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The human visual system contains a hierarchical sequence of modules that take part

in visual perception at different levels of abstraction, i.e., superordinate, basic, and

subordinate levels. One important question is to identify the “entry” level at which the

visual representation is commenced in the process of object recognition. For a long time,

it was believed that the basic level had a temporal advantage over two others. This claim

has been challenged recently. Here we used a series of psychophysics experiments,

based on a rapid presentation paradigm, as well as two computational models, with

bandpass filtered images of five object classes to study the processing order of the

categorization levels. In these experiments, we investigated the type of visual information

required for categorizing objects in each level by varying the spatial frequency bands

of the input image. The results of our psychophysics experiments and computational

models are consistent. They indicate that the different spatial frequency information had

different effects on object categorization in each level. In the absence of high frequency

information, subordinate and basic level categorization are performed less accurately,

while the superordinate level is performedwell. This means that low frequency information

is sufficient for superordinate level, but not for the basic and subordinate levels. These

finer levels rely more on high frequency information, which appears to take longer to

be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we

evaluated the robustness of the results by adding different amounts of noise to the

input images and repeating the experiments. As expected, the categorization accuracy

decreased and the reaction time increased significantly, but the trends were the same.

This shows that our results are not due to a ceiling effect. The compatibility between

our psychophysical and computational results suggests that the temporal advantage of

the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to

the computational constraints (the visual system processes higher spatial frequencies

more slowly, and categorization in finer levels depends more on these higher spatial

frequencies).

Keywords: spatial frequencies, object categorization, categorization levels, psychophysics, rapid object

presentation

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
https://doi.org/10.3389/fpsyg.2017.01261
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2017.01261&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mgtabesh@ut.ac.ir
https://doi.org/10.3389/fpsyg.2017.01261
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01261/abstract
http://loop.frontiersin.org/people/433710/overview
http://loop.frontiersin.org/people/300123/overview
http://loop.frontiersin.org/people/21932/overview
http://loop.frontiersin.org/people/344545/overview


Ashtiani et al. Categorization Levels and Spatial Frequencies

1. INTRODUCTION

An object can be categorized in different levels of abstraction,
including the superordinate (e.g., animal), basic (e.g., bird),
and subordinate (e.g., duck) levels. The processing order of
these levels is yet being debated. There are several studies
suggesting that categorization in the basic level is completed
prior to the superordinate level (Tanaka and Taylor, 1991; Collin
and Mcmullen, 2005; Rogers and Patterson, 2007; Dehaqani
et al., 2016). On the other side, the advantage of the basic
level has been challenged by showing faster visual processing
for the superordinate level in rapid-presentation experiments.
Using two-forced-choice behavioral experiments with long (i.e.,
500ms) and short (i.e., 50ms) presentation times, Bowers and
Jones (2008) showed that superordinate level categorization
(object/texture images) is completed before the basic level (e.g.,
dog/bus). Also, Macé et al. (2009) found that rapidly presented
(26ms) natural images were faster to be categorized at the
superordinate level than the basic level. Using a forced-choice
saccadic task, Wu et al. (2014) found that humans can accurately
perform superordinate level categorization at 120 ms, while
the accuracy of basic level categorization is around chance-
level. Although Mack and Palmeri (2015) challenged the rapid
presentation paradigm for studying the processing order of
categorization levels, studies done by Poncet and Fabre-Thorpe
(2014) and Vanmarcke et al. (2016) showed that the advantage
of superordinate level is not affected by the stimulus duration
(25–500 ms) and diversity. Also, Praß et al. (2013) showed that
the background context and animacy have no effect on the
superordinate level advantage.

There is evidence indicating that the visual system processes
visual input in order from low to high spatial frequencies
(HSFs) (Schyns and Oliva, 1994; Macé et al., 2005; Kauffmann
et al., 2015), or from general shape to fine details. However,
it is still disputed how the brain processes different spatial
frequencies (Kauffmann et al., 2014). Bar et al. (2006) suggest that
low spatial frequencies (LSFs) are analyzed quickly and provide
an initial and general guess about the object, which then facilitates
the object categorization. Indeed, it is suggested that the LSFs
are rapidly conveyed by the magnocellular pathways into the
high cortical areas (e.g., orbitofrontal cortex). There, a coarse
object representation is formed and then back-projected to the
inferiortemporal cortex to refine the subsequent processing of
HSFs conveyed by the parvocellular pathways through the ventral
visual cortex (Bar et al., 2006; Kauffmann et al., 2015). There are
also theoretical studies which provide mathematical frameworks,
like the hierarchical Bayesian models (Lee and Mumford, 2003),
suggesting how such an integration of top-down contextual
priors and bottom-up information can help visual cortex to
implement a probabilistic inference about the observed objects.

Therefore, studying the impact of spatial frequencies
on humans’ accuracy and reaction time (RT) in object
categorization tasks at different levels can help to unravel
the entry categorization level challenge. Using speeded category
verification tasks, Collin and Mcmullen (2005) showed that
basic level categorization is completed earlier than superordinate
and subordinate levels. The main critic to these types of

experiments is the use of semantic labels, that involves semantic
processing of the brain (Wu et al., 2014). Binding the object
visual representation and its name takes time which may be
different for each categorization level (Macé et al., 2009).

Here, we used a rapid presentation paradigm with frequency-
filtered images to study the processing order of the categorization
levels. Indeed, subjects were asked to determine the category
of the object image presented for a duration of 12.5ms in
one of the superordinate, basic, and subordinate levels, when
the image was intact or bandpass filtered into one of the LSF,
HSF, or intermediate spatial frequency (ISF) bands. For each
categorization level, we performed several psychophysics tasks
in which images of different object categories were used. This
way, we could check whether the results are independent of target
object categories.

The results of our psychophysics experiments indicated
that the superordinate level categorization mainly relies on
LSFs, while the basic and subordinate levels require higher
spatial frequencies. Indeed, for superordinate level, the human
categorization accuracy peaks at LSF band and drops with
the ISF and HSF bands. On the contrary, for the basic and
subordinate levels, the accuracy increases by increasing the
spatial frequency (with a greater slope in subordinate level).
However, the RT always increases with the spatial frequency,
whatever the categorization level, which is compatible with the
processing order of spatial frequencies (from low to high). Also,
RTs decrease with categorization level, whatever the frequency
band. These findings are in support of the temporal advantage
of superordinate to the basic level, as well as, basic to the
subordinate level.

Computational models can be used to investigate whether
human behavior is caused by the information constraints or
specific neural processing in the brain. Yu et al. (2016) have
used a computational approach to finding the set of category-
specific features suitable for object categorization in each of the
abstraction levels and showed that their model can explain the
human behavior. We also evaluated two object categorization
models on the same set of experiments in different categorization
levels using images in different frequency bands. This helps to
investigate whether the results of our psychophysics experiments
are due to the specific processingmechanisms of the visual system
or they are forced by the information content in each frequency
band.

Interestingly, the categorization accuracies of both models
strongly correlate with human accuracies in all categorization
levels and frequency bands. This suggests that, from a
computational point of view, the LSF band carries sufficient
visual information to perform superordinate level categorization,
while for the basic and subordinate levels, higher frequencies
are required. Thus, since lower spatial frequencies are mainly
processed earlier than higher ones (Schyns and Oliva, 1994; Macé
et al., 2005; Kauffmann et al., 2015), the superordinate level
appears to be the entry categorization level, and subsequently, the
basic and subordinate levels are completed.

Further, we added different amounts of phase noise to the
images and repeated all the psychophysics and computational
experiments, to check for any possible ceiling effect. By increasing
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the noise level, the accuracies (resp. RTs) in all categorization
levels and frequency bands are decreased (resp. increased).
However, at each noise level, the trend of the accuracies and RTs is
the same as the noise-less experiments. Again, this confirms that
our results are caused by the visual information at each frequency
band.

2. MATERIALS AND METHODS

2.1. Dataset
We used images of five object categories, including ducks,
pigeons, cats, dogs, and cars (200 images per category). Most of
the images were picked from the Imagenet dataset (Russakovsky
et al., 2015), and others were gathered from the web. Each image
contains the side view of a different instance of one of the object
categories. For each categorization level, a different combination
of categories has been used. For the superordinate level (animal
vs. non-animal), there were four different sets of images in two
categories: one of the four animals and the car category. Also, for
the basic level (bird vs. non-bird animals) there was also four sets,
each of which containing one bird (duck or pigeon) and one non-
bird animal (cat or dog). In the subordinate level, only duck and
pigeon categories were employed. Figure 1 shows some examples
from each category as well as the hierarchy of the categorization
levels. Note that the images were grayscaled and cropped to have
300× 300 pixels.

All the images have also been filtered into LSF, ISF, and
HSF bands (Figure 2). To produce the filtered images, first,
each original image was Fourier transformed into the frequency
domain, and then, multiplied by a 2D frequency filter to keep
the desired frequencies, and finally, backed to the spatial domain
using inverse Fourier transformation. Here, we used 2DGaussian
low-pass function to construct the desired frequency filters. The
general form of a Gaussian low-pass, HLP, and Gaussian high-
pass, HHP, filters are as follows:

HLP(u, υ) = exp

(

−
(u/M)2 + (υ/N)2

2F2
l

)

, (1)

and

HHP(u, υ) = 1−HLP(u, υ), (2)

where u and v are the frequency coordinates, M and N are
correspondingly the maximum frequency component at each
frequency dimension, and 0 ≤ Fl ≤ 1 is the frequency cut-
off rate. Using two Gaussian filters, say HLP1 and HLP2 with
the corresponding cut-off rates of Fl1 and Fl2 (Fl1 < Fl2), the
band-pass filter, HBP, is calculated as:

HBP(u, υ) = HLP2(u, v)−HLP1(u, υ), (3)

To prepare the LSF-, ISF-, and HSF-filtered images, we used
respectivelyHLP1,HBP andHHP2 (= 1−HLP2) filters with cut-off
frequency rates of Fl1 = 0.25 and Fl2 = 0.60.

We also prepared a noisy version of the original and
frequency-filtered images. We added phase noise in different
levels (20, 30, 40, and 50%) to each image. Unlike other noise

generating methods (e.g., simple white noise), the phase noise
produces a noise signal that is proportional to the energy of image
at each spatial frequency level. Indeed, it consists of frequency
components of the image that have been displaced, therefore, the
phase noise will have exactly the same energy distribution as the
image itself. We used a noise addition mechanism analogous to
Ales et al. (2012) study.

2.2. Psychophysics Experiments
We performed 12 rapid two-forced-choice object categorization
experiments containing three categorization levels
(superordinate, basic, and subordinate), two image types
(i.e., original and frequency-filtered images), and two noise
conditions (i.e., images with and without noise). Each trial
started with a fixation point presented on a uniform gray
background for 500ms. Then, a stimulus image was shown for
12.5ms (one frame on an 80Hz monitor) followed by a uniform
gray screen, presented for another 12.5ms, as an inter-stimulus
interval (ISI). Immediately afterward, a 1/f noise mask was
shown for 150ms. Finally, subjects should report the category
of the stimulus image, by pressing the corresponding key on
a keyboard. Each experiment session started with a training
phase in which subjects learned to do the categorization task
at the desired level, followed by a recording phase in which
we recorded the subjects’ RT and performance. The training
phase of each session contained 20 images (10 images per
category) that are randomly selected. When subjects reported
their decision, a feedback was shown to them indicating whether
they responded correctly or not. The recording phase contained
240 trials (120 images per category) without any feedback.
Images used in the training phase are not shown in the recording
phase.

Subjects were seated on a comfortable chair in a dark
room and were instructed to respond as fast and accurate as
possible. Stimuli were presented using Matlab Psychophysics
Toolbox (Brainard, 1997) in a 17" CRTmonitor with a resolution
of 800×600 pixels, frame rate 80Hz, and viewing distance of
60 cm. Therefore, each stimulus covered 11× 11◦ of visual angle.
Regarding our psychophysics experimental setting, the cut-off
values of the LSF and HSF filters correspond to ∼2 and ∼5
cycles per visual degree which are compatible with Guyader et al.
(2017) study. Notably, from a 60 cm distance, our monitor has a
resolution of∼7 cycles per visual degree.

All subjects voluntarily participated in the experiments
and gave their written consent prior to participation. All
experimental protocols were approved by the ethical committee
of the University of Tehran. All experiments were carried
out in accordance with the guidelines of the Declaration
of Helsinki and the ethical committee of the University of
Tehran.

For the superordinate level experiments, there were four
animal/non-animal tasks (one of the four animals vs. car). Also,
there were four bird/non-bird tasks (duck or pigeon v.s cat or
dog) for the basic level, and one bird categorization task (duck
vs. pigeon) for the subordinate level experiments. Regarding the
image type and noise condition, we classify all the experiments in
four groups:
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FIGURE 1 | (A) Examples of image stimuli and the hierarchy of three categorization levels. Levels are specified by different colors, i.e., superordinate in blue, basic in

red and subordinate in green borders. (B) A sample image bandpass filtered into different spatial frequency bands and contaminated with different amounts of phase

noise. Columns specify different frequency bands: full-band (unfiltered image), LSF, ISF, and HSF bands respectively from left to right. Rows correspond to the noise

levels: 0% (without noise), 20, 30, 40, and 50% phase noise respectively from top to bottom.

• Original images (i.e., full-band):

In these experiments, the original images were used as
stimuli. 40 subjects participated in the superordinate level
experiment (10 for each task), 40 subjects performed the basic
level experiment (10 for each task), and 20 subjects did the
subordinate level experiment. Images were randomly shuffled
and shown in different trials.

• Frequency-filtered images:

For these experiments, we used filtered images in LSF, ISF,
and HSF bands (see Section 2.1). The number of subjects
who participated in superordinate, basic, and subordinate level
experiments was the same as in the “Original images” case.
For each frequency band, 40 images per category were used in
the recording phase of each experiment session (2 [category]
× 3 [frequency bands] × 40 [images] = 240 images). For
the training phase, we also used frequency-filtered images.
Notably, images were presented in a random order.

• Noisy images:

In these experiments, we used the noisy version of the original
images (see Section 2.1) with four different noise levels (20, 30,
40, and 50 %). Here again, we had 40 subjects for each of the
superordinate and basic level experiments and 20 subjects for
the subordinate level. We used 30 images for each noise level,
and thus, in total 120 images per category were presented in
each task (2 [category] × 4 [noise levels] × 30 [image] = 240

images). Similar to the previous case, the order of images was
random.

• Frequency-filtered noisy images:

Frequency-filtered images contaminated with noise
(Section 2.1) were used in this series of experiments.
There again, the number of subjects in superordinate, basic,
and subordinate level experiments were the same as in the
“Original images” case. For each frequency band and noise
level, 10 images per category were used in the recording
phase of each experiment session (2 [category]× 3 [frequency
bands] × 4 [noise levels] × 10 image = 240 images). For
the training phase, we also used frequency-filtered images in
different noise levels. Images were presented in random order.

2.3. Computational Models
To investigate the information content in each frequency band
for the different categorization levels, we used two computational
models. Each model was evaluated on similar categorization
tasks as performed in our psychophysics experiments. Indeed,
we performed the superordinate, basic, and subordinate level
categorization tasks with the full-band, frequency-filtered, noisy,
and frequency-filtered noisy images, separately. Thus, we had
12 experiments (3 [categorization levels] × 2 [image types]
× 2 [noise condition]). Again, for the superordinate level
experiments, we performed four animal/non-animal tasks. Also,
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FIGURE 2 | A sample image filtered into different spatial frequency bands using Gabor filters and Gaussian bandpass filters. Image filtered into the LSF, ISF, and HSF

bands are respectively shown from left to right. (A) Image of each frequency band is the accumulation of the outputs of Gabor filters in four orientations (0, 45, 90, and

135◦). (B) Gaussian bandpass filtered images using HLP1, HBP, and HHP2 filters (see Section 1).

for the basic and subordinate level experiments, we performed
four bird/non-bird animal and one bird categorization tasks,
respectively. For each categorization task, we used 400 training
images (200 per category) for extracting features and training
the classifier, and 400 test images to evaluate the model. In
each task, both the training and testing images belonged to the
same group. For instance, if the experiment was performed on
LSF-filtered images, then all the training and testing samples
were filtered in LSF band. However, the frequency filtering
mechanism depends on the structure of each model (see
below). It should be mentioned that for both models, we used
grayscaled images that were rescaled to have 140 pixels in
height.

2.3.1. Model I

The first model is largely inspired by the HMAX model (Serre
et al., 2007), which is widely used in the visual neuroscience
studies as a model of object recognition. In this model, the
input image is first filtered in the S1 layer, by applying various
Gabor filters with different spatial frequencies and orientations.
Then, in the C1 layer, a local max operation is performed over
the output of S1 layer. Afterward, random patches are extracted
from the output of C1 layer over the training images. These
patches are considered as object representative visual features
corresponding to the object categories. For each test image, all
extracted patches are convolved with the output of C1 layer
in different positions (S2 layer) and the maximum convolution
values, corresponding to the extracted visual features, provide
the object representation in C2 layer. Finally, a classifier
detects the category of the input image based on its C2
representation.

The standard HMAX model uses Gabor filters with 16
different spatial frequencies and four orientations in the S1
layer (i.e., 0, 45, 90, and 135◦), which are compatible with the
recordings in area V1; see Serre et al. (2007) for more details.
In the C1 layer of HMAX, the local max operation is performed
over a neighborhood of two adjacent frequencies, i.e., the C1
layer compresses every two consecutive S1 maps into one C1
map. We used the first two C1 maps as high, the next four as
intermediate, and the last two as LSF bands. Hence, for each
frequency band, the original images are fed into the model and
the corresponding Gabor filters are applied on them in the S1
layer. Then, the C1 maps are computed by performing a local
max operation over the output of two consecutive S1 maps. For
instance, in the HSF band, we used Gabor filters in the first
four spatial frequencies, while the other frequencies are totally
neglected.

In the S2 layer, we picked random patches from each C1 map,
where the size of these patches varied from 4× 4 to 24× 24 with
a step of 2. Then, for each patch size, 1,000 random patches are
extracted from different training images. Therefore, for instance,
the S2 layer crops 22,000 random patches (2 [C1 maps] × 11
[patch sizes] × [1,000 patches per size]) for the HSF band. In C2
layer, we perform a global max operation over each S2 map and
put them together as the representative feature vector. Finally,
we employed a 1-nearest neighbor (1-NN) classifier to categorize
the input test image based on the label of the closest training
sample in C2 feature space. Figure 3A shows the overall sketch
of Model I for the HSF band.

Therefore, for the experiments with the full-band images (i.e.,
original images) we used all the eight C1 feature maps. But, for
the LSF, ISF, and HSF cases, we only used the corresponding C1
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FIGURE 3 | (A) The overall sketch of Model I for processing the HSF bands. In the S1 layer, the input image is convolved with Gabor filters (four orientations) in the

first four high spatial frequency sizes (i.e., HSF). C1 layer pools each of the two consecutive S1 maps. During the learning, S2 layer extracts patches of different size

from the C1 output over different input images. During the test phase, the S2 patches are convolved with the output of the C1 layer. Then the C2 layer applies a global

max operation over the output of each S2 output map. Finally a K-NN classifier detects the category of the input image based on the location of its C2 vector and

nearest training C2 vectors. (B) The overall sketch of Model II for processing the HSF band. The input images are first filtered into the HSF band and then S2 patches

are extracted from the filtered images. The remaining parts are similar to Model I. For both models, the same procedures but with different filters in first layers are used

for the ISF and LSF bands.

maps. In the noisy image experiments, first we added the noise to
the input image, and then fed it to the model.

2.3.2. Model II

The frequency filtering mechanism applied in the Model I (using
Gabor filters with different spatial frequencies) is different from
what was used in the psychophysics experiments. Therefore,
using Model II, which replaces S1 and C1 layers with directly
frequency-filtered images, we could verify that the results are
independent of the frequency filtering mechanism.

In this model, we discarded the first two layers of the standard
HMAX. Thus, for frequency-filtered image experiments, we used
the same procedure as explained in Section 2.1 to filter images
into the desired frequency bands. For the full-band, we extracted
11,000 patches (11 [patch sizes] × 1,000 [patches per size])
directly cropped from the original images. For the Frequency-
filtered (noisy) images, the patches are extracted from the filtered
(noisy) images. Afterward, to construct the feature vectors, we
convolved these patches with the input images and performed a
global max operation. At the end, a similar classifier (1-nearest
neighbor) is used for deciding about the category of the input
image. Figure 3B shows the overall sketch ofModel II for theHSF
band.

3. RESULTS

In this section, we present the results of the psychophysical
and computational experiments. Section 3.1 provides the

accuracy and reaction time of human subjects performing
the superordinate, basic, and subordinate level psychophysics
experiments with the original and frequency-filtered images.
Then, in Section 3.2, the recognition accuracy of both
computational models over the same experiments is presented.
Finally, the robustness of the results to different amounts of noise
is examined in Section 3.3.

3.1. Humans’ Accuracy and Reaction Time
Depend on Spatial Frequency Information
The recognition accuracies of human subjects for the
psychophysics experiments (see Section 2.2 for the details)
with full-frequency band (i.e., original) images as well as
the frequency-filtered images (i.e., LSF, ISF, and HSF bands)
are shown in Figure 4. Figure 4A demonstrates the subjects
mean accuracy for different tasks in each of the superordinate,
basic, and subordinate level experiments. We performed
three-factor ANOVA using spatial frequency, task, and
categorization level as factors. This allows us to study the
effect of each factor and their interactions on the categorization
accuracy.

As seen in the Superordinate column (left part) of Figure 4A,
there is no significant difference between the accuracies in the
four superordinate animal/non-animal tasks (p = 0.542 > 0.05,
F = 0.720). Also, it can be seen that the categorization accuracies
are very high in all the frequency bands. This means that the
coarse information at LSF band is sufficient for the superordinate
categorization level. The subjects’ mean accuracy over each of
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FIGURE 4 | Subjects’ mean accuracy for different categorization levels and spatial frequency bands. (A) Subjects’ accuracy for the different tasks of each

categorization level. (B) Average accuracies over the different tasks of the superordinate (duck vs. car, pigeon vs. car, cat vs. car, and dog vs. car), basic (duck vs. cat,

duck vs. dog, pigeon vs. cat, and pigeon vs. dog) and subordinate (duck vs. pigeon) levels. The p-value matrix presents the significant and strongly significant values

using + and * signs, respectively. Error bars represent standard error of the mean (SEM). The between (within) group degree of freedom (df) is 11 (108).

the four (bird/non-bird) basic level tasks is presented in the
Basic column (middle part) of Figure 4A. Here again, there is no
significant difference among the four basic level tasks (p = 0.958
> 0.05, F = 0.103). However, the accuracy in basic level tasks
dropped, with respect to the superordinate level. The maximum
accuracy drop has occurred in the LSF band, while it is not
changed much for the HSF band. The same effect is observed for
the subordinate task, with higher accuracy drop in the LSF and
ISF bands.

Since there was no significant difference between the tasks
corresponding to each categorization experiment, we also
reported the average accuracy for each categorization level
and each frequency band (see Figure 4B). We performed a
two-factor ANOVA using frequency band and categorization
level as factors. The interaction between these two factors
was statistically significant (p = 0.0001, F = 10.503). For
the superordinate level, by moving through the frequency
bands from low to high, the accuracies decreased smoothly
(this decrease is not statistically significant). In addition, the
accuracy with the full-band images is significantly higher
than the ISF and HSF bands, while the difference is not
significant for LSF band (see p-value matrix in Figure 4).
These together suggest that the LSF information is sufficient
and necessary for superordinate level categorization. For the
basic and subordinate levels, the LSF does not carry the
required information by which the human subjects could
precisely perform the categorization task. But, by shifting the
frequency band toward the higher frequencies, the accuracy is
constantly increasing. Compared to subordinate, the basic level
has higher accuracy with lower frequency bands. Interestingly,
for the HSF band, the accuracies corresponding to different
categorization levels become closer to each other. Therefore, it

can be said that the lower frequencies are suitable for higher
categorization levels (e.g., superordinate), while performing low
categorization levels (e.g., subordinate) require higher frequency
information.

We also recorded the subjects RT during the experiments.
Figure 5A presents the mean RT, independently for each
psychophysics task. Like for the accuracies, we performed a three-
factor ANOVA using the categorization level, frequency band,
and task as independent factors. Again, there is no significant
difference among the tasks in the superordinate (p = 0.795 >

0.05; F = 0.342) and basic (p = 0.919 > 0.05; F = 0.166) level
experiments. Thus, in Figure 5B, we averaged the RTs of each
categorization level and frequency band over the different tasks.
For all categorization levels, the RT increases by moving from the
low to the high ones. We also performed a two-factor ANOVA
using frequency band and categorization level as factors. The
interaction between these two factors was statistically significant
(p = 0.0001, F = 61.886). Also, we found that RTs of ISF
experiments are significantly higher than those of LSF, and RTs
of HSF experiments are significantly higher than those of ISF (see
p-value matrix in Figure 5). These results are compatible with the
previous findings indicating that lower frequencies are processed
earlier than higher ones (Macé et al., 2005; Kauffmann et al.,
2015).

On the other hand, there are several studies suggesting that
the initial guess about the object is taken based on the LSF
information which facilitates the recognition process in higher
visual areas (Fenske et al., 2006; Craddock et al., 2015). In
agreement with these studies, the RTs of full-band experiments
in all three categorization levels are significantly shorter than
the HSF and ISF experiments, but close to the LSF ones (the
differences are not statistically significant; see p-value matrix in
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FIGURE 5 | Subjects’ mean RT for different categorization levels and spatial frequency bands. (A) Subjects’ RT for the different tasks of each categorization level.

(B) Average RT over the different tasks of the superordinate (duck vs. car, pigeon vs. car, cat vs. car, and dog vs. car), basic (duck vs. cat, duck vs. dog, pigeon vs.

cat, and pigeon vs. dog) and subordinate (duck vs. pigeon) levels. The p-value matrix presents the significant and strongly significant values using + and * signs,

respectively. Error bars represent standard error of the mean (SEM). The between (within) group df is 11 (108).

Figure 5). Generally, the RTs of superordinate level are shorter
than those of basic level, and RTs of basic level are shorter than
those of subordinate level (see Figure 5B). In addition, the RT
differences are longer in the LSF experiments.

By considering both RTs (Figure 5B) and accuracies
(Figure 4B), three main conclusions can be drawn. First, using
just LSF information, humans could quickly and accurately
accomplish the superordinate categorization. While, the RT
is much longer with HSF information, despite the reasonable
accuracy. These together suggest that the superordinate
categorization is mainly done using the LSF information.
Second, although categorization in basic and subordinate levels
using the LSF information is completed faster, the accuracies are
very low. Therefore, LSF information is not sufficient for the
basic and subordinate levels. Intuitively, in the superordinate
level, there is a high inter-category dissimilarity, and therefore,
LSF information is sufficient for performing the task. For the
subordinate tasks, with higher inter-category similarity, higher
frequency information is required which carries more details
about the object. Third, to complete the basic and subordinate
level categorization, subjects needed HSF information. However,
higher frequencies are processed later than lower ones. Hence,
it can be concluded that superordinate level is the entry object
categorization level, and then, categorization in the basic and
subordinate levels are accomplished.

3.2. Computational Models Account for
Human Behavior
As mentioned in Section 2.3, we employed two computational
models to study whether the changes in human performance over
the frequency bands are due to the changes in the information
content in each band or due to the way the visual system

processes different frequency information. Therefore, we assessed
the models on the same categorization tasks as human subjects
performed in the psychophysics experiments. The details of the
models and the way they are trained and tested in each task
are fully explained in Section 2.3. Briefly, Gabor filters with
different spatial frequencies are used in Model I to filter the input
images into LSF, ISF, and HSF bands. Gabor filters with low
(high) spatial frequencies act as low-pass (high-pass) filters and
extract coarse (fine) information from the image. In Model II,
images were directly filtered into the different frequency
bands.

Figure 6A shows the accuracy of Model I over the different
categorization tasks and levels, as well as frequency bands. Here
again, we performed a three-factor ANOVA using categorization
level, task, and frequency band as independent factors. Like for
humans, there was no significant difference among the different
tasks of each categorization level experiment (superordinate: p=
0.091 > 0.05, F = 2.199; basic level: p= 0.060 > 0.05, F = 2.525).
Therefore, in Figure 6B, we averaged the accuracies across the
categorization tasks. Interestingly, the overall trend in accuracies
of the Model I is very similar to those of humans (see Figure 4B):
the accuracy of this model in superordinate level drops by
moving from LSF band to the higher ones. Computationally, this
means that lower frequencies contain more information about
superordinate categories than the higher ones. While, in the basic
and subordinate levels, higher frequency bands lead to higher
accuracies. However, compared to the subordinate, the basic
level has higher accuracies in LSF and ISF bands. Surprisingly,
similarly to humans, the accuracies of all categorization levels
become close to each other at the HSF band. Here again, we
performed a two-factor ANOVA on the accuracy of the Model I
using frequency band and categorization level as factors. The
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FIGURE 6 | Mean accuracies of Model I (averaged over 10 independent runs) for different categorization levels and spatial frequency bands. (A) Model’s accuracy for

the different tasks of each categorization level. (B) Average accuracies over the different tasks of the superordinate (duck vs. car, pigeon vs. car, cat vs. car, and dog

vs. car), basic (duck vs. cat, duck vs. dog, pigeon vs. cat, and pigeon vs. dog) and subordinate (duck vs. pigeon) levels. The p-value matrix presents the significant

and strongly significant values using + and * signs, respectively. Error bars represent standard error of the mean (SEM). The between (within) group df is 11 (108).

interaction between these two factors was statistically significant
(p= 0.0001, F = 93.182).

The accuracies of the Model II are also presented in Figure 7,
where Figure 7 contains the accuracies on each task, and
Figure 7B shows the accuracies averaged over the tasks. We
performed a two-factor ANOVA on the average accuracy of
Model II using frequency band and categorization level as
factors. The interaction between these two factors was statistically
significant (p = 0.0001, F = 42.050). With respect to Model I,
the accuracies of Model II have dropped, which is due to the
elimination of the prepossessing stages (S1 and C1 layers) in this
model. However, what matters is the trend of accuracies within
and between the categorization levels. As seen, the results of
Model II are similar to those of Model I. Again, LSF band lead
to high accuracy in the superordinate level, while it results in the
lowest accuracy for the other two categorization levels. Also, for
accurate categorization in the basic and subordinate levels, HSF
information is necessary.

Due to the consistency of the results of the two computational
models with the human behavior, it can be said that the
observed human accuracy pattern is mainly due to the
information content in different frequency bands. In the LSF
band, where the overall shape of the object is preserved and
other details are removed, categorization in superordinate level
can be done with high accuracy. This coarse information is
not useful for the other two categorization levels (basic and
subordinate), where the categories have more shape similarities.
Therefore, the visual system needs more detailed information
which lies in higher frequency bands. As stated before, lower
spatial frequencies are processed faster than higher ones, and
therefore, it is computationally difficult for the visual cortex to

do superordinate categorization before basic and subordinate
levels.

Interestingly, similarly to humans, the accuracies of both
models dropped in superordinate level, when moving from LSF
band to the higher ones. Clearly, at the superordinate level,
there is a huge variation among the objects in each category.
Therefore, lower frequencies, which maintain the overall shape
of the objects, contain the required information for superordinate
level categorization. However, in the basic and subordinate levels,
the higher frequency bands are more informative. Compared to
the subordinate level, the basic level has higher accuracies in LSF
and ISF bands. Surprisingly, similarly to humans, the accuracies
of all the categorization levels meet each other at the HSF band.

3.3. Results Are Robust to Noise
We repeated all the behavioral (see Section 2.2) and
computational (see Section 2.3) experiments with noisy
images described in Section 2.1. Adding noise to the input image
will increase the errors, and therefore, it will avoid any potential
ceiling effects in the performances. Also, it allows us to check
whether the obtained results are still valid under more difficult
visual conditions.

Figure 8A,B show the human subjects’ categorization
accuracy and RT for the full-band and frequency-filtered images
with different amounts of noise, respectively. Note that, for each
categorization level experiment, we averaged the accuracies and
RTs corresponding to each task. For instance, for the subordinate
level experiment, there were four animal/non-animal tasks (see
Section 2.1).

As shown in Figure 8A, when increasing the noise level, the
accuracy dropped. But, the overall trend of accuracies over the
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FIGURE 7 | Mean accuracies of Model II (averaged over 10 independent run) for different categorization levels and spatial frequency bands. (A) Model’s accuracy for

the different tasks of each categorization level. (B) Average accuracies over the different tasks of the superordinate (duck vs. car, pigeon vs. car, cat vs. car, and dog

vs. car), basic (duck vs. cat, duck vs. dog, pigeon vs. cat, and pigeon vs. dog) and subordinate (duck vs. pigeon) levels. The p-value matrix presents the significant

and strongly significant values using + and * signs, respectively. Error bars represent standard error of the mean (SEM). The between (within) group df is 11 (108).

frequency bands and categorization levels remains the same. For
the superordinate categorization, LSF band has higher accuracy
than intermediate and high bands, even for 50% noise level. For
the basic and subordinate levels, the accuracy increases moving
from LSF to ISF and HSF bands. To statistically investigate the
effect of noise on categorization accuracies, again we performed
a three-factor ANOVA using noise, categorization level, and
frequency band as independent factors. Our analysis indicates
that there is no significant interaction between the categorization
and noise levels, meaning that adding noise has no effect on
the accuracy trend over the categorization levels. However, the
noise level has a significant effect on the accuracy (p = 0.0001
< 0.05, F = 243.759). All the other effects and interactions
were also significant (frequency: p = 0.0001 < 0.05, F = 74.261;
categorization level: p = 0.0001 < 0.05, F = 99.628; frequency
× categorization level: p = 0.0001 < 0.05, F = 10.636; frequency
× noise: p= 0.038 < 0.05, F = 1.858).

Adding noise also increases the RT (see Figure 8B). Similarly
to the noise-free experiments, for all categorization levels, the
RT increases by moving from LSF to ISF and HSF bands.
Here again, subordinate (basic) has longer RTs than basic
(superordinate) level. Interestingly, for all categorization levels,
as the amount of noise increases, the pattern of RTs is maintained
but shifted toward longer times. We performed a three-factor
ANOVA to study the impacts of noise, categorization level,
and frequency band on RTs. Similarly to the accuracies, adding
noise had a significant effect on RTs (p = 0.0001 < 0.05, F
= 156.275), and there was no significant interaction between
the categorization level and noise. All the other effects and
interactions were also significant (frequency: p = 0.0001 < 0.05,
F= 327.685; categorization level: p= 0.0001< 0.05, F= 202.089;
frequency×categorization level: p= 0.0001 < 0.05, F = 4.144).

Also, we evaluated the two computational models on the
noisy images. This allowed to study, from a computational
point of view, how adding noise affects the information at each
frequency band, i.e., accuracy in each categorization level. The
categorization accuracies of Models I and II for different levels
of noise are shown in Figure 9A,B, respectively. Similarly to
the humans, by increasing the amount of noise, the accuracies
dropped, while the trend of accuracies over the frequency bands
wasmaintained. In addition, for all noise levels, LSF band leads to
higher accuracies in superordinate level than ISF and HSF bands,
while higher frequencies are suitable for basic and subordinate
levels.

4. DISCUSSION

The aim of our study was to investigate the effect of spatial
frequencies on object categorization in different levels (i.e.,
superordinate, basic and subordinate levels). We constructed an
object dataset containing images of cars and four animals (ducks,
pigeons, cats, and dogs). Images were also filtered into LSF,
ISF, and HSF bands. We performed several rapid-presentation
psychophysics experiments at different categorization levels, and
recorded the subjects’ accuracy and RT. The same categorization
experiments were also performed by two computational models.

Although, the relation between the global (resp. local)
visual processing and LSF (resp. HSF) information has been
debated (Morrison and Schyns, 2001; Boutet et al., 2003; Loftus
and Harley, 2004; Goffaux et al., 2005; Goffaux and Rossion,
2006), coarse information is obviously excluded from the HSF-
filtered images, whereas the fine details such as sharp edges
and textures are absent in LSF-filtered images. Results of our
psychophysics experiments reveal that using just LSFs, humans
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FIGURE 8 | The effect of adding different amounts of noise to the image stimuli (20, 30, 40, and 50%) on humans’ accuracy (A) and RT (B). Error bars represent

standard error of the mean (SEM). The between (within) group df is 59 (540).

FIGURE 9 | The effect of adding different amounts of noise to the image stimuli (20, 30, 40, and 50%) on the accuracy of Model I (A) and Model II (B). Error bars

represent standard error of the mean (SEM). The between (within) group df is 59 (540).

could accurately perform superordinate level categorization.
While, for the basic and subordinate levels, higher frequency
information is required and humans could not reach high
precisions using just LSF information. In addition, the accuracy
at the basic level was greater than the subordinate level for LSF
and ISF bands. These together indicate that basic level is not fully
dependent on HSF or LSF bands. Also, at HSF band, the human
accuracy in all categorization levels is almost equal. This suggests

that HSF bands carry the same amount of information useful for
each categorization level.

However, these results are contrary to the findings of Collin
and Mcmullen (2005), where they suggested that the highest
accuracy with LSF information is reached at the basic level, while
superordinate and subordinate levels rely on higher frequencies.
This contradiction could be due to the employed speeded
category verification task which included more analysis beyond
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the object detection. Actually, they presented a category name
followed by an object image, and subjects had to report if they
matched or not. Reading and language cortical areas might be
activated during the visual process which can give an advantage
to the basic level, over the superordinate level. Therefore, this
type of experiment has been criticized because of involving the
semantic processing of the brain (Rosch et al., 1976; Macé et al.,
2009; Wu et al., 2014).

Our results are compatible with the theory of coarse-to-
fine temporal processing in the visual system (Navon, 1977;
Schyns and Oliva, 1994; Hughes et al., 1996; Macé et al.,
2005), where lower frequencies are processed earlier than higher
ones, independently of the categorization level. In addition,
the subjects’ RT for the superordinate (resp. basic) level
was shorter than the basic (resp. subordinate) level. These
suggest that the superordinate level is the entry categorization
level, and the subordinate level is the latest one. However,
these results contradict with the findings of some earlier
studies (Jolicoeur et al., 1984; Murphy and Brownell, 1985;
Murphy and Wisniewski, 1989; Gauthier et al., 1997; Large
et al., 2004) suggesting the temporal advantage for the basic
level categorization. Particularly, Collin and Mcmullen (2005)
suggested that whatever the spatial frequency band, the basic
level is completed earlier than superordinate and subordinate
levels. Again, this could be due to the employed speeded category
verification paradigm and long stimulus presentation time in
their experiments.

From a computational point of view, our results could be
due to the information content at each frequency band, or
the underlying neural processes involving object categorization
at each level. We used two computational models to do the
same categorization experiments as humans did. These models
employ different frequency filtering mechanisms; one uses Gabor
filters with low to HSFs, and the other one uses directly filtered
images. Both models reached similar accuracy pattern to those
of humans over the different categorization levels and frequency
bands. Therefore, computationally, neither basic nor subordinate
level can be the entry level, due to the lack of required visual
information in the LSF band.

The computational models we used in this study only
explain the human categorization accuracy and do not take the
processing time into account. Employing temporal models like
recurrent networks could help in this regard. However, to be
compatible with the findings in the processing order of frequency

information (i.e., from low to high) in the visual cortex, such
model should process the LSF components earlier than HSFs.
Based on our results, it is expected that the model will accomplish
the superordinate level categorization much faster than basic
and subordinate levels. Also, mathematical frameworks like
the hierarchical Bayesian model (Lee and Mumford, 2003)
can be used to explain the timing as well as the accuracy of
the human visual system in object categorization at different
abstraction levels. Based on the early input information, an
initial probabilistic inference is made and then it is updated by
the upcoming inputs and feedbacks. For instance, using LSF
information, a general guess about the animacy of the seen object
is made and it is completed by the upcoming HSF information to
detect the species of the animal.

Here, we only used five object classes (dog, cat, pigeon, duck,
and car) in our psychophysics and computational experiments.
Increasing the number of classes, especially in basic and
subordinate levels, will substantially increase the need for more
human subjects to perform the psychophysics tasks. Instead, we
increased the number of exemplars in each of the five categories
and employed more subjects for each task. Although, for the
superordinate level we only had the car class as the non-animal
category, each subject participated in only one superordinate
task in which he/she was asked to detect animals (one of the
four animals) from non-animals (cars). Hence, subjects were not
biased to detect cars only.
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