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Numerous studies have assessed the cognitive correlates of performance in

mathematics, but little research has been conducted to systematically examine the

relations between visual perception as the starting point of visuospatial processing and

typical mathematical performance. In the current study, we recruited 223 seventh graders

to perform a visual form perception task (figure matching), numerosity comparison,

digit comparison, exact computation, approximate computation, and curriculum-based

mathematical achievement tests. Results showed that, after controlling for gender,

age, and five general cognitive processes (choice reaction time, visual tracing, mental

rotation, spatial working memory, and non-verbal matrices reasoning), visual form

perception had unique contributions to numerosity comparison, digit comparison, and

exact computation, but had no significant relation with approximate computation or

curriculum-based mathematical achievement. These results suggest that visual form

perception is an important independent cognitive correlate of lower level math categories,

including the approximate number system, digit comparison, and exact computation.

Keywords: visual form perception, approximate number system, numerical processing, mathematical

achievement, computation

INTRODUCTION

Numerous behavioral studies have been conducted to assess the cognitive correlates of
mathematical performance and have shown the important role of visuospatial processes in
mathematical processing (e.g., Berg, 2008; Krajewski and Schneider, 2009; Simmons et al., 2012;
VanDer Ven et al., 2013). Research in neuroscience also showed that visuospatial andmathematical
processes recruit some common brain areas, such as the parietal cortex (see Hubbard et al.,
2005, for a review). Most of the previous researches, however, were focused on the relationship
between mathematical processing and visuospatial working memory (e.g., Berg, 2008; Krajewski
and Schneider, 2009; Simmons et al., 2012; Van Der Ven et al., 2013; Sella et al., 2016). Although
visuospatial working memory is a critical visuospatial component, it does not encompass all aspects
of visuospatial processing. Indeed, visuospatial processing includes multiple components, such as
visual perception, visual attention, spatial attention, and visuospatial working memory.

Visual perception, the starting point of visuospatial processing, had been shown to have a close
relation with language processing through its relationship with orthographic processing in language
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processing (e.g., Damasio and Damasio, 1983; Eden et al., 1996;
Demb et al., 1998; Cestnick and Coltheart, 1999; Talcott et al.,
2000; Sperling et al., 2005; Meng et al., 2011; see Vidyasagar
and Pammer, 2010, for a review). Given that mathematical
processing is also based on symbolic systems (e.g., numbers,
letters, mathematical signs, and even words) that are similar
to symbolic languages, mathematical processing may also have
a close relationship with visual perception. This relationship,
however, had been only sparsely investigated.

Visual Perception and Mathematical
Abilities
As mentioned above, visual perception may be related to not
only language processing through its impact on orthographic
processing, but also mathematical performance through its
impact on the processing of mathematical symbols. However,
only a few studies used visual perception tasks to show
the relationship between visual perception and mathematical
performance (e.g., Rosner, 1973; Solan, 1987; Kulp, 1999; Kurdek
and Sinclair, 2001; Sigmundsson et al., 2010).

For example, Rosner (1973) measured visual perception with
a visual perception test (VAT) (Rosner, 1969) in which the
children were asked to copy designs drawn on dot matrices
to match a target stimulus. The results showed that visual
perception explained the variance in computation performance
after controlling for auditory perception. A longitudinal study
by Kurdek and Sinclair (2001) showed the importance of visual
perception in children’s math development. They used a visual
discrimination task (perception and discrimination of similarities
and differences between various shapes and geometric forms)
as well as other tasks in a kindergarten readiness test (KRT)
and found that visual discrimination ability in kindergarten
children could uniquely predict mathematical achievement in
fourth grade.

Parallel with the studies on the role of visual coherent motion
detection in language performance, Sigmundsson et al.’s study
2011 on children with low mathematical performance found that
the children were less sensitive to visual coherent motion than
age-matched controls. Boets et al. (2011) further showed that
coherent motion sensitivity predicted individual differences in
simple subtractions. They reasoned that subtraction highly relies
on quantity processing, which is subserved by regions along the
intraparietal sulcus, a region in the visual dorsal pathway which
underlies coherent motion detection (Boets et al., 2011).

Visual Form Perception Can Account For
the Relation between the ANS and Exact
Computation
The approximate number system (ANS) is shared by human and
non-human animals. It functions by estimating the number of
items (e.g., the number of dots in a dot array) without relying
on counting one by one. The ANS acuity or accuracy has been
shown to be closely associated with mathematical performance
(e.g., Halberda et al., 2008; Libertus et al., 2011; Lyons and
Beilock, 2011). For example, children with developmental
dyscalculia also suffer from ANS impairment (e.g., Landerl et al.,

2004; Geary et al., 2009; Piazza et al., 2010). Sensitivity of
the ANS correlated with symbolic mathematical performance
for normally developing children (e.g., Halberda et al., 2008,
2012; Mundy and Gilmore, 2009; Inglis et al., 2011; Libertus
et al., 2011, 2013; Mazzocco et al., 2011; Bonny and Lourenco,
2013). Halberda et al. (2008) found that 14-year-old children’s
ANS ability was closely associated with their earlier symbolic
mathematical performance in third grade, after controlling for
a series of cognitive processes including general intelligence,
language processing, and working memory.

Furthermore, ANS training (such as approximate arithmetic
task) has been found to promote the development of symbolic
computation abilities (e.g., Park and Brannon, 2013, 2014; Hyde
et al., 2014), while a comment from Lindskog and Winman
(2016) doubted the effect of Park and Brannon (2013, 2014) due
to their methodology.

However, some studies failed to show the association
(e.g., Sasanguie et al., 2012, 2013; Vanbinst et al., 2012;
Zhou et al., 2015; see a review by de Smedt et al., 2013).
Recently, Zhang et al. (2016) found that ANS acuity only
correlated with mathematical fluency but not with mathematical
reasoning.

The close relationship between the ANS and symbolic math
performance was traditionally attributed to the domain-specific
processing in the ANS (e.g., Barth et al., 2005, 2006, 2008; Nieder
andDehaene, 2009; Gilmore et al., 2010; Park and Brannon, 2013;
Hyde et al., 2014). For example, Park and Brannon (2013) argued
that humans’ ANS permitted estimation and rough calculation
of numerical quantities without symbols. Gilmore et al. (2010)
treated ANS as a type of core numerical ability. The ANS is
important for the acquisition of symbolic numerical skills, such
as counting and arithmetic, because both ANS and symbolic
numerical skills involve quantity processing (e.g., Gilmore et al.,
2007; Inglis et al., 2011). Indeed, previous correlational studies
have shown a significant relation between symbolic mathematics
and quantity processing (e.g., de Smedt et al., 2009; Lefevre et al.,
2010; Sasanguie et al., 2013; Zhang et al., 2016).

An alternative hypothesis was proposed by Zhou and
colleagues (Zhou and Cheng, 2015; Zhou et al., 2015), who
argued that visual form perception accounts for the close relation
between the ANS and exact computation. Zhou et al. (2015)
found that, after controlling for the score on geometric figure
discrimination as well as the scores on other general cognitive
processing measures (i.e., Raven’s Progressive Matrices, mental
rotation, choice reaction, visual tracing, and digit span), the close
relation between the ANS and exact computation was not existent
(e.g., Zhou et al., 2015). Zhou and Cheng (2015) also showed
that the ANS difference between children with dyscalculia
and typically-developed children was associated with difference
in geometric figure discrimination. These results suggested a
possibility that the ability of figure discrimination might account
for the relation between the ANS and exact computation because
the two previous studies have excluded some types of general
cognitive factors (Zhou and Cheng, 2015; Zhou et al., 2015).
That is, visual form perception is one of the possible reasons
to interpret the positive relation between ANS and symbolic
mathematical performance.
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The geometric figure matching task used in the above two
studies was adopted from the Manual for the Kit of Factor-
Referenced Cognitive Tests (Ekstrom et al., 1976) and the visual
perception test (VMI-VP) in the Beery-Buktenica Developmental
Test of Visual-Motor Integration (VMI 4th edition, Beery
et al., 1997). This task was used to measure the ability of
geometric figure discrimination, which involves the abilities
to attend to and to identify a figure’s distinguishing features
and details. The figure could be treated as a form or shape,
consisting of abstract lines. The geometric figure matching task
was used in the two studies because it could be associated
with visual form perception, alphanumeric symbols, and
numerosity.

Some previous studies found close relationships between
the ANS and symbolic mathematical performance even after
controlling for visual perception (Halberda et al., 2008).
Halberda et al. (2008) controlled 4 types of visual processing
tasks, including visual working memory, visual segmentation,
object perception, and visual motor integration, and they still
found significant relationships between the ANS and symbolic
mathematical performance. Piazza et al. (2010) found that math
education level did not relate to the precision of visual size
discrimination in a size comparison task. Tibber et al. (2012)
showed that the sensitivity to the orientations of two clusters
of Gabor blobs could predict math abilities, but the sensitivity
to size and density could not. The visual perception tasks used
in these studies, however, were mostly focused on size, color,
or brightness, which are different from visual form processing
(e.g., Milner et al., 1991; Cavina-Pratesi et al., 2015). Thus,
these tasks might not fully measure visual form processing.
Given that visual form processing appears to be a critical
component of visual perception with regard to relationships
with the ANS and symbolic mathematics performance, tasks that
are focused on visual form processing, such as the geometric
figure discrimination task (Zhou and Cheng, 2015; Zhou et al.,
2015) may be more proper to be utilized in studies of the
relationships between visual form perception, the ANS, and
symbolic mathematics performance.

The Current Study
Although previous studies have shown the relation between
visual perception and symbolic mathematical performance,
they seldom differentiated between different categories of
mathematical performance. Given that cognitive correlates for
different types of mathematical performance differ greatly (e.g.,
Fuchs et al., 2008; Petrill et al., 2011), the role of visual perception
might also differ among different types of mathematical
performance. To address these two issues, the current study
focused on the role of visual form perception, measured
with the figure matching task which involves geometric figure
discrimination (Zhou and Cheng, 2015; Zhou et al., 2015), in
five typical categories of mathematical performance: numerosity
comparison, digit comparison, exact computation, approximate
computation, and curriculum-based math achievement.

According to previous studies on the relations between
visual perception, ANS, and mathematical performance, it is
hypothesized that visual perception is more closely associated

with the performance in lower level math categories which
rely more on visual features. The lower level math categories
could include the ANS, digit comparison, and simple arithmetic.
Previous studies have shown that visual form perception or the
ANS was not significantly associated with higher level math
categories, such as curriculum-based math achievement, which
relies on math concept and math problem solving instead of
lower level abilities (e.g., Sasanguie et al., 2012, 2013; Vanbinst
et al., 2012; Zhou et al., 2015; Zhang et al., 2016). We thus
predict that visual perception has minimal contribution to higher
level math categories including approximate computation and
curriculum-based math achievement.

Following the general hypothesis, we propose five specific
hypotheses for the five math measures:

Hypothesis 1: visual form perception has a unique
contribution to numerosity comparison. Numerosity
comparison tasks usually use dot arrays to express quantity
information. Patient studies showed that a patient suffering
from visual form agnosia had deficit in numerosity processing
(Milner et al., 1991). To extract numerical quantity
information expressed by a dot array, the participants
may transform the dot array into some type of visual form or
pattern, which is related to visual form perception.
Hypothesis 2: visual form perception has a unique
contribution to digit comparison. Digit comparison is
based on visual perception of Arabic digits. The patient DF
with visual form agnosia also had deficit in recognizing Arabic
digits (Milner and Goodale, 2006).
Hypothesis 3: visual form perception has a unique
contribution to exact computation. Studies have shown
that visual form perception can account for the relation
between ANS and exact computation (e.g., Zhou and Cheng,
2015; Zhou et al., 2015). Exact computation problems, such
as 15–7 and 34 × 6, can be performed mentally and quickly.
The symbolic processing is similar to geometric figure
discrimination. Thus, visual form perception measured with
geometric figure matching is expected to be associated with
the exact computation.
Hypothesis 4: visual form perception has aminor or no unique
contribution to approximate computation. Although the
exact and approximate computation questions have similar
presentation of Arabic digits, participants might just focus
on some key digits (e.g., the most left digits) and neglect
some digits to make quick approximation after having a
glance at the whole presentation of approximate computation
question. Approximate computation and curriculum-based
math achievement could be typically associated with math
problem solving (e.g., Jordan et al., 2009; Jitendra et al., 2014).
Approximate computation (e.g., 645 × 54, 90.288 ÷ 22.8)
could be categorized as a type of math problem solving,
because the participants could not directly retrieve answers
from long-term memory nor use routine procedures to
calculate answers, but instead they have to search for solutions
by flexibly applying strategies (Caviola et al., 2012; Ganor-
Stern, 2015). Math problem solving involves the searching
the path from preconditions to solutions and is supposed
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to include four steps: understanding the problem, devising a
plan, carrying out the plan, and looking back (Polya, 1957).
None of the steps appear to involve a large amount of visual
form perception. Therefore, although visual form perception
still affects recognition of math symbols (e.g., Arabic digits
and mathematical signs), its importance is greatly reduced in
approximate computation.
Hypothesis 5: visual form perception has aminor or no unique
contribution to curriculum-based mathematical achievement.
Curriculum-based math achievement typically involves math
problem solving, such as simplifying algebraic expressions and
solving equations and math word problems. In this study,
the content in the mathematical achievement test was learnt
during the past semester, in contrast to the exact computation
test, whose content was learnt in lower grades of primary
school (e.g., 1–3 grades). Therefore, the main processes in
the mathematical achievement task could be the activation,
retrieval, and application of math knowledge acquired during
the past semester, which does not appear to heavily rely on
visual form perception.

In addition, Hypothesis 5 is supported by a recent finding
that, after controlling for some general cognitive processes (i.e.,
non-verbal IQ, mental rotation, visual tracing, verbal working
memory, and choice reaction time), visual form perception has
an independent contribution to exact computation, but not
curriculum-based math achievement for third to fifth graders in
primary schools (Zhou et al., 2015).

Several general cognitive processes, such as processing speed,
attention, spatial working memory, and intelligence have been
shown to be associated with mathematical performance (Berg,
2008; Krajewski and Schneider, 2009). To control for these
general cognitive processes, these processes were measured and
used as covariates in the current study.

METHODS

Participants
The participants included 223 seventh grade students (90 boys
and 133 girls, mean age 12.9 years-old (SD= 0.66), ranging from
11.2 to 13.7) in a middle school in Shijiazhuang municipality of
Hebei Province in China. All participants were native Chinese
speakers.

The school attended the study in order to assess the basic
learning ability of its seventh graders and to perform remedial
instruction partially based on the assessment. The program
including the cognitive testing was fully explained to students’
guardians (typically parents) in the school’s parent meeting in the
semester. During themeeting, the guardians gave written consent
forms for the remedial instruction program. Among a total of
248 students, 223 students finally attended the cognitive testing.
Testing results were provided only to the school’s psychological
counselors who possess psychological counseling certificates of
the third or second level (highest level in China). No other
teachers or administrators had access to the results. All tests were
fully explained to the counselors, who were then able to use the
results as evidence, along with the students’ achievement scores

and the teachers’ subjective assessments to provide instructional
suggestions for the students.

The school is public, with a slightly above-average academic
level in the city. There were ∼30–40 students per class. The
study was approved by the institutional review board (IRB) at the
State Key Laboratory of Cognitive Neuroscience and Learning at
Beijing Normal University.

Tests
A total of 11 tests were used. All except for the curriculum-based
mathematical achievement test were computerized using web-
based applications in the “Online Psychological Experimental
System (OPES)” (www.dweipsy.com/lattice). Besides a figure
matching test, which measured visual perceptual ability, other
tests were also included to measure general cognitive processes,
including choice reaction time, mental rotation, spatial working
memory (adapted from Corsi Blocks Task, Corsi, 1972), visual
tracing, and non-verbal matrices reasoning. The tests covered a
wide range of cognitive processes that involve visual perception,
attention, working memory and general intelligence. Previous
studies have shown that these cognitive processes are closely
associated with mathematical performance (e.g., Spinath et al.,
2006; Deary et al., 2007; Berg, 2008; Krajewski and Schneider,
2009; Wei et al., 2012b).

For most tests, the participants responded to two-choice
options by pressing the Q and P keys on a computer keyboard
to choose the correct answers. The other response modes were
explained below in more details. In all tests except for the
spatial working memory test, the participants were encouraged
to respond as quickly and accurately as possible. The schematic
representations of all tests, except for the curriculum-based
mathematical achievement test, are displayed in Figure 1. The
tests are introduced as follows.

Figure Matching
The figure matching test was used to measure visual form
perception ability (Zhou and Cheng, 2015; Zhou et al., 2015).
The test included 120 trials, each containing one target line
picture on the left side and three candidate line pictures on the
right side. A picture consisted of two simple geometric figures.
Previous studies have used geometric figure discrimination to
measure visual form perception (e.g., Efron, 1969; Milner et al.,
1991; Cavina-Pratesi et al., 2015). The four line pictures were
presented simultaneously for 400ms. Each picture had horizontal
and vertical visual angles of 2.8◦. The four pictures extended to a
visual angle of about 15◦. The participants were asked to fixate
at the center of the screen in the beginning of the experiment,
but no fixation sign was presented for each trial. The participants
were asked to judge whether the picture on the left side was the
same as any of the pictures on the right side. The 120 trials were
grouped into three 40-trial sessions, and the participants were
asked to complete all trials. There were 60 matched trials and
60 non-matched trials. The trials were constructed from 150 line
figures, each picture being used 1–3 times.

The score of this test was calculated as the adjusted number
of correct trials to control for the effect of guessing in multiple
choice tests. The score was calculated by subtracting the number
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FIGURE 1 | Schematic representation of 10 tests used in the study.

of incorrect responses from the number of correct responses
(e.g., Salthouse, 1994; Salthouse and Meinz, 1995; Hedden and
Yoon, 2006; Cirino, 2011). This procedure followed the Guilford
correction formula “S=R-W/ (n-1)” (S: the adjusted number of
items that the participants can actually perform without the aid
of chance. R: the number of right responses. W: the number of
wrong responses. n: the number of alternative responses to each
item) (Guilford and Guilford, 1936). This correction procedure
has been utilized recently in studies of mathematical cognition
(e.g., Cirino, 2011; Wei et al., 2012a,b) and cognition in general
(e.g., Salthouse, 1994; Putz et al., 2004; Hedden and Yoon, 2006).

The same scoring procedure was used for the other tests, if not
specified otherwise below.

Choice Reaction Time
A basic reaction time task was employed to control for effects of
manual response and mental processing speed (cf., Butterworth’s
(2003) “Dyscalculia Screener”, which included a reaction time
task). Each trial consisted of a fixation cross in the center of
the computer screen and a white dot either to the left or right
of the fixation cross. The participants responded to the dot on
the left side with the left hand and to the dot on the right
side with the right hand. This test included 30 trials. The RSI
(response-stimulus interval) was varied randomly between 1,500
and 3,000ms.

The score of this test was calculated as the median reaction
time and error rate for each participant. The gross mean error
rate for the choice reaction time task was very low (1.3%) and
was not further analyzed.

Visual Tracing
The test was adapted from Groffman’s visual tracing test
(Groffman, 1966) and was used to assess the ability of oculomotor

coordination, which has been linked to reading disability
(Groffman, 1994) and mathematical deficit (Fischer et al.,
2008; Groffman, 2009). Several interweaving curved lines were
presented within a square, starting from the left side of the square
and ending on the right side. The participants were asked to track
a particular line from the beginning to the end only by “eyeing”
(i.e., they were not allowed to use a finger, the cursor, or an object
to trace) and then to mark the correct end point by clicking
the left mouse button. This task became increasingly difficult as
the total number of lines increased. There were 12 groups of
trials, each containing three trials. In each group of trials, the
target curved lines were interweaved with each other and also
interweaved with other non-target curved lines. The participants
were instructed to mark the end points of the target lines with red
color. This task contained 181 trials and was limited to 4 min.

The participants earned one score if they correctly clicked on
the end point of a target curved line. The final score of this test
was the sum of scores.

Mental Rotation
Mental rotation has been treated as a representative of
active visuospatial working memory, because it involves active
manipulation of spatial information, other than just passive
memorizing and retrieval (Vecchi and Girelli, 1998). The mental
rotation test was adapted from Vandenberg and Kuse (1978).
The revised version had only two choices and had a 3 min limit
for completion. Each trial consisted of three three-dimensional
images. One target image was presented on the top of the screen.
The participants mentally rotated the target image to match one
of two candidate images that were presented at the bottom of the
screen. One candidate image was rotated from the target image
with a rotation angle ranging from 15◦ to 345◦ (with intervals
of 15◦). The other image was a mirror image of the target. In
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each trial, the stimuli remained on the screen until the participant
responded.

Nonverbal Matrix Reasoning
Nonverbal matrix reasoning was utilized to assess the
abstract reasoning ability. Previous research has shown that
nonverbal matrix reasoning score correlated with mathematical
performance (Rohde and Thompson, 2007; Kyttälä and Lehto,
2008). The task was adapted from Raven’s Progressive Matrices
(Raven, 2000). The participants were instructed to figure out
hidden rules underlying a presented figure and to select the
missing segment of the figure from several candidate answers.
We used a simplified version of the test, which included only
two candidate answers for each question, instead of 4∼6 options
in the original test. Thus, the number of candidate answers was
consistent with the other tests in this study. Due to limited time,
the test was shortened to 80 items including 44 items from the
Standard Progressive Matrices (12 items from the first set and
eight items from each of the other four sets) and 36 items from
the Advanced Progressive Matrices. The formal test was limited
to 4 min. Similar shortened versions of this test have been used
in previous studies (e.g., Bouma et al., 1996; Bors and Vigneau,
2001; Vigneau et al., 2006; Wei et al., 2012a). The shortened
version had convergent validity, as shown by its high correlation
with a number series completion task, which measures a type
of reasoning in mathematics (Wei et al., 2012a). According to
previous studies (Chuderski, 2013, 2015), this test with limited
time would be related to working memory.

Spatial Working Memory
This test was adapted from the Corsi Blocks Task (Corsi, 1972).
Dots were sequentially presented in an implicit 3 × 3 lattice
on the computer screen. The number of dots for a trial ranged
from three to nine. Each dot was presented for 1,000ms, with
an interval of 1,000ms between dots. After the presentation of
all dots, the participants used a mouse to click on the lattice
according to the position and order of the dot presentation.

The score of this test was calculated as accuracy, using the
following formula: Accuracy = 100 – | response – standard
answer | / (standard answer + | response – standard answer
|) ×100. The formula returns values from 0 to 100. Response
refers to the participants’ answer, and standard answer refers to
the correct answer. Deviation of the participants’ answer from
the standard answer was divided by the sum of the standard
answer and the deviation, which gives the degree of deviation
from the standard value. For each trial, two accuracy scores were
first calculated. The accuracy scores along the horizontal and
vertical directions were calculated using the x and y coordinates,
respectively, of the target dot and the response location. A final
accuracy score was then calculated as the average of these two
scores. For example, the coordinates of a target dot is (10, 10), and
those of the response is (12, 15). The accuracy of x coordinate is
100-|(12-10)|/ (10+|(12-10)|)×100=83.33%, and the accuracy of
y coordinate is 100-|(15-10)|/ (10+|(15-10)|)×100=66.67%. The
average accuracy for the target dot is 75.00%.

The formula was adapted from the formula for the percentage
absolute error (PAE) in the number-line task (Siegler and Mu,

2008): PAE= |estimate – estimated quantity | /scale of estimates.
Given that the participants could provide any number as the
solution in some cases (e.g., approximate computation task
introduced below), there is no limit for the participants’ response.
To address this issue, we revised the denominator in the Siegler
and Mu’s formula. The formula is typically used to calculate the
deviation of response from standard answer. Thus, “standard
answer” was treated as the reference and the denominator.
Meanwhile, the absolute difference “| response—standard answer
|” was also added to the denominator to ensure that the ratio in
the new formula was in the range between 0 to 1 (inclusively),
for any number in both the response and the standard
answer.

Numerosity Comparison
The numerosity comparison test was used to assess approximate
number sense (Wei et al., 2012a). Each trial consisted of two dot
arrays presented for 200 ms, the same as in Halberda et al.’s study
study (2008), which tested 14-year-old children. Each dot array
included 11, 14, 17, 20, 23, 26, or 29 dots. The visual angle for
a dot array presented in a gray circle is 6.8◦. The diameters of
dots varied from 1 to 7mm. The two dot arrays in a trial were
horizontally aligned and extended to a visual angle of about 14◦.
The participants were asked to fixate at the center of the screen
in the beginning of the task, but no fixation sign was presented
for each trial. The participants were instructed to choose the dot
array with more dots, ignoring all visual properties, including
total surface area, envelope area, diameter, and circumference.
The test includes 120 trials. The dot arrays were created following
a common procedure to control for continuous quantities in non-
symbolic numerical discrimination (Halberda et al., 2008; Agrillo
et al., 2013). The two dot arrays in half of the trials had the
same total combined area, whereas those in the other half had
the same average area of all dots. The dots in a dot array were
randomly distributed within a circle, and the dots’ sizes varied.
The envelope area/convex hull varied little from trial to trial.
There were 6 ratio types between the numbers of dots in the two
dot arrays, ranged from 1.2 to 2.0. There were 20 trials from each
ratio type. The trials were administered in three sessions, with 40
trials for each session. The students were asked to complete all of
the trials.

Gebuis and Reynvoet (2011) proposed that five visual
properties of the numerosity comparison task could affect
numerosity comparison: total surface area, envelope area or
convex hull, item size, density, and circumference. Density is
defined as the number of items per unit area (e.g., Anobile
et al., 2013a; Tinelli et al., 2015). Zhou et al. (2015) showed that
the numerosity comparison task was still ratio-dependent after
the five visual properties of dot arrays were controlled for. To
confirm previous findings, the current study would also examine
the effects of visual properties on task performance.

Digit Comparison
The digit comparison test was used to measure the ability of
symbolic numerical comparison and it included 84 pairs of
single-digit Arabic numbers (ranging from 2 to 9) presented
in random orders. The participants were asked to choose the
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number that was larger in quantity. The formal test was limited
to 2.5 min.

Exact Computation
There were three exact computation tasks: simple subtraction,
complex subtraction, and multiple-digit multiplication. Scores
for the three tasks were averaged as the score of exact
computation.

Simple subtraction
The simple subtraction task, consisting of 92 problems, was the
reversed operation to single-digit addition. The largest minuend
was 18, and the smallest one was 2. The differences between
two operands were always single-digit numbers. Each problem
included two candidate answers. The false answer deviated from
the true answer by plus or minus 3 (i.e.,±1,±2, or±3). This was
a time-limited (2min) task.

Complex subtraction
The complex subtraction task, consisting of 95 problems,
included double-digit numbers for both operands. Borrowing
was required for most problems. Each problem included two
candidate answers. The differences between the false answers and
the true answers were 1 or 10. The task was limited to 2 min.

Multiple-digit multiplication
The multiple-digit multiplication task consisted of 76 problems
and included a double-digit number multiplied by a single-
digit number (e.g., 27 × 3). Carrying was required for each
problem. Each problem included four candidate answers, one
being the true answer and the other three being false answers.
The differences between the true answers and the false answers
were times of 10, ranging from 10 to 90. The four candidate
answers were divided into two groups, with two answers in a
group. The two groups were presented on the left and right sides,
respectively, of the screen below the question. The participants
were asked to judge on which side the correct answer was
presented. The task was limited to 2 min.

Approximate Computation
During the approximate computation test, the participants
estimated the results of computation problems that were typically
too complex to be solved mentally using exact computation
within the given time interval. In each trial, a computation
problem was presented on the screen, which involved addition,
subtraction, multiplication, or division (e.g., 4578 + 8144,
208.3-179.04, 645 × 54, 90.288 ÷ 22.8). The participants were
instructed to estimate the results of the computation problems
and then fill the result in a dialog box on the bottom of the screen
using the keyboard. Each trial should be finished within 15 s,
otherwise a participant would receive a score 0. There were 40
trials, and each participant was required to finish all trials.

The scoring method for the approximate computation task
was the same as that for spatial working memory task. For
example, 76 × 88, as a trial of this task, has a standard
answer of 6688. If a participant gave his answer as 6600,
then his score of this trial is 100-|(6600-6688)|/ (6688+|(6600-
6688)|)×100=98.70%.

Curriculum-based Math Achievement
Besides these cognitive tests, general achievement scores for
mathematics in the final examination of the semester were
obtained from the school. The math achievement score was
treated as a measure of general mathematical performance. The
achievement test was developed by the Instruction ResearchUnit,
affiliated to the local Department of Education, and administered
to all students in the district at the end of each semester. The test
was curriculum-based and covered computation, mathematical
concepts, and applied problem solving. Students had 90min to
complete each test. The current study used the scores from the
tests provided by the middle school that participated in the study.

Procedure
The battery of tests was administered in two 40-min sessions. The
practice session included four to six trials, which were similar to
those used in the formal testing. The feedback for correct answers
for all cognitive tasks was “Correct! Can you go faster?,” and that
for incorrect answers was “It is wrong. Try again.” During the
practice session, the children could ask the experimenters any
questions related to the testing. The formal testing began after
the children had finished the practice session.

Computerized tests were administered to the students (one
class at a time) in a computer classroom. Each class was
monitored by two experimenters as well as the teacher of that
class. The experimenters explained the instruction with slides
for each task. The teacher was present only for the purpose of
discipline (e.g., maintaining silence during the formal testing).
After all the students completed one test, the experimenter
started to administer the next test. For each test, the students
were first given instructions and then completed a practice
session, followed by the formal testing. Only when all students
understood the procedure in practice, could they begin the formal
testing. After the main experimenter said “Start!,” all children in
the computer classroom pressed a key to begin the formal testing.
All students performed the tasks in the same order.

The data collection took place between March and June, 2014.

Data Analysis
First, descriptive statistics was performed for all tests. Mean,
standard deviation and split-half reliability were calculated for
each test. Spearman-Brown formula was used to adjust for
the test length when calculating split-half reliabilities. Pearson’s
correlation coefficients were calculated between the scores of all
cognitive and mathematical tests.

Second, a series of hierarchical regression analyses were
conducted to test the role of visual form perception in the five
categories of mathematical performances, while controlling for
age, gender, and all other 5 types of general cognitive processes.

Third, a path model was used to test the structural
relationships among all measures in the current study. The path
analysis was performed in the IBM SPSS Amos 20 software,
using maximum likelihood estimation. The chi-square, root
mean square error of approximation(RMSEA), comparative fit
index (CFI) and standard root mean square residual (SRMR)
were used to assess model fit. According to Kline (2005), good
model fit was indicated by a non-significant chi-square, RMSEA
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values less than 0.05, CFI values greater than 0.95, and SRMR
values less than 0.10. The hypothesized path model assumes that
the five general cognitive processes (i.e., choice reaction time,
visual tracing, mental rotation, spatial working memory, and
non-verbal matrix reasoning) contribute to the five categories
of mathematical performance, and that figure matching only
contributes to numerosity comparison, digit comparison, and
exact computation. The above model was compared with a full-
connection model, which added two additional links (figure
matching and approximate computation, and figure matching
and curriculum-based math achievement).

Fourth, mediation analyses were conducted with the
bootstrapping method (Preacher and Hayes, 2008) to investigate
the contribution of visual form perception in mediating the
relation between numerosity comparison and exact computation,
after controlling for the general cognitive processing variables
(choice reaction time, visual tracing, mental rotation, spatial
working memory, and non-verbal matrix reasoning), as well as
age and gender.

Last, a series of Bayesian regression analyses using Matlab
were conducted to test the two null hypotheses (4 and 5),
to test Bayesian estimation relying on the probability beyond
linear regressions. According to Kleiman et al. (2014), Beta
weights and 95% confidence intervals (also called credibility or
probability intervals) were produced, and the 95% confidence
intervals without including zero were considered as significance
at p < 0.05.

RESULTS

The reaction times of the correct trials for each participant were
trimmed for the choice reaction time test. That is, we deleted the
correct trials with reaction times out of the mean ± 3 standard
deviations. 2.15% trials were deleted accordingly.

Descriptive Statistics
Means and standard deviations of scores for all the general
cognitive processing and the 5 categories of mathematical
performance are displayed in Table 1. The split-half reliability
for each cognitive test is also shown in Table 1. All tests have
acceptable reliabilities, ranging from 0.84 to 0.96.

Performance in the numerosity comparison task was first
examined with a partial correlation analysis to ensure that the
participants performed the task in a ratio-dependent manner.
After controlling for the five visual properties (i.e., total surface
area, envelope area or convex hull, item size, density, and
circumference, see Gebuis and Reynvoet, 2011), accuracy across
all trials was still ratio-dependent, r(113) = 0.41, p < 0.001.

Pearson’s correlation coefficients among all measures with
Bonferroni correction are displayed in Table 2. A Bonferroni
correction was used to maintain the p-value < 0.05 across the 78
correlations inTable 2. Thus, a conservative p-value of< 0.00064
(=0.05/78) was considered statistically significant.

Linear Hierarchical Regression Analyses
Linear hierarchical regression analyses for numerosity
comparison, digit comparison, exact computation, approximate

TABLE 1 | Descriptive statistic and split-half reliability for all the tasks used for

middle school students.

Task Index Mean (SD) Split-half

reliability

Figure matching Proportion correct (%) 71.70 (10.56) 0.88

Choice reaction time Reaction time (ms) 336.48 (81.18) 0.96

Visual tracing No. of correct trials 19.23 (5.14) 0.92

Mental rotation Adjust no. of correct trials 20.45 (9.49) 0.87

Nonverbal matrix

reasoning

Adjust no. of correct trials 20.48 (7.51) 0.84

Spatial working

memory

Accuracy (%) 82.58 (4.73) 0.92

Numerosity

comparison

Proportion correct (%) 77.58 (8.82) 0.91

Digit comparison Adjust no. of correct trials 76.11 (16.49) 0.88

Exact computation Adjust no. of correct trials 94.49 (19.52) 0.86

Approximate

computation

Accuracy (%) 69.49 (12.52) 0.90

Curriculum-based

math achievement

Score(0–100) 81.25 (17.94)

Adjust no. of correct trials= Total correct trials minus total incorrect trials. This adjustment

was made to control for the effect of guessing in multiple choice tests. Four tests used

this adjustment. Without the adjustment, the accuracy and reaction time for the tests are

as following: 90.80% and 542 ms for digit comparison, 87.91% and 1,944 ms for exact

computation, 74.07% and 3,284 ms for nonverbal matrix reasoning, and 76.85% and

3,551 ms for mental rotation.

computation, and curriculum-based mathematical achievement
were conducted separately to test the 5 hypotheses. Tables 3–
7 show the results. According to Tables 3–7, visual form
perception had unique contributions to numerosity comparison,
digit comparison, and exact computation, but had no significant
contribution to approximate computation and had only a
minor contribution to curriculum-based math achievement.
These results are presented in the following five sections. Thus,
subsections in Section Results include five hierarchical regression
analyses, as shown in Tables 3–7.

We also performed Bonferroni correction on the 5 regression
analyses. Thus, a conservative p-value of <0.01 (=0.05/5) was
considered statistically significant.

Visual Form Perception and Numerosity Comparison
According to Table 3, general cognitive processing excluding
visual form perception could account for 8.1% variation of
numerosity comparison, Fchange (5, 215) = 3.86, p = 0.002. After
controlling for scores of the five general cognitive processing
(choice reaction time, visual tracing, mental rotation, spatial
working memory, and non-verbal matrix reasoning) as well as
gender and age, figure matching still accounted for 6.6% variance
of numerosity comparison, Fchange (1, 214) = 16.94, p< 0.001. The
result is as expected by Hypothesis 1.

Visual Form Perception and Digit Comparison
According to Table 4, general cognitive processing except for
visual form perception accounted for 9.4% variations of digit
comparison, Fchange (5, 215) = 4.58, p = 0.001. Visual form
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TABLE 2 | Intercorrelations among all cognitive processing scores based on Pearson’s correlation.

1 2 3 4 5 6 7 8 9 10 11 12

1. Figure matching –

2. Choice reaction time −0.18 –

3. Visual tracing 0.24* −0.25* –

4. Mental rotation 0.31* −0.12 0.30* –

5. Nonverbal matrix reasoning 0.24* −0.24* 0.27* 0.30* –

6. Spatial working memory 0.22* −0.23* 0.28* 0.31* 0.22* –

7. Numerosity comparison 0.33* −0.07 0.06 0.22* 0.22* 0.16 –

8. Digit comparison 0.32* −0.06 0.13 0.16 0.23* 0.25* 0.28* –

9. Exact computation 0.44* −0.09 0.21 0.13 0.26* 0.26* 0.23* 0.49* –

10. Approximate computation 0.19 −0.14 0.24* 0.21 0.23* 0.25* 0.23* 0.39* 0.38* –

11. Curriculum-based math achievement 0.27* −0.21 0.31* 0.27* 0.36* 0.21* 0.16 0.34* 0.51* 0.48*

12. Age −0.09 0.09 −0.18 −0.01 −0.08 0.02 0.03 −0.05 −0.02 −0.09 −0.08

13. Gender −0.02 0.05 −0.03 −0.13 0.08 0.01 −0.13 0.15 0.24* 0.05 0.19 −0.02

*p < 0.05, with Bonferroni correction for multiple tests. The gender variable was coded as 1 (for boys) and 2 (for girls).

TABLE 3 | Results from hierarchical multiple regression analysis for the relations of

figure matching and numerosity comparison.

Predictors Step 1 Step 2 Step 3

β β β

Age 0.03 0.03 0.05

Gender −0.13 −0.13 −0.13

Choice reaction time – −0.00 0.02

Visual tracing – −0.06 −0.08

Mental rotation – 0.14 0.08

Nonverbal matrix reasoning – 0.18 0.15

Spatial working memory – 0.09 0.06

Figure matching – – 0.28*

R2 = 0.02 R2 = 0.10 R2 = 0.17

(∆R2 = 0.08*) (∆R2 = 0.07*)

*p < 0.05, with Bonferroni correction.

perception accounted for 5.8% of variance of digit comparison
after controlling for the five general cognitive processing as well
as gender and age, Fchange (1, 214) = 15.16, p < 0.001. The result is
as expected by Hypothesis 2.

Visual Form Perception and Exact Computation
Table 5 shows the regression results of exact computation on
general cognitive processing as well as gender and age. The
general cognitive processing, excluding visual form perception,
accounted for 11.2% variation in exact computation, Fchange
(5, 215) = 5.82, p < 0.001. Visual form perception accounted for
another 13.2% in exact computation after the 5 general cognitive
processing were controlled, Fchange (1, 214) = 40.30, p< 0.001. The
result is as expected by Hypothesis 3.

Visual Form Perception and Approximate

Computation
Table 6 showed the regression results of approximate
computation on general cognitive processing as well as

TABLE 4 | Results from hierarchical multiple regression analysis for the relations of

figure matching and digit comparison.

Predictors Step 1 Step 2 Step 3

β β β

Age −0.05 −0.04 −0.03

Gender 0.15 0.15 0.15

Choice reaction time – 0.03 0.06

Visual tracing – 0.01 −0.01

Mental rotation – 0.08 0.02

Nonverbal matrix reasoning – 0.15 0.12

Spatial working memory – 0.20* 0.17

Figure matching – – 0.26*

R2 = 0.03 R2 = 0.12 R2 = 0.18

(∆R2 = 0.09*) (∆R2 = 0.06*)

*p < 0.05, with Bonferroni correction.

gender and age. General cognitive processing excluding visual
form perception accounted for 11.4% variation in approximate
computation, Fchange (5, 215) = 5.63, p < 0.001, similar to
their contribution to exact computation. However, visual
form perception did not have an additional contribution to
approximate computation, ∆R2 = 0.005, Fchange (1, 214) = 1.19,
p= 0.276. The result is as expected by Hypothesis 4.

Visual Form Perception and Curriculum-based Math

Achievement
Table 7 showed the regression results of curriculum-based math
achievement on general cognitive processing as well as gender
and age. General cognitive processing excluding visual form
perception accounted for 20.2% variance in math achievement,
Fchange (5, 215) = 11.49, p < 0.001. Visual form perception
could not show any significant contribution to mathematical
achievement. ∆R2 = 0.014, Fchange (1, 214) = 4.02, p = 0.552. The
result is as expected by Hypothesis 5.
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TABLE 5 | Results from hierarchical multiple regression analysis for the relations of

figure matching and exact computation.

Predictors Step 1 Step 2 Step 3

β β β

Age −0.02 0.02 0.04

Gender 0.24* 0.23* 0.23*

Choice reaction time – 0.01 0.04

Visual tracing – 0.12 0.08

Mental rotation – 0.02 −0.06

Nonverbal matrix reasoning – 0.16 0.12

Spatial working memory – 0.18* 0.15

Figure matching – – 0.39*

R2 = 0.06* R2 = 0.17 R2 = 0.30

(∆R2 = 0.11*) (∆R2 = 0.13*)

*p < 0.05, with Bonferroni correction.

TABLE 6 | Results from hierarchical multiple regression analysis for the relations of

figure matching and approximate computation.

Predictors Step 1 Step 2 Step 3

β β β

Age −0.09 −0.06 −0.06

Gender 0.05 0.06 0.06

Choice reaction time – −0.03 −0.02

Visual tracing – 0.12 0.12

Mental rotation – 0.09 0.08

Nonverbal matrix reasoning – 0.12 0.11

Spatial working memory – 0.15 0.14

Figure matching – – 0.08

R2 = 0.01 R2 = 0.13 R2 = 0.13

(∆R2 = 0.11*) (∆R2 = 0.01)

*p < 0.05, with Bonferroni correction.

Bayesian Regression Analyses
The above linear hierarchical regression analyses have shown
that visual perception might have significant linear correlation
to numerosity comparison, digit comparison, and exact
computation, but not to approximate computation and
curriculum-based mathematics achievement, after controlling
for other types of general cognitive processes. In order to test
the two null hypotheses (4 and 5), we used Bayesian regression
analyses to check whether visual perception would have some
non-linear relationship with approximate computation and
curriculum-based mathematics achievement. The results were
shown in Tables 8, 9, using the same steps as those in Tables 3–7.

Table 8 showed the results of the Bayesian regression analysis
for Hypothesis 4. Only general cognitive processing abilities
excluding visual form perception were significant predictors for
approximate computation. Visual form perception also had no
additional contribution to approximate computation (∆R2 =
0.005), similar to the result from the above linear regression
analysis.

Table 9 showed the results of the Bayesian regression analysis
for Hypothesis 5. Only general cognitive processing abilities

TABLE 7 | Results from hierarchical multiple regression analysis for the relations of

figure matching and curriculum-based math achievement.

Predictors Step 1 Step 2 Step 3

β β β

Age −0.08 −0.02 −0.01

Gender 0.19* 0.20* 0.20*

Choice reaction time – −0.09 −0.08

Visual tracing – 0.17 0.16

Mental rotation – 0.15 0.12

Nonverbal matrix reasoning – 0.22* 0.21*

Spatial working memory – 0.05 0.04

Figure matching – – 0.13

R2 = 0.04 R2 = 0.25 R2 = 0.26

(∆R2 = 0.20*) (∆R2 = 0.01)

*p < 0.05, with Bonferroni correction.

TABLE 8 | The parameter estimates for the repeated-measures Bayesian model

on the relations between figure matching and approximate computation (using the

same steps as those in Table 6).

Predictors B (95% CI) p R2 (95% CI)

Step 1 0.011 (0.000–0.047)

Age −0.15 (−0.36–0.06) 0.915

Gender 1.33 (-2.04–4.69) 0.219

Step 2 0.126 (0.045–0.266)

Choice reaction time -0.00 (-0.03–0.02) 0.664

Visual tracing 0.30 (-0.04–0.64) 0.042

Mental rotation 0.12 (-0.07–0.31) 0.102

Nonverbal matrix reasoning 0.20 (−0.03–0.43) 0.045

Spatial working memory 0.40 (0.03–0.76) 0.016

Step 3 0.131 (0.049–0.270)

Figure matching 0.04 (−0.03–0.10) 0.138

excluding visual form perception were significant predictors for
curriculum-based math achievement. Visual form perception
also had no additional contribution to curriculum-based math
achievement (∆R2 = 0.013), similar to the result from the above
linear regression analysis.

Path Model Analysis and Mediation
Analyses
Figure 2 shows the path model for the structural relationships
among all six types of cognitive abilities and five types
of mathematical performances, and for the contribution of
lower level of mathematical performance to higher level of
mathematical performance. The hypothesized model was a good
fit for the data, χ

2
(3) = 3.73, p = 0.292, RMSEA = 0.03,

CFI = 1.00, and SRMR = 0.02. The model showed that only
visual form perception in all six types of cognitive abilities had
significant direct associations with numerosity comparison, digit
comparison, and exact computation. Numerosity comparison
did not display any significant relation with the other four
categories of mathematical performance in the path model.
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TABLE 9 | The parameter estimates for the repeated-measures Bayesian model

on the relations between figure matching and curriculum-based math

achievement (using the same steps as those in Table 7).

Predictors B (95% CI) p R2 (95% CI)

Step 1 0.043 (0.006–0.111)

Age −0.18 (−0.47–0.12) 0.879

Gender 6.93 (2.18–11.67) 0.002

Step 2 0.245 (0.131–0.415)

Choice reaction time −0.02 (−0.05–0.01) 0.918

Visual tracing 0.60 (0.14–1.06) 0.005

Mental rotation 0.28 (0.04–0.54) 0.012

Nonverbal matrix reasoning 0.53 (0.22–0.84) 0.000

Spatial working memory 0.19 (−0.30–0.67) 0.226

Step 3 0.258 (0.147–0.427)

Figure matching 0.09 (0.00–0.18) 0.023

All the significance of loading in the path model was under
Bonferroni correction. A Bonferroni correction was used to
maintain the p-value< 0.05 across the 35 links in Figure 2. Thus,
a conservative p-value of < 0.0014 (=0.05/35) was considered
statistically significant.

After removing all the non-significant relations in Figure 2,
the new model was also a good fit for the data, χ2

(5) = 2.27, p =
0.881, RMSEA= 0.00, CFI= 1.00, and SRMR= 0.02.

The full-connection model with two additional links (figure
matching and approximate computation, and figure matching
and curriculum-based math achievement) was not a good fit for
the data,χ2

(2) = 12.78, p= 0.002, RMSEA= 0.16, CFI= 0.98, and
SRMA= 0.28.

For the mediation analyses, the dependent variable was
the exact computation, and the controlled covariates were the
general cognitive processing variables (choice reaction time,
visual tracing, mental rotation, spatial working memory, and
non-verbal matrix reasoning), as well as age and gender. We
tested whether visual form perception mediated the relation
between numerosity comparison and exact computation (see
Figure 3A). Results showed that the relation between numersoity
comparison and exact computation was fully mediated by visual
form perception (see Figure 3B).

DISCUSSION

The current study aimed at investigating the roles of visual
form perception in five categories of mathematical performance.
A total of 223 students in the first grade of a middle
school performed a series of cognitive and mathematical
tasks. Hierarchical regression analyses showed that visual form
perception had substantial contributions only to numerosity
comparison, digit comparison, and exact computation, but had
no substantial contribution to approximate computation or
curriculum-based mathematical achievement after controlling
for gender, age, and scores of all other available measures
of general cognitive processes including choice reaction time,
visual tracing, mental rotation, non-verbal matrix reasoning, and

spatial working memory. This pattern was unique to visual form
perception and wasn’t replicated in other cognitive processes.
Path model that further validated the results can be found in the
hierarchical regression analyses above.

Roles of Visual Form Perception in
Numerical Quantity Comparison
Visual form perception had independent contribution to the ANS
(i.e., numerosity comparison) after the other general cognitive
processes (i.e., choice reaction time, visual tracing, mental
rotation, non-verbal matrix reasoning, and spatial working
memory) were controlled for (Table 3). The close relation
between visual form perception and the ANS is consistent with
results found in previous studies (e.g., Burr and Ross, 2008;
Tibber et al., 2012; Anobile et al., 2013b).

Although some behavioral studies have investigated the
relationships between visual perception and mathematical
performance (e.g., Rosner, 1973; Rourke and Finlayson,
1978; Sigmundsson et al., 2010; Tibber et al., 2012; Anobile
et al., 2013b), no study has been conducted on the relation
between visual perceptual ability and symbolic numerical
quantity comparison. In this study, we showed that visual
perceptual ability was highly correlated with symbolic numerical
quantity comparison, suggesting that visual form perception
is critical for not only non-symbolic, but also symbolic
numerical quantity comparison. As proposed in the Triple
Code Model of Dehaene and Cohen (1995, 1997), visual code
is about the representation of Arabic number forms. On the
other hand, visual processing takes place in the occipito-
temporal regions along the visual ventral processing path
(e.g., Abboud et al., 2015). Thus, the close relation between
visual form perception and symbolic numerical quantity
comparison might be due to visual processing of Arabic number
forms.

Moreover, the ANS is supra modal and can work with
information from several modalities. Thus, there is a ratio-
dependent performance in visual, auditory and haptic modalities
(e.g., Barth et al., 2005, 2008; Jordan and Brannon, 2006;
Jordan and Baker, 2011; Sasanguie et al., 2015; Gimbert et al.,
2016). To our knowledge, no direct evidence has been found
to show the link between auditory or haptic ANS acuity and
mathematical performance, for which further empirical evidence
is expected.

Dissociated Roles of Visual Form
Perception in Exact and Approximate
Computation
Among all six measures of general cognitive processes, visual
form perception showed the highest correlation with exact
computation, which is consistent with previous studies showing
a close relationship between visual perception and exact
computation (Halberda et al., 2008). Hierarchical regression
analyses showed that the correlation between visual form
perception and exact computation could not be fully accounted
for by the other five general cognitive processes, suggesting that
the cognitive component shared by visual form perception and
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FIGURE 2 | Path model for six general cognitive processes and five categories of mathematical performance (factor loadings are standardized, N = 223). *p < 0.05,

with Bonferroni correction.

FIGURE 3 | Mediation analyses for the contributions of numerosity comparison

to exact computation. The top panel (A) is for the direct effect of numerosity

comparison on exact computation, the bottom panel (B) is for the mediation

effect of figure matching on the relation between numerosity comparison and

exact computation. For the mediation analysis, general cognitive processing

(choice reaction time, visual tracing, mental rotation, spatial working memory,

and non-verbal matrix reasoning) as well as age and gender differences have

taken as controlled covariates. The model is constrained by the assumption of

c = ab + c′. c: direct effect of the original predictor; ab: indirect effect of the

mediator, and c’: the remaining (unmediated) direct effect.

exact computation is not shared by the other cognitive processes.
The shared component may be number form processing, given
that rapid processing of forms was involved in both visual form
perception (e.g., figures) and exact computation (e.g., Arabic
digits).

In contrast to its unique contribution to exact computation,
visual form perception did not have a unique contribution

to approximate computation after the other general cognitive
processes were controlled for. Previous studies have shown a
dissociation between exact and approximate computation in the
brain (e.g., Dehaene et al., 1999). Exact computation is associated
with brain regions involved in language processing, whereas
approximate computation is associated with brain regions
involved in spatial or quantity processing. It is possible that
approximate computation recruits cognitive processes involved
in quantity processing instead of those involved in number
form processing, which might explain the absence of correlation
between approximate computation and visual form perception.
Future studies are needed to directly investigate why visual form
perception shows a unique contribution to exact computation,
but not to approximate computation.

The mediation analyses suggested that visual perception could
be considered as a potential mechanism for the relationship
between ANS and arithmetic. The positive effect from ANS
training (e.g., Park and Brannon, 2013, 2014; Hyde et al., 2014)
might originate from the enhancement of visual perception,
that is, speed enhancement of visual perception might associate
with arithmetic improvement. It is consistent with the viewpoint
from Lindskog and Winman (2016) who suggested that the
approximate arithmetic training promoted non-specific response
speed. The non-specific response speed might be related with the
visual perception speed.

Visual Form Perception in Mathematical
Achievement
Visual form perception did not show any significant contribution
to curriculum-based mathematical achievement after controlling
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for gender, age and the other five general cognitive processes.
However, exact computation, which was related with visual
form perception, had a significant contribution to mathematical
achievement. The contribution could be typically associated with
some computational abilities beyond visual form perception,
such as memory of computational facts and the application of
computational procedures.

As mentioned earlier, the achievement test was curriculum-
based and covered computation (including equations),
mathematical concepts, and applied problem solving. The
curriculum-based computation is the computation based on
rational numbers, such as, |-

√
2|+ (cos60◦- tan30◦)◦+

√
8,

x4÷x5y, x
2 + x

3 = 1
4 (x + 3), which is beyond the scope of

the exact computation task used in the current study. In this
study, the students just leant the mathematics knowledge
in the last semester, and thus they might not have acquired
enough proficiency to solve the computational problems
through simple visual inspection of symbols without significant
mathematical processing. Instead, the students might have to
use the majority of time and mental resources to search paths
from the problem preconditions to the problem solution. The
search process involves processing mathematical concepts
and rules, which are centered on the semantic processing of
mathematical knowledge and do not rely heavily on visual form
perception.

Given that mathematical achievement tests cover a wide range
of topics in the math curriculum, future studies should directly
test the role of visual form perception in curriculum-based
computation, concepts and mathematical problem solving.

Among all the general cognitive measures available in the
current study, only non-verbal matrix reasoning had unique
contribution to math achievement. Non-verbal matrix reasoning
might be involved in the path search during the mathematical
problem solving, which is a critical step of solving the
mathematical achievement test. In contrast, visual processing
was most likely involved in the initial perception and decoding
of mathematical symbols, which is of less importance to the
mathematical achievement test than path search.

The Roles of Visual Form Perception in
Mathematical Performance in
Development
Combining the current study and our previous studies (Zhou and
Cheng, 2015; Zhou et al., 2015), we can conclude that the visual
form perception could contribute to lower level math categories
for students in primary and middle schools. Future study is
needed to investigate the role of the visual form perception
for younger children (e.g., in kindergarten) and for adults.
According to the relation between visual form perception and
exact computation, adults might have a significant association,
but younger children might not have a significant association.
The speculation could have some empirical evidence from the
studies on developmental dyscalculia (DD).

Noël and Rousselle (2011) summarized existing studies and
found that DD typically had poorer performance only in
symbolic numerical processing for under 10 year old’s, and had

poorer performance in both non-symbolic (ANS) and symbolic
numerical processing for above 10 years old’s, compared to
typically developing children (Rousselle andNoël, 2007; Iuculano
et al., 2008; Landerl and Kölle, 2009; Landerl et al., 2009;
Mussolin et al., 2010; Piazza et al., 2010; de Smedt and Gilmore,
2011; Mazzocco et al., 2011). Based on these results, Noël and
Rousselle (2011) proposed that deficits in symbolic processing
is directly related to mathematical difficulties, and that the
association between the ANS and mathematical abilities is due
to the influence of symbolic number processing in the ANS.
A large-sample study on 626 5–7-year-old unselected children
from the UK, China, Russia, and Kyrgyzstan found that it was
the understanding of symbolic numbers that explained variations
in mathematical performance in all samples, but not the ANS
(Rodic et al., 2015). This view is consistent with our results that
visual form processing is important for low-level math abilities,
given that symbolic processing is closely related to visual form
processing.

Thus, it appears that the relation between visual form
processing and math abilities varies with age. More research is
needed to assess this issue.

Culture-Related Difference in Math
Learning
Generally, math in China is taught in a similar way to that in
Western countries. For example, Arabic digits are taught and
used in math textbooks. The main difference may be that Chinese
students typically spend more time on math learning (Stevenson
et al., 1986). In addition, Chinese characters are used in math
textbooks to explain math knowledge. The Chinese language
belongs to a logographic system, different from alphabetic
languages. Orthographic awareness or general visual perceptual
skills are critical in the development of Chinese language abilities
(e.g., Meng et al., 2002; Kuo et al., 2014). Chinese students’
experience in acquisition and application of Chinese characters
might transfer to the development of math knowledge, which
might lead to greater reliance on visual form perception. To our
knowledge, no study has directly compared degrees of reliance
on visual form perception in mathematics for Chinese and
Westerners.

Notably, visual form perception could be also important
for participants in Western countries. Studies have shown
a close relation between processing speed and mathematical
performance for children in Western counties (e.g., Hitch and
McAuley, 1991; Bull and Johnston, 1997; Fuchs et al., 2005).
Processing speed was typically measured with tasks similar to
our figure matching task. For example, Bull and Johnston (1997)
used visual number matching task and geometric figure cross-
out task (Kail and Hall, 1994), which were initially devised to
assess the processing speed factor in the theory of fluid and
crystallized intelligence (Cattell, 1963). Fuchs et al. (2005, 2008)
also used similar tasks. Thus, the results in the current study may
be applied to students speaking alphabetic languages, although
future research is needed to directly compare the importance of
visual form perception on mathematical performance between
different cultural groups.
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CONCLUSIONS

Although the relation between visuospatial processing, especially
visuospatial working memory and mathematics has been
established, little research has been conducted to explore
the roles of visual form perception as the starting point of
visuospatial processing in mathematical performance. The
current study investigated the relationships between visual form
perception and five types of mathematical performance, covering
non-symbolic and symbolic numerical quantity comparison,
exact and approximate computation, and curriculum-based
mathematical achievement. Visual form perception had
independent contributions to numerosity comparison, digit
comparison, exact computation, but no significant role on
approximate computation and mathematics achievement in
the final examination, after other general cognitive processes
were controlled for. These results suggest that visual form
perception may be an important cognitive basis for lower level

math categories, including the approximate number system,
digit comparison, and exact computation.
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