of time and numbers of processors, and

2Details on this assertion are beyond the scope of this paper. The interested

reader can find a very accessible discussion in Stockmeyer and Chandra (1988),

while those wishing a deeper treatment should see classic texts such as Garey and

Johnson (1979), Papadimitriou (2003).
3Decidability is discussed in Davis (1958, 1965). Proof of decidability is sufficient

to guarantee that a problem can be modeled computationally. It requires that

the problem be formulated as a decision problem and that a Turing Machine is

defined to provide solution. This formulation for the full generality of vision does

not currently exist. If no sub-problem of vision can be found to be decidable,

then it might be that perception as a whole is undecidable and thus cannot

be computationally modeled. However, many decidable vision problems are

mentioned throughout this paper so that is not the case.

more, leading to a key conclusion that complex behaviors can
be carried out in fewer than 100 (neural processing) time steps.
The overall import of their paper was to stress the need for a
careful matching of problem to resources in cognitive theories.
Resource-complexity matching is a source of critical constraints on
the viability of theories, especially those that attempt to provide a
mechanistic theory as opposed to a descriptive one (see Brown,
2014).

Even though these arguments were very strong, they took
the form of ‘counting arguments’ and a formalization could
perhaps make them even stronger. An attempt to formalize those
points was made beginning with Tsotsos (1987). We examined
the inherent computational difficulty of visual information
processing from formal and empirical perspectives4. The
methods used have their roots in the theoretical sub-domain
of computer science known as computational complexity.
Computational complexity has the goal of discovering formal
characterizations of the difficulty of achieving solutions to
computational problems5 in terms of the size and nature of the
input. The difficulty of achieving solutions has direct impact on
resources, such as computational power, memory capacity and
processing time, as Feldman and Ballard (1982) also pointed out.

For this reason, a fourth level, the complexity level, was
introduced in Tsotsos (1987, 1990), intended to ensure the logic
of the strategy for solving the problem is actually realizable within
its available resources:

• Complexity analysis: What is the computational complexity
of the problem being addressed? How does it match with
the resources used for its realization? If the problem is
intractable and/or there are insufficient resources available for
a realization of its solution, how can the problem be reframed
to enable a solution?

This paper revisits the conclusions reached by the resulting
series of papers with the advantage of decades of hindsight.
Interestingly, a wide spectrum of predictions regarding the
brain’s visual processes that resulted from that analysis has
enjoyed subsequent experimental support (see Tsotsos, 2011 for
details). We begin with a brief overview of the main conclusions
and assertions that complexity level analysis provided.

COMPLEXITY LEVEL ANALYSIS

In Tsotsos (1989, 2011), a number of mathematical proofs were
presented that formalize the difficulty of perhaps the most

4It is not within the scope of this paper to detail the full sequence of papers on the

topic, so they are simply cited here so that the interested reader can examine them

separately: Tsotsos (1987, 1988a,b, 1989, 1990, 1991, 1992, 1993, 1995a, 2011), Ye

and Tsotsos (1996), Ye and Tsotsos (2001), Parodi et al. (1998) Andreopoulos and

Tsotsos (2013).
5A problem is distinct from an algorithm. A problem is a general statement about

something to be solved (Marr’s computational level, Marr, 1982) whereas an

algorithm is a proposed solution (Marr’s representational and algorithmic level).

One can address computational complexity at both levels: the inherent difficulty

of a problem in its general form as well as the difficulty of a particular algorithm.

Problem complexity applies to all possible solutions and any realization of them

while algorithm complexity applies only to the specific algorithm analyzed. Here,

we address only the former.
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Tsotsos Revisiting Complexity of Visual Processing

elemental of visual operations—essentially a sub-element of all
visual operations—namely, visual matching6. Visual matching is
the task of determining if some arbitrary image, a goal image, is
a subset of some other image, the test image. In this definition,
no knowledge of the target is allowed to influence the solution—
the problem is thus termed unbounded in those papers. A
function was assumed to exist that would quickly determine if
a particular match was found, and it was not permitted to reverse
engineer that function in order to guide the search. In other
words, the solution was constrained to be one requiring a strictly
data-driven approach7. The main proof, replicated by Rensink
(1989) using a different approach, showed that this problem
potentially had exponential time complexity in the number of
image pixels, largely because in the worst case, it is unknown
which image subset is the one that represents that goal image
(think of an arbitrary sky full of stars—which subset of stars
forms a hexagon?). The more important part of this is that it
was proved that no single solution exists that is optimal for
all possible problem instances. Due to the particular manner
in which the proof was executed, the problem lends itself to a
number of non-exponential, but not necessarily exact or optimal,
solutions, as pointed out by Kube (1991)8. Following a more
detailed examination, it was shown that although these non-
exponential solutions are indeed valid, they do not really help
because they all rely on solution elements that have no biological
counterpart and have execution times that do not reflect human
performance (Tsotsos, 1991)9. Note that this is likely true also for
the other problems cited throughout this paper; they may also
have known non-exponential solutions and realizable solutions
for small enough or special case instances. A puzzling situation

6If we look at the perceptual task definitions provided byMacmillan and Creelman

(2005), we see that all psychophysical judgments are of one stimulus relative

to another — the basic process is comparison. The most basic task is termed

discrimination, the ability to tell two stimuli apart. The fact that it is a sub-element

of all visual tasksmeans that the difficulty of any visual task is at least as great as that

of this sub-element. Interestingly, this is a decidable perceptual problem and is an

instance of the Comparing Turing Machine (Yasuhara, 1971). Further discussion

is found in Tsotsos (2011).
7Although it is admittedly unusal to include this restriction, it makes sense if

one wishes to follow the Marr approach to vision, i.e., that visual processing

included no top-down or knowledge-based guidance. Marr (1982; p 96) restricted

his approach to be applicable for the first 160ms of processing by the brain and for

stimuli where target and background have a clear psychophysical boundary. Our

original motivation was to show that this approach would not suffice for all stimuli;

this was successfully accomplished.
8In general, it is true that for problems that are proven to have such complexity

characteristics, it only means that sufficiently large problem instances may not be

realizable and that perhaps small ones, or particular subsets or special cases of the

overall problem,may be perfectly realizable. The point of the complexity proof is to

characterize a general solution that applies for all possible instances. For vision, this

is a tall order. The space of all possible images is impossibly large. Pavlidis (2014)

derives possible characterizations of this space. He claims that a very conservative

lower bound to the number of all possible human-discernible images is 1025 and

may be as large as 10400. The practical import is that any solution that one proposes

must apply to this full set.
9Kube (1991) pointed out that the Knapsack problem, which forms the foundation

of the proof, is known to have efficient solutions under certain circumstances.

Tsotsos (1991) surveys those efficient solutions and notes that they are not

easily matched to, let alone relevant for, biologically plausible architectures and

processes. It is beyond the scope to give further details on this here but the sequence

of commentaries in Tsotsos (1990, 1991), Kube (1991) provide more detail.

thus results: can we or can we not rely on the theoretical work as
a guide? Our everyday experience with our own visual systems
exhibits no such intractability. The only conclusion therefore
is that the brain is not solving the problem as formalized for
those proofs: the human brain is solving a different version
of visual matching. This is admittedly a non-standard use of
complexity theory because it disallows solutions that are not
biologically realizable or plausible10. It does however show that
the prevailing thoughts of the time (i.e., 1980’s and somewhat
beyond) that vision can be formulated as a purely bottom-up (i.e.,
stimulus-driven) process needed to be re-considered. To preview
the endgame of this paper, that reformulation is one that allows
differing levels of solution precision and different expenditures of
processing time for different subsets of problem instances.

At this point in this presentation, it seems important to
emphasize that the proofs mentioned in the previous paragraph
do indeed point to sensible conclusions because there are many
other researchers who have reached similar conclusions, i.e., that
their problems are likely intractable, for a variety of visual and
non-visual problems that are associated with human intelligent
behavior. Selected examples of other works focusing on vision
and neural networks and thus relevant for this paper include:
polyhedral scene line-labeling (Kirousis and Papadimitriou,
1988); loading shallow architectures (neural network learning
with finite depth networks) (Judd, 1988); relaxation procedures
for constraint satisfaction networks (Kasif, 1990); finding a single,
valid interpretation of a scene with occlusion (Cooper, 1998);
unbounded stimulus-behavior search (Tsotsos, 1995a); and 3D
sensor planning for visual search (Ye and Tsotsos, 1996).

The impact of computational complexity has also been
pursued by many researchers in artificial intelligence and
cognitive science (too many to properly mention here, however,
see van Rooij, 2008, for a nice review). To round out this
section, the important paper focusing on algorithm complexity,
as opposed to problem complexity addressed by the previously
cited authors, in vision by Grimson (1990) must be highlighted.
Biologists also contributed with consistent and complementary
conclusions (Thorpe and Imbert, 1989; Lennie, 2003, and others).

So how to proceed with the complexity level analysis?
The whole point was to ensure that solutions are tractable
within the constraints of biological processing structures.
The strategy we chose which first appeared in Tsotsos (1987)
is to simply start with the obvious, brute-force, worst-case
complexity for the visual problem first described in this section’s
opening paragraph, termed Visual Match in Tsotsos (1989) and
Comparison in Macmillan and Creelman (2005) (which is not
provable as a bound on the time complexity in any way) and see
how it might be altered to fit within a brain11. It’s as if we were

10Traub (1991) also struggles with this issue. He suggests that a theory of

complexity of scientific problems is needed such that formulations capture the

essence of the science and that they be tractable.
11This is essentially the same process as seen in Judd (1988), van Rooij et al.

(2012), van Rooij and Wareham (2012), and others, where they effectively used

intractability results to guide a search for methods and problem re-formulations

that would lead to realizable solutions. However, a major difference is the need

to further constrain that search to be consistent with neuroanatomical and

neurophysiological knowledge.
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tasked, in some imaginary world, to design the first ever visual
system from scratch. Tsotsos (2011) gives this simple-minded
worst-case complexity as O(P22P2M)12. P represents the number
of image elements (pixels, photoreceptors), M is the number
of features represented (e.g., color, shape, texture, etc.); these
are the starting elements from which we need to design vision.
Recall that the problem is termed ‘unbounded’ since there is no
bounding information arising from task or world knowledge
that limits the search—as designers of the first ever visual system,
it might not yet be apparent to us that we need task or world
knowledge! In other words, we begin with the Marr approach
(see footnote 7). Any image subset can be the correct one,
and thus the powerset of image elements gives the worst-case
scenario, and processing proceeds in a purely data-directed
manner. The three elements of the complexity function arise in
the following manner: P2-the worst-case cost of computing the
matching functions; 2P-the worst-case number of image subsets
in an image of P pixels; 2M-the worst-case number of feature
subsets associated with each pixel.

In Artificial Intelligence, a central concept is that of Rational
Action. Rational Action, carried out by a rational agent,
maximizes goal achievement given the agent’s current knowledge,
the agent’s ability to acquire new knowledge, and the current
computational and time resources available to the agent (Russell
et al., 2003). In everyday behavior, we humans only rarely attempt
to optimize solutions, but rather, just need to get something done
(when drinking from a glass, we do not optimize the path to
minimize energy or distance; rather, we simply want to get the
glass to our mouth). In other words, we mostly resort to solutions
that may not be optimal in any way but that are good enough
for the current needs. Often, these are heuristic solutions that
simply accomplish our goals13. One of these heuristics is to seek a
Satisficing solution. Satisficing is a strategy that entails searching
through the available alternatives until an acceptability threshold
is met. This differs from optimal decision-making, an approach
that attempts to find the best feasible alternative. The term
satisficing, (a combination of satisfy and suffice), was introduced
by Herb Simon in 1956. Satisficing can take more than one form.
If one is faced with a problem and has the luxury of time, then
one can spend as much time as one likes to find an acceptable
solution among all the possible ones. One the other hand, if
time is limited, perhaps strictly limited by the need to act before
something else occurs, then a different sort of search would
occur, one that would find a just in time solution, the best one
within the time limit. If time is extremely tight, then an almost
reflexive response is needed, perhaps the first one that comes to
mind. Clearly, external tasks and situations as well as internal
motivations play an important role in determining the right sort
of approach to employ. Different from this strategy is the one
where subsets of the full problem are defined where optimal
procedures apply without infeasible characteristics. Here, the

12The notation O(-), known as Big-O notation, signifies the order of the time

complexity function, that is, its dominating terms asymptotically.
13Garey and Johnson (1979) detail a variety of strategies and heuristics for dealing

with intractable problems theoretically and these are as applicable here as for

theoretical computer science problems.

first step is to determine when such a problem is presented.
Then, the most appropriate solution can be deployed. A rational
agent, then, attempts to achieve its current goal, given its current
constraints, by applying such selection methods to choose among
its many possible solution paths. This points to the need for some
kind of executive to control the process (one review for executive
function in the brain, of the many available, can be found in
Funahashi, 2001).

Knowledge of the intractability of visual processing in the
general case—that is, that no single solution can be found that
is optimal and realizable for all instances—forces a reframing
of the original problem. The space of all problem instances can
be partitioned into sub-spaces where each may be solvable by a
different method. Some of those methods—whether satisficing,
optimal, just in time, reflexive or other type—may lead to fast
realizations (for example, if there is a special case problem subset
that leads to non-exponential algorithm14), others slow ones,
and some perhaps no realization. Given that a fixed processing
resource such as the brain is to be employed, the need to apply a
variety of different solution strategies in a situation dependent
manner implies that resources must be dynamically tunable15.
In order to support such a decision process, representations of
visual, task, and world information and more must be available
to support the reasoning involved that an executive controller
performs (a sketch of how this might occur appears in Tsotsos
and Womelsdorf, 2016).

The second stage of complexity level analysis looks for ways
of matching the available resources with the computational
difficulty of the problem to be solved. For vision, and specifically
for human vision, those resource constraints include numbers
of neurons, synapses, neural transmission times, behavioral
response times, and so on. As Garey and Johnson (1979) point
out, using the main variables of the problem definition as a
guide is useful; variables that appear in exponents are the most
important to try and reduce. Only the conclusion of this exercise
will be given here since the details have appeared in several past
papers (see Tsotsos, 2011 for overview). The key activity is to
reduce the worst-case time complexity expression so that it can
lead to an algorithm that is matched to the size and behavior of
the human brain. The main conclusions are:

1. Use a pyramid representation to reduce the number of image
locations searched. A pyramid is a layered representation,
each layer with decreasing spatial resolution and with
bidirectional connections between locations in adjacent layers
(Jolion and Rosenfeld, 1994 provide review). Introduced by
Uhr (1972), they permit an image to be abstracted so that
a smaller number of locations at the top level may be the
only ones over which some algorithm needs to search. At

14One additional possibility is that of a fixed parameter-tractable algorithm, that

is, an algorithm that is exponential only in the size of a fixed parameter while

polynomial in the size of the input (see Downey and Fellows, 1999; van Rooij and

Wareham, 2007 for more).
15This is of course, not without a cost. Tuning takes time to affect the processing,

and processing itself may also then take longer. That different visual tasks take

different amounts of processing time is well documented and is related to dynamic

tuning in Tsotsos et al. (2008), Tsotsos (2011). See also Figure 5 and caption.
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least, they may provide the starting point for a coarse-to-fine
search strategy from top to bottom of the pyramid. such
a representation would reduce the size of the variable P.
Figure 1 shows a hypothetical pyramid of 3 layers. The
number of locations represented in the lowest layer (layer 1)
is p1; p1 > p2 > p3. In most pyramid definitions, the value
at each location in each layer is determined by a computation
based on a subset of the other layer values. Each element is
not only connected to others in the adjacent layers but may
also be connected to elements within the same layer. Such a
representation has much in common with the hierarchical
organization of early visual cortex as revealed by the work of
Hubel and Wiesel (1962, 1965).

2. The objects and events of the visual world are mostly spatially
and temporally confined to some region; however, we can also
recognize scattered items as well (such as star constellations,
or collections of animals as flocks or herds, group motion say
as in a rugby play, etc.). Spatio-temporally localized receptive
fields reduce the number of possible receptive fields from
O(2P) to O(P1.5) (this assumes contiguous receptive fields of
all possible sizes centered at all locations in the image array
and is derived in Tsotsos, 1987). Figure 1 not only shows
a three-layer pyramid but also a typical element (neuron)
within the middle layer and an illustration of the breadth of
its connections within the pyramid showing that connectivity
is limited in feedforward, feedback and lateral directions.

3. Selection of a single or group of receptive fields to consider
can further reduce the P1.5 term to some value P′ < P1.5. This
may be not only a selection of location, but also a selection
of a local region or size. Such selection of region of interest
is the most common use of attention in models (Tsotsos and
Rothenstein, 2011; Tsotsos et al., 2015).

4. For some given task, feature selectivity to relevant features

can further reduce the M term to some value M′, where 2M
′

FIGURE 1 | A hypothetical 3-layer pyramid representation. The number of

locations represented in the bottom layer (layer 1) is p1; p1 > p2 > p3. A

typical element of each layer is shown in the center of the middle layer (layer 2).

The figure shows how that element is connected to its immediate neighbors in

the layer, as well as to elements in the lower and higher layers. All connections

are potentially bidirectional. The figure shows the converging pattern of

feedforward connections from layer 1 to 2, the diverging pattern of feedforward

connections from layer 2 to 3, the converging pattern of feedback connections

from layer 3 to 2 and the diverging pattern of feedback connections from layer

2 to 1. Each element of each layer features this pattern of connectivity.

< 2M , that is, the subset M′ of all possible features actually
present in the image or important for the task at hand.
M ≪ P in any case so its presence in the exponent poses
much less of a problem. This implies that features are best
organized into separate representations, one for each feature,
permitting a processing mechanism to involve only the
required features into a computation and leaving the irrelevant
ones outside the computation. Such separate representations
likely lead into separate processing pathways as features are
abstracted. Human vision has the characteristic of performing
differently depending on the feature complexity of stimuli, as
has been shown many times since Duncan and Humphreys
(1989). Their experiments showed that in visual search tasks,
difficulty increases with increased similarity of targets (that
is, feature overlap and thus the ability to remove irrelevant
features from the computation) to non-targets and decreased
similarity between non-targets, producing a continuum of
search efficiency. This is yet another form of a restrictive
attentive process, that may be termed priming in this instance.

These16 achieve our goal, that is, to reduce the exponential
complexity function to a much lower complexity expression,

O(2M
′
P′3.5). It is important to note that attentional selection

to either select a single candidate or to restrict consideration to
a small set of candidates forces a serialization of the problem
solution. If the chosen candidate is correct, the algorithm of
course terminates. However, if it is not, the next candidate must
be selected for consideration. A related situation arises for stimuli
that are not spatially localized (such as the examples of a star
constellation or flock of birds given earlier) and in such cases, full
image comparisons or more complex methods (such as piecing
together results from the available sub-image matches) would be
required, again perhaps necessitating a serial search. No single
solution will handle all problem instances; different strategies
can be applied in succession until success is achieved, each
with a successively higher processing cost. This characteristic is
unavoidable and representations must support the process.

This leads to the final stage of complexity level analysis, which
is to determine what impact arises from the previous stages that
provide the foundations for developing a theory of human vision.
This impact is summarized here:

• Pyramidal abstraction affects the problem through the loss
of location information and signal combination. It affects
the problem solution by sometimes enabling shorter search
processes, commonly known as coarse-to-fine search.

• Spatiotemporally localized receptive fields force the system to
look at features across a receptive field instead of finer grain
combinations and thus arbitrary combinations of locations
must be handled by some other strategy.

• Attentional processes permit selection and restriction within
the input data to control the overall size of input to be
considered.

16It should be noted that the original formulation included consideration of the

set of world models N whose search efficiency can be logarithmically improved

by hierarchical organization (Tsotsos, 1987). This is omitted here since it does not

alter that nature of the problem.
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What this demonstrates is that although the analysis began
considering solutions for the full space of problem instances,
the need to fit a solution within the brain’s resources forced
a shrinking of that full space into something smaller. In other
words, the restriction that Marr placed on his approach—that is,
a clear figure-ground boundary—manifests itself as a restriction
on the set of problem instances. Unfortunately, it is not easy to
characterize this subspace. However, there is a possible taxonomy
of visual tasks that can help. Figure 2 shows this taxonomy; there
is no claim that it is complete. What it does point out is that the
visual task most current AI systems address (such as Fukushima,
1988; LeCun and Bengio, 1995; Riesenhuber and Poggio, 1999;
Krizhevsky et al., 2012), namely categorization, comprises only a
small part of the taxonomy. Itmust be stressed that this taxonomy
of tasks is not the same as a depiction of the space of problem
instances. Each task has its own set of possible instances (and
there may be overlap). For example, within categorization, there
are instances that are easy (clear figure-ground boundary is seen)
and instances that are difficult (without a clear figure-ground
delineation).

To this point, the possibility of task influence on how a
vision problemmight be approached has not been discussed. The
reason is that in his formulation, Marr discounted its use entirely
and our approach was originally motivated by his perspective.
However, increasingly, cognitive psychology and neuroscience
has demonstrated that task influence plays a major role (see
Carrasco, 2011; Tsotsos, 2011; Herzog and Clarke, 2014). In
fact, accompanying the intractability proof in Tsotsos (1989)
was a second theorem that showed that simple task knowledge
can bound the search; it provides limits on the search space
making it linear, rather than exponential, in the number of
image elements (Wolfe, 1998 provides a relevant visual search
review). The task knowledge can be as specific as target size or as

generic as statistical regularities (as Parodi et al., 1998, illustrate
empirically). This is a form of attentional priming (in advance
of task execution) which limits what is processed in the location,
feature and object domains. In Figure 2, task knowledge is critical
for all the MG tasks as part of their basic definition, but also for
the AG tasks since it bounds any search processes that might
be employed in their solution. In effect, therefore, the original
problem of Visual Match has been significantly reframed into a
set of more specific problems as Figure 2 shows, with different
constraints on the solution for each and together extending
the temporal range of visual tasks far beyond Marr’s 160 ms.
This is consistent with van Rooij et al. (2012) who proposed
computational-level theory revision as a way of dealing with
intractability.

Thus, in addition to the three bullet points presented above
regarding impact of the analysis, we add two more:

• The use of task or world knowledge can have profound impact
on the computational complexity of a visual problem and
should be employed whenever available (of course, there must
be a default processing state when none is available),

• The discussion on different decision-making strategies and
the complex taxonomy of visual tasks of Figure 2 strongly
motivates the need for an executive control process that would
dynamically decide on how to best approach and solve visual
tasks as they are presented.

THE PROBLEMS WITH PYRAMIDS

Although pyramids played a strong role in reducing complexity,
they do cause new problems with how information might
flow within them. Some were first described in Tsotsos et al.
(1995). Table 1 provides a characterization of each (more

FIGURE 2 | A taxonomy of visual tasks (adapted from Tsotsos, 2011 and task naming based on Macmillan and Creelman, 2005). Within each taxonomy element,

there are both easy and difficult instances. AG, At-a-Glance tasks are those that can be solved using only a single feed-forward pass through the brain’s visual

processing machinery; MG, More-than-a-Glance tasks are those that require more processing than a single feed-forward pass through the brain’s visual processing

machinery; K, the number of possible images; M, the number of object categories of interest.
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details can be found in Tsotsos, 2011) and the reader is
encouraged to refer to Figure 3 while reading the table entries.
These are all consequences of the basic connectivity pattern of
Figure 1.

The consideration of representational issues, such as the
problem with information flow in a pyramid is not common in
the modeling literature (but see Anderson and Van Essen’s Shifter
circuits, 1987, that were strongly motivated by information
routing issues). For the most part, the information flow
problems require dynamic solutions that change frommoment to
moment depending on task and input. Models that ignore these
routing characteristics are not only incomplete but lose out on
incorporating the constraints that arise.

LATTICE OF PYRAMIDS

The pyramid representation as described so far fits very naturally
into the hierarchical view of Hubel and Wiesel (1965, 1968).
However, it is insufficient. Felleman and Van Essen (1991) give
a set of criteria for determining hierarchical relationships among
the visual areas in the cortex. These are:

“each area must be placed above all areas from which it receives

ascending connections and/or sends descending connections.

Likewise, it must be placed below all areas from which it receives

descending connections and/or sends ascending connections.

Finally, if an area has lateral connections, these must be with other

areas at the same hierarchical level.”

This characterization of connectivity resembles that of a
general lattice, as shown in Figure 4B (see Birkoff, 1967, for a
mathematical discussion on the properties of lattice structures).
In contrast to the pyramid of Figure 4A, i.e., exactly the
representation found in convolutional neural networks (CNN-
see LeCun and Bengio, 1995; Riesenhuber and Poggio, 1999;
Krizhevsky et al., 2012), Figure 4B highlights the fact that
there may be more than one pathway from input, as is well-
documented in visual cortex. Tsotsos (2011) marries the concept
of the pyramid with that of the lattice to define the P-Lattice, or
lattice of pyramids in order to fully accommodate the criteria laid
out by Felleman and Van Essen.

Each element or layer of the pyramid will be referred to as a
sheet—an array of retinotopically organized neurons of common
tuning profile. Each sheet may be connected to more than one
other sheet in a feed-forward, recurrent or lateral manner. The
main constraint is that no matter which path is taken from lower
to higher level, each sheet at a lower level has the same or larger
number of elements compared to any higher-level sheet on its

TABLE 1 | A summary description of the main information flow problems resulting from pyramid representations.

Problem Data flow Basic characteristic

Blurring Figure 3A ↑ Feedforward neural connections have a diverging pattern, a one-to-many mapping, so that spatial precision is not

preserved.

Crosstalk Figure 3B ↑ Two spatially separated stimuli each root a feedforward diverging cone of connections which may intersect thus presenting

neurons within the intersection with a conflicted (corrupted with respect to the stimulus of interest) signal.

Context Figure 3C ↑ The receptive field of a neuron—a many-to-one mapping—in the higher layers of the pyramid can be potentially large

enough to include not only a stimulus of interest but a significant local spatial context which may confound the stimulus

interpretation.

Multiple foci Figure 3D ↑↓ If more than one neuron at the output layer is considered, the ability to tease their meanings apart depends on the spatial

separation of the receptive fields (the inverted version of the crosstalk problem). In the forward flow direction, contexts due

to each overlap to some degree, thus neural responses at the top cannot be considered independent. In the top-down

direction, there is a complication when solving the routing problem (see part 3F) which although seemingly trivial for this

simple example, would be quite difficult for scenes with many stimuli, such as natural scenes.

Boundary Figure 3E ↑ In a hierarchy of spatial convolutions, at each layer, a kernel half-width at the edge of the visual field is left unprocessed

because the kernel does not have full data for its convolution. This is compounded layer by layer because the half-widths

are additive layer to layer. The result is that a sizeable boundary region at the top layer is left undefined (a true information

loss) and thus the number of locations that represent veridical results of neural selectivity from the preceding layer is smaller

and restricted to the central portion of the visual field. Solutions, such as used in current CNN’s were first described in van

der Wal and Burt (1992); they have no biological counterpart. See Tsotsos (2011) and Tsotsos et al. (1995, 2016) for a

theory on how the brain deals with the boundary problem.

Routing Figure 3F ↑↓ Because of the above problems, a difficulty arises in the search for the neural pathway that connects a stimulus to the

neurons that best represent it. If the search is bottom-up—from stimulus to highest layer neuron—then the search is

constrained to the feed-forward cone outlined by the dotted lines. If the decisions are based on locally maximal neural

responses (such as max pooling), then there is nothing to prevent a bottom-up search losing its way, due to the diverging

feedforward connectivity, and missing the globally maximum response at the top layer. It is clear that to be successful, the

correct path must always go through the overlap regions shown in dark ovals. But nothing guarantees that the local

maximum must lie within those overlap regions. If the search is top-down—from the globally maximum responding neuron

to the stimulus—the search is constrained by the dashed lines. Only top-down search is guaranteed to correctly connect

the best responding neuron at the top with its stimulus because the search is constrained by the connectivity pattern of the

source neuron which necessarily contains the goal stimulus.

Other such problems, not described here are the Sampling, Lateral Spread, Spatial Spread, Spatial Interpolation, and Convergent Recurrence problems and the interested reader can

find these in Tsotsos (2011).
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FIGURE 3 | The breadth of problems inherent in pyramid representations. (A) The Blurring Problem. An input element in the lowest layer will affect, via its feed-forward

connections, a diverging pattern of locations in the higher layers of the pyramid. (B) The Crosstalk Problem. Two input stimuli activate feed-forward projections that

overlap, with the regions of overlap containing neurons that are affected by both. Those might exhibit unexpected responses with respect to their tuning profiles. (C)

The Context Problem. A stimulus (black dot) within the receptive field of a top layer neuron, showing its spatial context defined by that receptive field. (D). The Multiple

Foci Problem. Regions of overlap show the extent of interference if two (or more) output nodes are considered simultaneously. (E) The Boundary Problem. The two

units depicted in the second layer from the bottom illustrate how the extent of the black unit’s receptive field is entirely within the input layer while only half of the

receptive field of the gray unit is within the input layer. The bottom layer represents the retina; the next layer of the pyramid (say area V1) represents the spatial

dimension of the viewing field in a manner that gives more cortical area to central regions than peripheral. The boundary problem forces more and more of the

periphery to be unrepresented in higher layers of the pyramid. (F) The Routing Problem. Interacting top-down and bottom-up spatial search constraints are shown

with the areas of overlap representing the viable search regions for best neural pathway. (Reproduced from Tsotsos, 2011).

FIGURE 4 | From pyramids to P-lattices. (A) A simple pyramid representation. (B) A lattice of three pyramids. (C) A lattice of pyramids showing complex connectivity.

path. Both Figures 4B,C are P-Lattices; the Figure 4C shows a
more complex version of Figure 4B in order to illustrate the
full nature of the representation. The formalization will not be
further described, but is developed in Tsotsos (2011). It should be
apparent that the P-Lattice representation is much more faithful
to the organization of different processing areas in the brain than
the standard CNN.

The P-Lattice concept also lends itself very naturally to
thinking about an organization that includes not only a
part-whole relationship as is common for pyramids, but
also a specialization relationship. Different features may be
separated out into different sheets, and those may then
be specialized differently along each pathway of the P-
Lattice.
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SELECTIVE TUNING

As a result of the complexity level analysis, a series of
papers outlined the development of a model for how the
main conclusions in the previous sections might impact a
visual processing hierarchy (Tsotsos, 1988b, 1990, 1995b, 2011;
Tsotsos et al., 1995, 2001; Rothenstein and Tsotsos, 2014).
This model, named Selective Tuning (ST) was intended to
provide a mechanistic explanation for how not only attentive
selection and restriction might occur, but also, how the visual
system deals with the many problems of information flow
described in the previous section. To this end, ST incorporated
pyramid representations, spatiotemporally limited receptive
fields, separable feature representations, dynamic tuning and
attentive selection. In order to deal with the Context Problem,
ST employs a suppressive mechanism, recurrent localization,
to inhibit portions of a receptive field deemed ‘ground’ while
attending to ‘figure’ (see Tsotsos et al., 1995; Tsotsos, 2011
for details). Thus, suppression must be added to selection and
restriction to form the full suite of attentional mechanisms.
ST also offers an explanation for a wide variety of attentional
phenomena; it is among the oldest and most studied models
of attention. ST, beginning with the earliest papers, made a
number of predictions about visual attention at both neural and
behavioral levels, which, starting in the late 1990’s, have seen
broad and strong experimental support17 (reviewed in Tsotsos,
2011; also in Hopf et al., 2010; Carrasco, 2011 and more).

Figure 5 illustrates the main features of the model showing
how there are many aspects to attentive processing, and which
are executed determined by the nature of the task of the
moment. It shows the different stages of processing of the
visual hierarchy needed for different visual tasks. The five
components of the figure represent processing stages ordered
in time, from left to right. The stages may be described as
Figure 5A: pre-stimulus (shown as blank to portray a visual
hierarchy ready for a new stimulus); Figure 5B. top-down
priming for task; Figure 5C: feedforward stimulus processing
and figure selection; Figure 5D: recurrent localization and
local suppression, if the task requires it; Figure 5E: secondary
feedforward processing. This illustrates the main cost associated
with dynamic tuning, namely, time. Each hierarchy traversal
may be primed for different function. Different visual tasks
require different processing times depending on passes through
the hierarchy. A smaller additional cost would be the process of
actual tuning. Different visual tasks require different sets of these
basic elements, sometimes with repeated elements and this shows
how dynamic tuning can be realized.

To summarize, ST features several major elements not present
in other models of attention: (1) the recurrent localization
process; (2) the integration of multiple attentional processes
within a single framework; (3) both local and global attentional
operations; (4) the realization that not all vision occurs within the

17These predictions - all asserted before any supporting experimental data -

include, for example, the suppressive surround in spatially attended stimuli, a

suppressive surround in the attended feature dimension, the latency of attentional

neural modulation having a top-down pattern, that neural modulation due to

attention is present throughout the visual hierarchy, that neural baseline firing

increases for an attended location and decreases elsewhere, and more.

150 ms time frame and that different kinds of visual tasks require
different processes and thus take different durations to complete;
(5) the capacity to dynamically tune the visual processing
hierarchy depending on task; and (6) the use of inhibitory
mechanisms rather than enhancement in order to achieve
attentive effects (enhancement is a side-effect of suppression of
competing stimuli).

NATURE OF SIGNAL INTERFERENCE IN
THE P-LATTICE

The impressive successes of deep learning approaches to vision
system development may lead one to think that vision is
a solved problem, and that all one needs is a fast-enough
computer and enough training data18. The complexity level
analysis does indeed tell us something of interest here: that
with enough computational capacity, some vision problems can
be solved. Recall that the role of image size in the complexity
function; this dictates the primary barrier without attentive
selection. Proponents of deep learning widely acknowledge that
the advent of GPU’s and faster processors contributed to the
recent successes. This is not the same as saying the vision
problem has been made tractable: all it means is that with
enough GPU power, the size of image—that is, the value of
P that can be realized in the complexity expression—is now
a reasonable number for practical applications. Importantly, it
cannot be as large as the size of a human retina. We also note that
although those approaches do indeed receive some motivation
from biological vision, that motivation is almost entirely based on
knowledge of the late 1960’s. The methods validate the concepts
of spatially limited receptive field size, convolution processing
and hierarchical processing levels, but not much more. The
representations typically used in deep learning are also not easily
related to neural representations nor their methods for decoding
those representations. None of this of course should detract from
their practical success. The point here is simply that there is a
great deal more work to be done with respect to understanding
how biological systems deal with visual problems.

Let us return to the representation problem. Pyramid
representations help with reducing complexity but as shown
above, add new complications that can, as a group, be considered
as signal interference. In other words, all incoming signals are
represented in all layers of a pyramid (this is true for central
regions, but not for peripheral—see Figure 2E), as they are in all
layers of a modern CNN too. But they are not easily discriminable
due to the interference that the context, boundary, blurring
problems impose. It is important to examine interference more
deeply.

The Context Problem is due to many-to-one neural mapping,
the Blurring Problem due to one-to-many neural mapping
and the Boundary Problem due to the realities of convolution
processes. Of these, only the Boundary Problem leads to actual
information loss and specifically in the periphery; the rest lead to

18Amnon Sha’shua, for example, asserted this in his keynote lecture the 2016 IEEE

Computer Vision and Pattern Recognition conference, Las Vegas NV (Sha’shua,

2016). Elon Musk also claimed autonomous driving is solved, for which vision is a

key technology, in Eadicicco (2016).
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FIGURE 5 | The different stages of processing of the visual hierarchy needed for different visual tasks. The five components of the figure represent processing stages

ordered in time, from left to right. (A) In the first stage, the network is portrayed as “blank,” that is, without stimulus or top-down influences, as it might be prior to the

start of an experiment, for example. (B) The second stage shows the network affected by a top-down pass tuning the network with any priming information to set up

its expectation for a stimulus to appear, when such information is available. Here, the network is set up to expect a stimulus that is centrally located and is imposed via

a global suppression of non-task-relevant locations and/or features. (C) At this point, the stimulus appears and is processed by the tuned network during a single

feedforward pass. If the task is sufficiently simple, such as a detection or categorization tasks with sufficiently simple stimuli so that figure can be selected from

ground, processing is complete. (D) If the required task for this stimulus cannot be satisfied by the first feedforward pass, such as for a within-category identification or

the need for an eye movement response, the recurrent localization algorithm is deployed that traverses the network in a top-down manner, identifying the selected

components while suppressing their spatial surrounds locally. (E) A subsequent feedforward pass then permits a re-analysis of the attended stimulus with interfering

signals reduced or eliminated. It also permits a continuation of the cycle in a repeating fashion, such as would be needed for visual search. This illustrates the main

cost associated with dynamic tuning, namely, time. Different visual tasks require different processing times depending on passes through the hierarchy. A smaller

additional cost would be the process of actual tuning. (Reproduced from Tsotsos and Kruijne, 2014).

signal interference via combination. Every signal continues to be
represented during the feedforward traversal of an input signal,
except that it becomes increasingly intertwined and amalgamated
with nearby signals, dictated by receptive field sizes. Modern
theories prescribe computational decoding procedures that are
able to take this muddled representation as input and decode
it to extract meaning. For example, Hung et al. (2005) used a
classifier-based readout technique (linear SVM) to interpret the
neural coding of selectivity and invariance at the IT population
level. The activity of small neuronal populations over very short
time intervals (as small as 12.5 ms) contained accurate and
robust information about both object “identity” and “category.”
Coarse information about position and scale could be read out
over three positions. Isik et al. (2014) used neural decoding
analysis (also known as multivariate pattern analysis, or readout)
to understand the timing of invariant object recognition in
humans. Neural decoding analysis applies a machine learning
classifier to assess what information about the input stimulus
is present in the recorded neural data. They found that size—
and position-invariant visual information appear around 125
and 150 ms, respectively, and both develop in stages, with
invariance to smaller transformations arising before invariance
to larger transformations. They claimed that this supports a
feed-forward hierarchical model of invariant object recognition
where invariance increases at each successive visual area along
the ventral stream. This is in contrast to work by Zhang et al.
(2011) who show how a classifier can be trained on data from

isolated-object trials and then make predictions about which
objects were shown on either different isolated-object trials or
on trials in which three objects are shown. They concluded that
by focusing on how information is represented by populations
of neurons, competitive effects that occur when two stimuli are
presented within a neuron’s RF, and global gain-like effects that
occur when a single stimulus is presented within a neuron’s
RF, can both be viewed as restoring patterns of neural activity
for object identity and position information, respectively. The
competitive interactions Zhang et al. refer to are attentive
mechanisms whose intent is to reduce interference, which was
the goal of their study. The difference between the last two
papers is due to the different stimuli used, the latter requiring
attention and the former not. We can conclude that although
coarse location information is likely easily extracted after a single
feedforward pass for detection tasks, more complex visual tasks
that require image details of precise features of location likely
are not. The Multiple Foci problem of Figure 3D illustrates
this nicely; spacing within the visual field dictates the degree of
interference.

Let’s continue to examine this neural interference. It is well-
known and studied that the size of visual receptive fields generally
increases with higher levels (or greater abstraction) of processing
within the visual hierarchy of the brain. There is a further
dependency not only on abstraction level but also eccentricity,
or distance of the receptive field from the center of gaze. Kay
et al. (2013) provide illuminating plots of receptive field sizes
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in many visual areas of human cortex as a function of retinal
eccentricity, reproduced in Figure 6. It is clear that the receptive
field size increases with eccentricity within each visual map.
Second, the receptive field size differs between maps, with the
smallest pRFs in V1, and much larger pRFs in ventral (hV4, VO-
1/2) and lateral (LO-1/2, TO-1/2) maps, showing a progression
from least to most abstract in terms of processing. It is important
to note—as the complexity level analysis pointed out earlier—
that receptive fields are space-limited, i.e., there seem to be no
fully connected layers where all receptive fields are connected
to all others. There is a well-defined feedforward as well as
feedback connectivity pattern (mostly symmetric) so that each
element of a representation affects a clear feedforward diverging
cone of elements in the next representation, is fed by a clear
converging cone of elements from the earlier representation
and these connections are bidirectional (this is exactly what
Figure 1 illustrates). A re-plotting of the elements of Figure 6
leads to an explicit view in Figure 7 of the spatial extent

of feedforward convergence. Superimposing the receptive field
maps, V3 onto V1, V4 onto V1 and a hypothetical LO1 receptive
field (using values from Figure 6 at 20◦ eccentricity) shows
clearly that degree of signal convergence onto single neurons with
higher levels of visual processing in cortex. These figures are a
concrete demonstration of the Blurring and Context Problems
of Figure 3. How can the visual system function at all under
such circumstances? Most models do not consider how such
eccentricity-dependent receptive field size variations might be
usefully incorporated.

First, it might be the case that there are many more
target representations at higher levels than previously thought,
something hinted at by the very recent results of Glasser et al.
(2016). That is, the breadth of the P-Lattice representation in the
brain may be significant. Perhaps these might be specializations
as suggested earlier, thus removing some of the interference that
way. Second, lateral interactions within representations could
assist in well-known ways by enhancing contrast, contrast in

FIGURE 6 | Regularities in human population receptive field properties measured with functional MRI. (A) Population receptive field size as a function of eccentricity in

several human retinotopic maps. Two clear trends are evident. First, the population receptive field size increases with eccentricity within each map. Second, the

population receptive field size differs between maps, with the smallest pRFs in V1, and much larger pRFs in ventral (hV4, VO-1/2) and lateral (LO-1/2, TO-1/2) maps

(B) The spatial array of pRFs using the parameters in the left panel. The radius of each circle is the apparent receptive field size at the appropriate eccentricity. [a-from

Kay et al., 2013, Reproduced with permission of the publisher; b-Reproduced with permission of J. Winawer (https://archive.nyu.edu/handle/2451/33887)].

FIGURE 7 | Superposed spatial arrays of receptive fields using plots of Figure 6. (A) V3 over V1. (B) V4 over V1. (C) LO1 over V1 with the LO1 receptive field centerd

over 20◦ eccentricity to match the data from Figure 6. (D) The black circles represent the feedforward divergence of outputs from a single V1 neuron at the V4 level.
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this case not being restricted to luminance but to contrast in
any featural or conceptual space. But this contrast enhancement
cannot be total because local decisions may be wrong (Marr’s,
1982 principle of least commitment; Herzog and Clarke, 2014).

It is not hard to believe that a classifier can indeed be
trained to extract location for simple (Marr-like) images with
small numbers of separated stimuli as Hung et al. report. But
such a situation is not representative of real vision. Something
more is needed for natural images and for tasks where more
precision is required than simple coarse position. There are really
two choices: 1-provide mechanisms that dynamically ameliorate
the interference before interpretation; or, 2-provide mechanisms
to correctly interpret corrupted representations. The methods
just described are of the latter type. We chose to explore the
former possibility. A key feature of the Selective Tuning model of
visual attention is the use of a recurrent localization process that
imposes a suppressive surround around the attended stimulus
as shown in Figure 5D (Carrasco, 2011; Tsotsos, 2011) to deal
with the Context and Routing problems. This would require a
top-down pass through the processing hierarchy after the initial
feedforward pass, consistent with the behavioral timing observed
for such tasks. The requirement for an additional top-down
pass for localization is not inconsistent with the claims of Isik
et al. (2014). In ST, it is the recurrent localization process that
replaces the role of the classifier, and in contrast to current
classifiers presents a biologically plausible mechanism (supported
experimentally, e.g., Boehler et al., 2009, 2011; Hopf et al., 2010).

Signal interference within a pyramid representation is a reality
that seems insufficiently addressed in general. To be sure, the
majority of experimental work, whether neural or behavioral,
focus on foveal or near-foveal stimuli and as the plots of Figure 6
show, the interference impact is not so great. Further, most
experimenters use relatively simple stimuli, spaced apart andwith
little conflicting context. As the diagrams of Figure 3 show, the
distance between stimuli matters for the Blurring, Crosstalk, and
Context Problems and it is experimentally possible to minimize
the effect, thus making it appear as if the problem does not exist.
As a result, experimental work does not fully address the problem
in order to determine if and how it might cause interference or
how the brain might deal with it. New experimental paradigms
seem required.

ATTENTIVE PROCESSING AND ADAPTIVE
BEAMFORMING

The most common way in which attention has found its way
into theories and models of visual processing or other human
sensory or cognitive abilities is as a mechanism to defeat capacity
limits. This is also true for computational systems. The most
prevalent mechanism is that of selecting a region of interest in
some modality of the sensory input or in some conceptual space,
such as a task-relevant sub-domain of interest. In a behaving
agent, eye movements are most often considered the primary
indicator of a shift in attention. Nevertheless, as Tsotsos (2011)
argues and as any review of visual attention (such as Carrasco,
2011) amply illustrates, attention is a much broader capability
with, sadly, no real consensus on how it might be characterized.

One possibility for such a broad characterization appeared in
Tsotsos (2011) where is was proposed that attention is a set of
mechanisms that tune and control the search processes inherent
in perception and cognition, with the major types of mechanisms
being Selection, Suppression, and Restriction. Within each type
are several specific mechanisms as shown in Figure 8.

Earlier, as a result of the complexity level analysis, it
was asserted that the original vision problem is reframed by
partitioning the space of problem instances into sub-spaces
where each might be solvable by a different method instead of
having a single, optimal, algorithm for all problem instances.
The resource limits—which are fixed and common for all sub-
problems in the case of the brain—guide the choices. A key
element of the process is to have a method that, when confronted
with a visual problem instance, can quickly determine which
solution method to apply. And this is where attention is critical.
A sufficiently flexible attentive process can start from the general
and thus largest possible problem definition, and then focus in
and scale down the problem to more manageable sub-problems.
Combining all of these seemingly disparate tools, as shown in
Figure 8, within a single formulation seems a daunting task, but
this is what the Selective Tuning model of attention attempts to
do (Tsotsos, 1988b, 1990, 2011; Tsotsos et al., 1995).

Interestingly, a related combination of disparate tools
has not only been attempted previously, but has developed
into a well-understood and very widely use technology,
namely adaptive beamforming. Beamforming is a signal
processing technique used in sensor arrays for directional
signal transmission or reception (Van Veen and Buckley,
1988). Electromagnetic waves are additive and if more
than one wave co-exists in space and time, this additive
property causes each waveform to interfere with the others.
Beamforming attempts to minimize this interference. This
is achieved by controlling how elements combine so that
some signals experience constructive interference while others
experience destructive interference. Beamforming can be
used at both the transmitting and receiving ends in order
to achieve spatial selectivity. Beamforming can be used for
radio or sound waves and has found numerous applications
in radar, sonar, seismology, wireless communications, radio
astronomy, acoustics, and biomedicine. An adaptive beamformer
dynamically adjusts in order to maximize or minimize a desired
parameter, such as signal-to-interference-plus-noise ratio.
Dynamically adjusting phase and magnitude will cause the
antenna gain pattern to change and provides for directional
sensitivity without physically moving an array of receivers or
transmitters.

The essence of beamforming seems precisely what attention
seeks to accomplish: to pick out the relevant signal from
among all the irrelevant ones. This connection between
attention and beamforming has been made previously in the
auditory domain (see Kidd et al., 2015, for a recent effort)
in order to provide solutions to the well-known Cocktail
Party problem. There are components of constructive and
destructive interference within the attentional mechanisms of
ST, and more, but it would be beyond the scope here to
further explore the relationship. However, it is clear that
any representations of visual information processing must
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FIGURE 8 | Attention is a set of mechanisms that tune and control the search processes inherent in perception and cognition, with the major types of mechanisms

being Selection, Suppression, and Restriction. See Tsotsos (2011) for details on each of the sub-mechanisms.

support these mechanisms. Adaptive beamforming—or perhaps
more appropriately attentive beamforming—might present an
appropriate analogy for formalization of dynamic visual attention
processes.

CONCLUSIONS

The hallmark of human vision is its generality. The same brain
and same visual system allow one to play tennis, drive a car,
perform surgery, view photo albums, read a book, gaze into your
loved one’s eyes, go online shopping, solve 1,000-piece jigsaw
puzzles, find your lost keys, chase after your young daughter
when she appears in danger, and so much more. The reality
is that incredible as the AI successes so far have been, it is
humbling to acknowledge how far there is still to go. Recent
AI systems even sometimes outperform humans so it is difficult
to determine how well they might provide an explanation for
human intelligence. With respect to an explanation for human
intelligence, it is as important to ensure that model systems
behave correctly as humans and with the same response times,
as it is to ensure model systems fail as humans do. The successes
have all been uni-taskers (they have a single, narrowly defined
function)—the human visual system is a multi-tasker, and the
tasks one can teach that system seem unbounded. And it is an
infeasible solution to simply create a brain that includes a large
set of uni-taskers.

Representation has been central to AI since its inception
and it is only recently that it seems supplanted by the
success of the machine learning approach. Unfortunately, the
representations that learning systems create—except possibly

for limited aspects of early vision—seem inscrutable. It
might be that in order to make progress, there remains
a need to better understand the kinds of representations
and their transformations as they may be occurring in the
brain, a sentiment appearing decades ago. Zucker (1981)
stressed the importance of representation. He pointed out
that computational models have two essential components—
representational languages for describing information, and
mechanisms that manipulate those representations, and: “One of
the strongest arguments for having explicit abstract representations
is the fact that they provide explanatory terms for otherwise
difficult (if not impossible) notions.”

Our presentation has focused on the constraints that
complexity level analysis presents for the representations and
for the visual processes that operate on them in the brain
(or in machines). It is clear that the main claim, namely,
that resource-complexity matching is a source of critical
constraints on the viability of theories, remains intact. The 30
years that have passed since their first introduction in this
context have given us the luxury of seeing how they stood
the test of time. None of the conclusions were in common
use back then and some indeed were firmly believed to be
incorrect19. Throughout, we have argued for a very specific
view on representation and their processing, whose features
include:

19For example, the prediction of spatial surround suppression due to attention,

first described in Tsotsos (1988b), was in fact “proved” infeasible in the brain by

Crick andKoch (1990; p. 959) but now is widely confirmed (see review byCarrasco,

2011). See also the various peer commentaries published along with Tsotsos (1990).
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• an overall organization of visual areas into a lattice of
pyramids,

• spatiotemporally limited receptive fields,
• specialized pathways based on visual features,
• a suite of attentional mechanisms that dynamically suppress,

select and restrict processing to control the input space and to
ameliorate the signal interference problem, and,

• the use of task or world knowledge can have profound impact
on the computational complexity of a visual problem and
should be employed whenever available,

• a partitioning of the space of visual tasks into a taxonomy
of sub-tasks, each with its own specific characteristics
and requiring differing methods all realized on that same
processing substrate,

• the different decision-making strategies and the complex
taxonomy of visual tasks strongly motivates the need for
an executive control process that would dynamically decide
on how to best approach and solve visual tasks as they are
presented.

Moreover, the intractability results of our own work and
of all other authors cited here, and more, show the futility
of pursuing single criterion algorithms of any kind (for
example, Friston’s (2010) free-energy principle). Much is

already in line with current knowledge of the brain, many
of these features have found their way into the successful
systems of the present, but much still requires further
study. There is no suggestion that complexity level analysis
can replace any other type of analysis. However, it is
a critical component of theory development and provides
an important source of constraint that models cannot do
without.
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