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Researchers interested in mathematical proficiency have recently begun to explore

the development of strategic flexibility, where flexibility is defined as knowledge of

multiple strategies for solving a problem and the ability to implement an innovative

strategy for a given problem solving circumstance. However, anecdotal findings from

this literature indicate that students do not consistently use an innovative strategy for

solving a given problem, even when these same students demonstrate knowledge of

innovative strategies. This distinction, sometimes framed in the psychological literature

as competence vs. performance—has not been previously studied for flexibility. In order

to explore the competence/performance distinction in flexibility, this study developed and

validated measures for potential flexibility (e.g., competence, or knowledge of multiple

strategies) and practical flexibility (e.g., performance, use of innovative strategies) for

solving equations. The measures were administrated to a sample of 158 Chinese middle

school students through a Tri-Phase Flexibility Assessment, in which the students were

asked to solve each equation, generate additional strategies, and evaluate own multiple

strategies. Confirmatory factor analysis supported a two-factor model of potential

and practical flexibility. Satisfactory internal consistency was found for the measures.

Additional validity evidence included the significant association with flexibility measured

with the previous method. Potential flexibility and practical flexibility were found to be

distinct but related. The theoretical and practical implications of the concepts and their

measures of potential flexibility and practical flexibility are discussed.

Keywords: strategic flexibility, potential flexibility, practical flexibility, measures, equation solving

INTRODUCTION

Strategic flexibility is considered to be one important component of mathematical proficiency,
where flexibility is defined as knowledge of multiple strategies and the ability to use these
strategies in innovative ways in different problem solving situations (Baroody and Dowker,
2003; Rittle-Johnson and Star, 2007; Schneider et al., 2011). In the past decades, flexibility has
been increasingly studied and has received considerable attention in educational practices as
an important component of students’ higher-order thinking ability and creativity (Verschaffel
et al., 2009). Researchers (Lemaire et al., 2000; Star and Rittle-Johnson, 2008; Zhang, 2015) have
found that students often did not exhibit flexibility during actual problem solving, despite having
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demonstrated knowledge of standard and innovative strategies
on prior measures. This study aimed to develop a reliable
and valid measuring method for strategic flexibility that can
distinguish between what students know about standard and
innovative strategies and what they actually use during problem
solving. The development of this kind of measure can be taken as
an important step in promoting further research that explores the
reasons behind this phenomenon and instructional interventions
that can improve students’ flexibility.

Distinction between Competence and
Performance
Anecdotal findings from the previously mentioned literature
indicate that students did not consistently use an innovative
strategy for solving a given problem, even when these same
students demonstrated knowledge of innovative strategies. For
example, Star and Rittle-Johnson (2008) reported that students
who were prompted during a problem-solving intervention to
solve equations using multiple (e.g., standard and innovative)
strategies were able to demonstrate knowledge of multiple
strategies but only used more innovative strategies on 22% of
posttest problems. Similarly, Star and Seifert (2006) found that
students who received an intervention focusing on developing
knowledge of multiple strategies used an innovative strategy on
only 9% of posttest problems.

Similar results have been found within the larger literature
on problem solving in the US (e.g., Carry et al., 1979), France
(e.g., Lemaire et al., 2000), and China (Zhao, 2010; Zhang,
2015). Learners—even those who have demonstrated knowledge
of multiple strategies—do not always choose to use innovative
strategies but instead consistently rely upon standard strategies.
The same is true for experts; Star and Newton (2009; see
also Dowker, 1992) found that even experts did not always
use innovative strategies for a given problem, despite showing
explicit preferences for (and knowledge of) the innovative
strategies as determined by later interviews.

Psychologists have long recognized this distinction, between
knowledge of strategies (referred to as competence) and
the ability to implement these strategies under appropriate
circumstances (referred to as performance) (e.g., Flavell and
Wohlwill, 1969; Le Corre et al., 2006; Lobina, 2011). This finding
is also consistent with research on strategy learning and choice,
which finds that strategy variability persists, even as learners
gradually acquire problem solving expertise (Siegler and Shrager,
1984; Lemaire and Siegler, 1995; Siegler and Shipley, 1995; Siegler
and Lemaire, 1997).

Potential Flexibility and Practical Flexibility
Extending this distinction between competence and performance
into the study of flexibility, here we define potential flexibility as
the knowledge of multiple (standard and innovative) strategies
for solving mathematics problems and practical flexibility as the
ability to implement innovative strategies for a given problem.
Theoretical support for the distinction between potential and
practical flexibility—in addition to the above-mentioned work
of Star and colleagues (e.g., Star and Seifert, 2006; Star and
Rittle-Johnson, 2008) comes from multiple sources.

In particular, Frick et al. (1959) found two distinct factors
of flexibility of thinking: spontaneous flexibility and adaptive
flexibility. Spontaneous flexibility was defined as “the ability
to generate a diversity of ideas in relatively unstructured
situation” (Frick et al., 1959, p. 471), while adaptive flexibility
was defined as “the ability to change set in order to meet
requirements by changing problems” (Frick et al., 1959, p.
471). This prior study provides support from the literature that
flexibility can be classified into different subtypes. Furthermore,
our construct of potential flexibility appears to be somewhat
similar to “spontaneous flexibility”—the ability to produce
multiple ideas, while practical flexibility seems somewhat similar
to “adaptive flexibility”—the ability to generate innovative ideas
for changeable problem solving situations.

Also, Verschaffel et al. (2009, pp. 337–338) made a distinction
that appears similar to the one in this study between potential
flexibility and practical flexibility. They used “flexibility” to refer
to knowledge of multiple strategies; “adaptivity” to refer to
the ability to use innovative strategies for a given problem;
and “flexibility/adaptivity” to refer to the overall construct
which combines these two. Accordingly, our construct of
potential flexibility appears to be similar to Verschaffel and
colleagues’ “flexibility,” while practical flexibility seems similar
to “adaptivity.” However, our conceptualization of potential and
practical flexibility differs from this prior work, primarily in
how we assess flexibility. For Verschaffel et al. (2009), flexibility
and adaptivity are two distinct components of (what they call)
flexibility/adaptivity, assessed by identical tasks. In contrast, we
view potential and practical flexibility as two different types of
flexibility that are potentially elicited by two different kinds of
tasks (described in more depth below).

Thus the literature on strategy flexibility suggests that
there is a distinction between potential flexibility and practical
flexibility. The former is focused on students’ ability to
generate multiple (standard and innovative) strategies, while
the latter involves the performance or use of innovative
strategies.

Assessment of Flexibility in Mathematics
As noted above, prior research on flexibility has anecdotally
reported on students’ deficiencies in practical flexibility (e.g.,
Star and Seifert, 2006; Star and Rittle-Johnson, 2008). Yet within
this literature, researchers have not examined the relationship
between the practical and potential flexibility nor have they
sought explanations for why individuals might have different
degrees of potential and practical flexibility. Examining this
relationship requires the development of ways to reliablymeasure
potential and practical flexibility.

The development of our measure for potential and practical
flexibility was informed by the ways that prior researchers have
measured flexibility, particularly how existing work has tried
to distinguish between knowledge of multiple strategies and
the ability to use innovative strategies. As we describe below,
there seems to be some indecision among researchers who
study flexibility as to whether this construct is best measured
via processes of recognition and evaluation, via processes of
generation, or some combination of the two.
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Many studies infer flexibility from students’ ability to
recognize and evaluate multiple and innovative strategies.
Students are provided with examples of problem solving
strategies and asked to indicate (often via multiple choice
questions) whether these strategies are legitimate and/or
innovative ways to solve problems. For example, in Rittle-
Johnson and Star (2007), students were given the equation
2(x + 1) + 4 = 12 and asked, in a multiple choice question,
to identify all possible steps that could be done next. Students’
ability to identify multiple possible next steps was interpreted to
indicate knowledge of multiple strategies. Similarly, the flexibility
measure in Star et al. (2015) included a multiple choice item
asking students to select the innovative first step for solving
a given equation—where responses were taken to indicate
knowledge of innovative strategies.

Other studies rely more on processes of strategy generation for
measuring flexibility. Students are asked to solve problems (often
more than once), and analyses of the strategies that they generate
(e.g., whether students are able to generate multiple strategies
and/or innovative strategies) are used to infer flexibility. An early
example of this approach was utilized by Krutetskii (1976), who
directly asked students to solve problems several times using
multiple strategies. Van der Heijden et al. (1993, as cited in
Verschaffel et al., 2009) followed a similar approach, inferring
flexibility from whether students used multiple and innovative
strategies for solving mental addition and subtraction problems.
Related, Blöte et al. (2001) used “the flexibility-on-demand
task” (FDT; Klein, 1998), where students were asked to re-solve
previously completed problems but using a different strategy. Star
and Seifert (2006) used a variant of this task which they referred
to as the “alternative ordering task.” After solving each problem
twice, students were asked to select the innovative strategy for
each problem from among the strategies that they had generated.

Other studies include a mix of recognition/evaluation and
generation items to try to better capture both students’
knowledge of multiple strategies as well as their ability to
use innovative strategies. For example, Star and Rittle-Johnson
(2008) explicitly distinguish between what they refer to as
flexibility knowledge and flexibility use. Within flexibility
knowledge, there are items that tap knowledge of multiple
strategies (e.g., accepting multiple solution strategies, identifying
multiple next steps) and knowledge of innovative strategies
(recognition and evaluation of innovative steps). For flexibility
use, Star and Rittle-Johnson analyzed students’ strategies on
post-test problems to code for whether students used multiple
strategies and/or used innovative strategies.

Another way that researchers have attempted to address the
dual challenges of assessing what strategies students know as
well as whether they can successfully implement these strategies
is through the choice/no-choice method. This method was first
introduced by Siegler and Lemaire (1997) but has been widely
used by many subsequent researchers (e.g., Torbeyns et al.,
2006, 2009; Luwel et al., 2009; Lemaire and Lecacheur, 2010;
Torbeyns and Verschaffel, 2013). The choice/no-choice method
involves presenting students with problems to solve in a “choice”
condition, where students are allowed to choose which strategy
to use for a given problem, and a “no-choice” condition, where

students are told which strategy they must use. Through analyses
of speed and accuracy in both conditions, as well as strategy usage
in the choice condition, has been used to tap students’ knowledge
of strategies as well as their ability to use innovative strategies.

Our approach to measuring potential and practical flexibility
drew from all of the work described above and represents an
awareness of the challenges of adequately measuring both what
students know and also what the strategies that they can actually
use. For example, recognition and evaluation can be efficient
approaches to measuring flexibility, as it can be very time-
consuming for students to have to generate multiple strategies
for many problems. Yet it is much easier to show recognition
of multiple and innovative strategies than to generate these
strategies (e.g., Hollingworth, 1913); reliance on recognition
could result in over-estimates of students’ ability to actually
implement strategies. At the same time, relying exclusively on
generation methods can result in underestimates of flexibility.
As noted earlier, students’ ability to implement known strategies
often lags substantially behind their knowledge of these same
strategies. Our assessment attempted to overcome this challenge
by combining generation and evaluation methods.

Framework for Measuring Potential
Flexibility and Practical Flexibility
In order to assess potential and practical flexibility, our measure
(described in more depth below) asked students to go through
the same set of problems three times; therefore we refer to it
as a Tri-Phase Flexibility Assessment. In Phase One, students
were asked to solve each problem as quickly and accurately as
possible, which was intended to prompt students to select and
implement an innovative problem-solving strategy. This gave us a
generation-based measure of students’ default/preferred strategy
for each problem. In Phase Two, students were asked to go
through the assessment again and generate multiple strategies for
each problem in addition to the strategy they produced in Phase
One. In Phase Three, students were asked to evaluate their own
strategies generated in the former two phases for each problem,
selecting the innovative one.

Based on the definitions of potential and practical flexibility
mentioned above, students’ flexibility was evaluated using their
responses to each problem in the three phases. Practical flexibility
was evaluated based on whether the strategy that was produced
for each problem in Phase One was innovative. If a student used
an innovative strategy for a given problem (where “innovative”
was operationalized as the strategy for that problem that had
the fewest steps and with the most simplified computations,
consistent with prior research e.g., Star and Rittle-Johnson, 2008;
Heinze et al., 2009; Star and Newton, 2009), he or she would be
assessed as having practical flexibility for that problem. Potential
flexibility was evaluated based on the combination of the variety
of strategies students generated in Phases One and Two and the
innovativeness of the strategy that was selected in Phase Three. If
a student generated multiple (standard and innovative) strategies
for a given problem and then recognized the innovative one from
among them, he or she would be assessed as having potential
flexibility for that problem.
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The Present Study
The aim of this study was to develop reliable and valid measures
of potential and practical flexibility, using the domain of algebra
equation solving as the focus of investigation. Algebra was
chosen for several reasons. First, algebra is considered by many
to be students’ first sustained exposure to the abstraction that
makes mathematics powerful (Fey, 1990; Kieran, 1992). Equation
solving is a core yet challenging component of algebra (Blume
andHeckman, 1997; Schmidt et al., 1999). Furthermore, equation
solving is a subdomain of algebra where flexibility in the use
of strategies seems particularly useful and as a result has been
frequently studied (e.g., Star and Seifert, 2006; Rittle-Johnson and
Star, 2007; Star et al., 2015).

As described below, we developed measures of potential and
practical flexibility and then administrated them to seventh
grade Chinese students. We performed psychometric analyses to
provide measurement indicators, such as internal consistency,
factorial validity and criterion-related validity to validate our
measures of potential and practical flexibility in equation solving.

METHOD

Participants
The 158 seventh grade participants (93 female, 65 male; ages
ranged from 11 to 14 years, M = 12.74, SD = 0.56) in this
study were recruited from six classrooms within the same region
and school system in a northern city of China. By analyzing
students’ scores of the latest school-level mathematics test, the
ANOVA analysis revealed that there were no differences in
these six classrooms in terms of students’ average mathematics
achievement [F(5, 152) = 0.16, p= 0.97 > 0.05].

At the time of this study, all participants learned from
the same curriculum materials, as all teachers reported closely
adhering to the Mathematics Curriculum Standards in China.
In particular, prior to the start of the study, students had been
taught both a standard algorithm for solving linear equations as
well as more innovative strategies for how to solve equations. The
standard algorithm taught by teachers was the same algorithm
referred to in the literature (e.g., Star and Seifert, 2006)—first,
expand the parentheses, then combine terms, then subtract from
both sides, and finally divide to both sides. Innovative strategies
involved combining these four steps in atypical sequences.
During lessons on solving linear equations prior to the study,
students were at times asked to solve equations using both
standard and innovative methods. Also, conversations with the
teachers of these seventh grade classes indicated that the use of
multiple solution methods was sometimes encouraged in their
mathematics classes.

Ethical Statement
The study was approved by the ethical committee of the School
of Psychology at Beijing Normal University. Written informed
consents were obtained from the schools, teachers, parents, and
all participants prior to initiating the study. All participants were
informed that they had the right to withdraw from this study at
any time.

Assessment
The assessment contained 12 linear equations (see Appendix for
a list of all problems solved by students during the problem-
solving sessions). These problems were designed so that each
could be solved using a standard algorithm but where a more
innovative strategy also existed.

The 12 problems were divided into four problem types, with
three instances of each problem type (see Table 1). The first three
problem types were identical to those used in prior work (e.g.,
Star and Rittle-Johnson, 2008); the fourth problem type was new.
Problem One to Problem Three (type: DIVIDE) were of the form
a(x–b) = c, where c was evenly divisible by a. The innovative
strategy involved dividing both sides of the equation by a as a
first step. Problem Four to Problem Six (type: COMBINE) were
of the form a(x + c) + b(x + c) = d. The innovative strategy
involved adding together the (x+ c) terms as a first step. Problem
Seven to Problem 10 (type: SUBTRACT FROM BOTH) were
of the form a(x + c) = b(x + c) + d, where the innovative
strategy involved collecting the (x + c) terms together as a
first step. Finally, problems 10–12 (type: SIMPLIFY FRACTION)
included fractions, where the innovative strategy involving either
multiplying both sides by a constant to “clear” fractions as a first
step or simplifying fractions as a first step.

Note that in a departure from prior work that used similar
problems (e.g., Star and Rittle-Johnson, 2008), we included
problems that had fractions as well as decimals, which likely
increased the arithmetic complexity and difficulty level of the
problems for students. Our decision to make these problems
more difficult was driven by the following reasons. First, we
sought to minimize the possibility of “routinization” (Spiro,
1980), which might come up when participants faced isomorphic
problems with integral coefficients and constants. Second, we felt
that the use of harder problems allowed us to more accurately
assess the full range of students’ mathematical knowledge about
equation solving. Third, prior work has suggested that students
may be more likely to select innovative strategies when facing
more difficult problems (Newton et al., 2010), such as those
containing fractions and decimals.

Procedure
All students worked individually on the 12 problems on the
assessment in one 90-min session that was conducted during
students’ regular mathematics classes. In addition to the three
phases of Tri-Phase Flexibility Assessment, we designed a fourth
phase. In the fourth phase, students were asked to evaluate a list
of strategies provided by experts for each problem, selecting the
innovative ones. Data from the fourth phase was regarded as
the criterion for potential flexibility. Thus, the study procedure
included four phases (see Table 2).

In Phase One, each student attempted to solve each of the
12 problems, working at their own pace. Below each problem
was a large square where students could write their strategy and
solution. The experimenter instructed participants to solve all
problems as accurately and quickly as possible and to show all
of their intermediate steps. Students were required to solve the
problems in numerical order. If students finished all of these
problems before time had been called, they were instructed to
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TABLE 1 | Types of shortcuts of example equations attempted on the problem-solving session.

Innovational transformation Example problem Solution using standard algorithm Solution using innovative strategy

DIVIDE 3 (x − 1) = 27

3x − 3 = 27

3x = 30

x = 10

x − 1 = 9

x = 10

COMBINE 2 (x + 3) + 3 (x + 3) = 20

2x + 6+ 3x + 9 = 20

5x + 15 = 20

5x = 15

x = 1

5 (x + 3) = 20

x + 3 = 4

x = 1

SUBTRACT FROM BOTH 5
(

x − 2
3

)

− 10 = 2
(

x − 2
3

)

5 x − 10
3 − 10 = 2 x − 4

3

5 x − 2 x = 10
3 + 10−

4
3

3x = 12

x = 4

3
(

x − 2
3

)

= 10

x − 2
3 =

10
3

x = 4

4 (x + 2.5) + 5x = 4 (x + 2.5) + 8

4x + 10+ 5x = 4x + 10+ 8

9x + 10 = 4x + 18

9x − 4x = 18− 10

5x = 8

x = 8
5

5x = 8

x = 8
5

SIMPLIFY FRACTION 3x+3
3 +

4x+4
4 = 4

12× ( 3x+3
3 +

4x+4
4 ) = 12× 4

12x + 12+ 12x + 12 = 48

24x + 24 = 48

24x = 24

x = 1

x + 1+ x + 1 = 4

x + 1 = 2

x = 1

TABLE 2 | Overview of Procedure (time unit: minute).

Phase Duration Activity

1 20 Solving all 12 problems as accurately and quickly as

possible.

2 30 Generating additional strategies for all 12 problems.

3 20 Evaluating one’s own strategies and selecting the

one felt to be innovative for each problem.

4 20 Evaluates the strategies from a Strategy Key and

selecting the one felt to be innovative for each

problem.

close their test booklets and sit quietly. Phase One had two goals:
(a) to determine if students could correctly solve each equation,
and (b) to investigate whether students used an innovative
strategy to solve each problem (e.g., practical flexibility).

In Phase Two, students were asked to begin the test all over
again with the first problem and re-solve each problem, using
as many different strategies as they could think of. In addition
to the box below each problem containing the students’ first
(Phase One) strategy, there were also five additional boxes where
students could write alternative strategies. Students were not
allowed to change or add to their Phase One; students were
required to work through the problems in numerical order. The
aim of Phase Two was to determine whether each student had
knowledge of multiple strategies for each problem.

In Phase Three, students were instructed to look over all
of the strategies that they had generated for each problem in
Phase One and Two and to select the strategy that they felt
was the innovative one for each problem (by placing a check
mark by the selected strategy). Students were not allowed to
change any of their solutions from Phase One or Two during
Phase Three. The aim of Phase Three was to determine whether
students had knowledge of innovative strategies. After Phase
Three was completed, students handed in their tests to the
experimenter.

Finally, in Phase Four, students were handed a Strategy Key
to the test. The Strategy Key listed several correct strategies for
each problem, including the standard algorithm, an innovative
strategy for each type, and other strategies that were neither
standard nor innovative. The strategies for each problem were
listed in random order. Students were asked to select the
innovative strategy for each problem from the strategies shown
on the Strategy Key. On the Strategy Key, we attended carefully
to the number of lines/steps in each strategy, in order to prevent
participants from identifying the innovative strategy merely by
selecting the one with the fewest lines. The goal of Phase Four
was the same as in Phase Three.

Coding
Students’ work from all four Phases was coded by three
independent coders, all of whom were doctoral students in
mathematics education. At least two coders looked at each
dimension of coding (described below). When disagreements

Frontiers in Psychology | www.frontiersin.org 5 August 2017 | Volume 8 | Article 1368

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Xu et al. Measures, Flexibility and Equation Solving

arose, the third rater contributed her coding, and the three coders
met to resolve the disagreement.

Recall that our interest is in the measurement of two types of
flexibility: potential flexibility and practical flexibility. Practical
flexibility was operationally defined as follows. If a learner was
able to implement an innovative strategy for solving a given
equation in his/her first attempt at solving the problem, the
learner was said to have a high level of practical flexibility for that
problem. A learner who was only able to implement a standard
approach in his/her first attempt at solving the problem was
judged to have low levels of practical flexibility. Thus, practical
flexibility is about spontaneously putting one’s knowledge of
strategies in action. Potential flexibility was operationally defined
as follows. If a learner demonstrated knowledge of both standard
and innovative strategies for a given problem, he/she was said
to have high potential flexibility. If a learner could not produce
multiple (e.g., standard and innovative) strategies, he/she was
said to have low potential flexibility.

Determining scores for potential and practical flexibility
required coding for the following constructs.

Strategy Generation
A Strategy Generation score indicated the extent that students
knew multiple strategies for solving a given problem. A
coding scheme was developed for each problem to determine
whether students knew the standard strategy and also whether
students knew an innovative strategy for that problem. Coders
looked at students’ work across Phase One and Two of each
problem. Students’ strategies were coded into one of three
categories—standard strategy, innovative strategy or other. For
this coding, computational errors were ignored. As described
above, the standard strategy was defined as first distributing,
then combining like terms (if possible), then adding/subtracting
from both sides, and finally dividing/multiplying on both sides
(Star and Seifert, 2006). The innovative strategy was made use
of an innovative first step (for the DIVIDE type, dividing first;
for the COMBINE type, combining first; see above). All other
attempted solution methods were coded as “other,” and these
included use of other nonconventional strategies, strategies that
violated mathematical principles, and incomplete strategies that
were too ambiguous to code as either standard or innovative
use. If a student demonstrated knowledge of both standard and
innovative strategies, the student received a Strategy Generation
score of one for that problem. Otherwise, the student received
a Strategy Generation score of zero. Given that each student
received a Strategy Generation score for every problem, the
maximum score of Strategy Generation was 12. The interrater
reliability for the strategy generation scores was 0.95.

Note that the distinction between a standard strategy and an
innovative strategy could usually be determined by analyzing the
first one or two steps in each method. For example, the standard
strategy for Item One to Item Nine began by distributing
the parentheses, and the standard algorithm for items 10–12
involved obtaining a common denominator for the two algebraic
expressions and then combining the two expressions. Similarly,
from Item One to Item Three, the innovative strategy involved
dividing a constant to both sides before distributing (DIVIDE);

from Item Four to Item Six, the innovative strategy involved
combining same terms on one side (COMBINE); from Item
Seven to Item Nine, the innovative strategy involved subtracting
same terms from both sides (SUBTRACT FROM BOTH); from
Item 10 to Item 12, the innovative strategy involved first reducing
each fraction before combining (SIMPLIFY FRACTION) (see
Table 1; see also Appendix for a list of all problems solved by
students during the problem-solving sessions).

Strategy Evaluation
The Strategy Evaluation score indicated whether students were
able to identify the innovative strategy for each problem, from
among the methods that were student-generated. Raters looked
at each student’s strategies for each problem (from Phase One
and Two) and identified one or more that were innovative.
Then, for each problem, if students selected (in Phase Three)
a strategy that raters identified as innovative, one point was
earned. If students selected a different non-innovative strategy,
no points were earned for that problem. The maximum score of
Strategy Evaluation was 12. The interrater reliability for strategy
evaluation was scores 0.96.

Potential Flexibility
Potential Flexibility was a composite score indicating whether
students knew multiple strategies and were able to identify the
innovative one among strategies that they knew. In particular,
the Potential Flexibility score for each problem was determined
from the Strategy Generation score and the Strategy Evaluation
score. For a given problem, if Strategy Generation was one
point (indicating that students produced both standard and
innovative strategies for that problem) and Strategy Evaluation
was one point (indicating that students were able to identify
which strategy for that problem was innovative), students earned
a Potential Flexibility score of one. Otherwise, the Potential
Flexibility score was zero for that problem. The maximum score
of the Potential Flexibility was 12. The interrater reliability for
potential flexibility scores was 0.97.

Practical Flexibility
Practical Flexibility measures whether students are able to use an
innovative strategy on their first attempt at solving a problem.
For each problem, raters analyzed each student’s first solution
attempt (from Phase One) to determine whether this strategy
was innovative or not. If the first strategy was determined to
be innovative, the student earned a Practical Flexibility score of
one. Otherwise, the Practical Flexibility score was zero for that
problem. The maximum score of the Practical Flexibility was 12.
The interrater reliability for practical flexibility scores was 0.97.

Accuracy Score
In addition to coding for potential and practical flexibility, the
accuracy of each participant’s solutions was also coded.

The accuracy score indicated whether students were able to
correctly solve given equations (arriving at the correct numerical
answers) on the first attempt. Students were given one point for
each problem where a correct answer was generated and zero
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points for incorrect answers. The maximum score of Accuracy
was 12. The interrater reliability for accuracy scores was 0.98.

Strategy Identification
As a criterion for potential flexibility, strategy identification
(students’ selections from the Strategy Key) in Phase Four was
also coded. The Strategy Identification score indicated whether
students were able to recognize the innovative strategy for each
problem, from among the methods that were seen in the Strategy
Key. Expert trained raters looked at each strategy in the key and
identified one or more that were innovative for a given problem.
For each problem, if students selected a strategy that raters
identified as innovative, one point was earned. If students selected
a different non-innovative strategy, no points were earned for
that problem. The maximum score of Strategy Identification
was 12. The interrater reliability for strategy identification scores
was 0.96.

RESULTS

Descriptive Statistics of All Variables
General means and standard deviations for all variables are
depicted in Table 3.

Accuracy on equation solving was relatively high (M = 10.66)
with a rate of 88.83%, indicating the fact that the vast majority
of participants were able to correctly solve most of the items.
Participants showed moderate levels of potential flexibility and

TABLE 3 | Descriptive statistics of all variables (N = 158).

Variables M SD

Accuracy 10.66 1.58

Strategy Generation 7.09 4.11

Strategy Evaluation 6.23 4.22

Strategy Identification 8.30 2.83

Potential Flexibility 5.85 4.15

Practical Flexibility 1.44 2.60

comparatively low levels of practical flexibility. A paired-samples
T-test showed that participants earned significantly higher
potential flexibility scores than practical flexibility scores (t =
12.97, p < 0.001).

Distribution of Scoring Percentage on
Each Item
The distribution of scoring percentage of accuracy, potential
flexibility and practical flexibility on each item is presented in
Figure 1.

As seen in Figure 1, on DIVIDE items, more than 63%
of participants had Potential Flexibility scores of one on each
problem. This percentage declined to 57% for COMBINE items,
46% on SUBTRACT FROM BOTH SIDES items, and 25% on
SIMPLIFY FRACTION items. This suggests that the DIVIDE
strategy was the easiest one to generate and identify, followed
by the COMBINE and SUBTRACT FROM BOTH SIDES
strategies, and with the SIMPLIFY FRACTION strategy as the
most difficult one for participants to implement. The findings
confirmed that the assessment had a good structure because
from Item One to Item 12, the difficulty of equation problems
increased.

Interestingly, the results of the frequency distribution of
participants’ scores on each item for Practical Flexibility were
different from that for Potential Flexibility. Recall that Practical
Flexibility score of one resulted when a student’s first attempt on
a problem used an innovative strategy. As displayed in Figure 1,
on each item <19% of participants got one point for Practical
Flexibility.

Participants’ accuracy scores were generally higher than
both potential and practical flexibility scores. Further frequency
analysis (see Table 4) showed that in 40% of cases, students
correctly solved an equation but did not demonstrate potential
flexibility or practical flexibility, whereas in 38% of cases,
students correctly solved an equation and demonstrated potential
flexibility, but did not show practical flexibility. Only in 8% of
cases did students correctly solve an equation and demonstrate
both potential and practical flexibility.

FIGURE 1 | Distribution scoring percentage of accuracy. Practical flexibility and practical flexibility on each item (N = 158).
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TABLE 4 | Percentage of scoring combinations in accuracy, potential and

practical flexibility (N = 158).

Combination Accuracy Potential flex. Practical flex. Percentage (%)

None Scoring 0 0 0 8

Only Accuracy 1 0 0 40

No Practical Flex. 1 1 0 38

All Scoring 1 1 1 8

Others 6

Internal Consistency of Measures
The internal consistency coefficient (Cronbach’s alpha) for
Potential Flexibility was found to be 0.92, and the internal
consistency coefficient (Cronbach’s alpha) of Practical Flexibility
was 0.89. Values of Cronbach’s alpha that are above 0.70 are
considered to be acceptable (Nunnally, 1978).

Confirmatory Factor Analysis
We conducted a Confirmatory Factor Analysis (CFA) to examine
whether the estimated model (shown as Figure 2) fit well with
the current data set. Considering that the type of observed
variables were categorical factors and the sample size here
was <200, we utilized Weight Least Square with Mean and
Variance (WLSMV; Muthén, 1993; Muthén et al., unpublished
manuscript) to estimate the path coefficients (Flora and Curran,
2004; Beauducel and Herzberg, 2006). The overall fitting indexes
of the model were as the following: χ 2/df = 51.75 (p < 0.001),
WRMR = 1.86, TLI = 0.98, CFI = 0.98, RMSEA = 0.09. Values
> 0.90 for both the TLI and CFI suggest plausible model fit for
the data, and values > 0.95 for both of them indicate good model
fit (Hu and Bentler, 1995; Hair et al., 1998). In addition, values <

0.1 for RMSEA suggest acceptable model fit (Steiger, 1990). The
analysis results indicated a good fit of model.

Criterion-Related Validity
Strategy identification was a method used to assess flexibility in
prior studies (e.g., Star et al., 2015). Because of the similarity
between these measures, Strategy Identification was regarded as
a criterion for potential flexibility in our study. As mentioned
above, strategy identification scores indicated whether students
had knowledge of the innovative strategy for each problem.
Therefore, high strategy identification was expected to have a
strong correlation with high potential flexibility. The criterion-
related validity was tested. The potential flexibility was positively
correlated with Strategy Identification (r = 0.38, p < 0.01).

Composite Reliability and Convergent
Validity
Furthermore, we tested composite reliability (CR) and
convergent validity of potential flexibility and practical flexibility
(see Table 5). Bagozzi and Yi (1988) suggested two standards
for testing the reliability of scales: (a) the path coefficients
between observed variables and latent variables should be
significant and the square of each path coefficient should be >

0.20 (Jöreskog and Sörbom, 1989; Bentler and Wu, 1993); (b)
the composite reliability (CR) values of latent variables should

FIGURE 2 | Factor loading and factor intercorrelations for potential flexibility

and practical flexibility. All estimated coefficients are significant with p < 0.001.

Pot, Potential Flexibility Item; Pra, Practical Flexibility Item.

be >0.60 (Fornell and Larcker, 1981). With regard to estimating
convergent validity, two aspects should be taken into account:
(a) the path coefficients between observed variables and latent
variables should be significant and their values should be >0.45
(Bentler and Wu, 1993); (b) the average variance extracted
(AVE) of latent variables should be >0.50. As Table 5 shows,
the measures in this study had good composite reliability and
convergent validity.

Correlation Analysis
Practical flexibility was found to be positively correlated with
potential flexibility (r= 0.27, p< 0.01). This result was consistent
with our expectation.

DISCUSSION

Researchers in mathematics education are devoting increasing
attention on how to develop students’ ability to solve problems
flexibly (Verschaffel and De Corte, 1996; Baroody and Dowker,
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TABLE 5 | Composite reliability and convergent validity of potential flexibility and

practical flexibility (N = 158).

Latent variables Observed

variables

Standardized path

coefficients

R2 CR AVE

Potential flexibility 0.998 0.98

Pot 1 0.95*** 0.90

Pot 2 0.98*** 0.96

Pot 3 0.97*** 0.94

Pot 4 0.96*** 0.92

Pot 5 0.97*** 0.94

Pot 6 0.97*** 0.94

Pot 7 0.93*** 0.86

Pot 8 0.97*** 0.94

Pot 9 0.88*** 0.77

Pot 10 0.89*** 0.79

Pot 11 0.94*** 0.88

Pot 12 0.97*** 0.94

Practical flexibility 0.998 0.98

Pra 1 0.91*** 0.83

Pra 2 0.99*** 0.98

Pra 3 0.95*** 0.90

Pra 4 0.89*** 0.79

Pra 5 0.97*** 0.94

Pra 6 0.94*** 0.88

Pra 7 1.00*** 1.00

Pra 8 0.97*** 0.94

Pra 9 0.96*** 0.92

Pra 10 0.95*** 0.90

Pra 11 0.97*** 0.94

Pra 12 0.92*** 0.85

***p < 0.001. Pot, Potential Flexibility; Pra, Practical Flexibility; R2, square of Standardized

path coefficients; CR, Composite Reliability; AVE, Average Variance Extracted.

2003; Hatano, 2003; Siegler and Booth, 2005). The present
study explored different aspects of students’ strategy flexibility
and developed and validated an assessment tool for evaluating
students’ flexibility. The results demonstrated satisfactory
reliabilities, factorial validity and criterion-related validity of
the measures of potential and practical flexibility in equation
solving through the Tri-Phase Flexibility Assessment. Findings
also indicated that the assessment was constructed well, in that
the difficulty gradually increased from the DIVIDE items to the
SIMPLIFY FRACTION items. Consistent with our hypothesis,
our results indicated that students had significantly higher
levels of potential flexibility as compared to practical flexibility,
and more, potential flexibility was significantly correlated with
practical flexibility. This study has theoretical and practical
implications for measure development, practice and future
research on mathematical flexibility.

Measure of Potential and Practical
Flexibility
Our flexibility assessment was found to have sufficiently high
reliability and acceptable validity—the former as a result of

high internal consistency, and the latter demonstrated from the
confirmatory factor analysis (CFA), item factor loads, criterion-
related validity, composite reliability and convergent validity,
all within acceptable limits. Thus, one contribution of this
work is the creation of an assessment that is a promising
and acceptable measurement tool for assessing potential and
practical flexibility within the domain of linear equation
solving.

The results showed that the accuracy scores for students
on all equation solving items were much higher than the
scores of both potential flexibility and practical flexibility.
The results shown in Table 4 indicated that the relatively
lower scores for practical flexibility were not primarily
caused by students’ inability to correctly solve these linear
equations, as accuracy scores were quite high. Rather, flexibility
scores were lower than accuracy scores because students
were not able to use innovative strategies in their problem
solving.

Students’ lack of practical flexibility (despite high accuracy
scores) may have emerged due to two possible situations. First,
some students did not know multiple (standard and innovative)
strategies for some problems. This situation, where students
lacked both potential and practical flexibility but still were able to
provide accurate solutions to many of the equations, comprised
40% of all cases. In the second situation (38% of students),
students were able to accurately solve most equations and also
had knowledge of standard and innovative strategies, but they
were unable to use the innovative strategy as their first attempt
when provided the opportunity to do so.

These findings again confirmed the phenomenon described
in the introduction of this paper—that students often do
not exhibit flexibility during actual problem solving, even
when they have demonstrated knowledge of standard and
innovative strategies on other measures. This finding not
only provides support for the distinction between potential
and practical flexibility but also confirms that need for
measures of these constructs, to enable future research in
this area.

Furthermore, the practical implications of this finding are
significant. For teachers, it may be the case that there is tension
between the instructional goal of helping students to answer
as many problems correctly as possible, and the instructional
goal of having students use innovative strategies as frequently
as possible. The ability to solve problems correctly is certainly a
critical goal of mathematical instruction. But a correct solution
could be generated by the mere application of rote knowledge
of procedures (e.g., Schmidt et al., 1999). Such rote knowledge
can be resistant to transfer and thus is inflexible (Anderson
and Lebiere, 1998). In contrast, the ability to select innovative
strategies among diverse methods to solve problems, namely
practical flexibility, can help students save time and mental effort
when solving mathematical tasks and also is an indicator of
deeper mathematical understanding (e.g., Blöte et al., 2001; Star
and Newton, 2009). Thus, this study leaves some open questions
about how to reform learning and teaching to both effectively
promote the development of practical flexibility and also to
enable students to be able to solve problems correctly.
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Relations between Potential and Practical
Flexibility
This study found that potential flexibility was significantly higher
than and was significantly correlated with practical flexibility.
This result confirmed our hypotheses that these two types
of flexibility are distinct but related, and it was consistent
with the findings from the psychological literature within the
realm of flexibility about the relationship between potential and
practical flexibility. It indicated that our measure of these two
types of flexibility in equation solving through the Tri-Phase
Flexibility Assessment was promising.

In addition, this finding has several implications for both
theory and practice. First, we found that potential flexibility
was greater than practical flexibility. Students had moderate
levels of potential flexibility but comparatively low levels
of practical flexibility. Many participants had demonstrated
knowledge of multiple strategies, but only a few students
actually executed the innovative strategy to solve equation
problems in the first attempt. We interpreted this result to
suggest that knowledge of problem solving strategies tends to
precede the ability to innovatively implement these strategies.
This finding is consistent with the literature in psychology
on the distinction between competence and performance
(e.g., Flavell and Wohlwill, 1969; Le Corre et al., 2006;
Lobina, 2011), which indicates that learners have greater
competence than they are able to innovatively implement
during problem solving. In addition, this finding is also
consistent with research on strategy learning, such as the
Model of Strategy Change (Lemaire and Siegler, 1995), which
suggests that the ability to flexibly implement new strategies
is formed in later stages of strategy development. Teachers
interested in promoting flexibility may need to be aware that
students may have substantially greater (potential) flexibility
than is evident from assessments designed to evoke practical
flexibility.

Second, we found that potential flexibility was significantly
correlated with practical flexibility. If an instructional goal is
to develop practical flexibility—or the ability to consistently
implement innovative problem solving strategies—teachers
might hypothesize that the best means toward achieving this
aim would be to merely provide students with instruction
on only the innovative strategies. However, our results
(see also Star and Rittle-Johnson, 2008) suggested that
potential flexibility—knowledge of multiple strategies—
was in fact an alternative route toward the achievement of
practical flexibility. Providing students with knowledge of a
diverse array of strategies can allow students to effectively
develop the ability to use innovative strategies on a variety of
problems.

Finally, one interesting finding that merits further exploration
concerns the ways that, on average, potential and practical
flexibility changed from the (easier) items at the beginning
of the assessment to the (harder) items at the end of the
assessment. We found that practical flexibility scores remained
consistent (and low) throughout the assessment, despite the
increasing difficulty of the problems. In contrast, potential
flexibility was relatively high for the problems at the beginning

of the test (averaging 63% in the first group of problems) but
subsequently dropped to an average of 25% for the last group
of problems. Thus, it appears that problem difficulty impacts
potential and practical flexibility differently. Related, although
the correlation results indicated that potential flexibility was
significantly correlated with practical flexibility, the correlation
coefficient between them was only 0.27. Taken together, these
results indicate that there could be some other factors that
influence both potential and practical flexibility. One promising
candidate is students’ beliefs or dispositions; future research
should also consider the role of dispositional variables in the
development of flexibility (Verschaffel et al., 2007, 2009). It
may be the case that students’ beliefs, attitudes, and habits of
mind could impact (positively or negatively) their flexibility in
mathematics.

Limitations and Future Directions
In closing, we identify implications for future research that
emerge from this study and its limitations. First, we did not
conduct interviews to ask students to explain the thinking behind
their strategy choices. More fine-grained qualitative information
would be a very important and helpful next step to continue to
advance our understanding of potential and practical flexibility.
For example, why did students persist in using standard strategies
to solve problems even when they knew innovative strategies?
What criteria did students use to determine which strategy was
innovative for a given problem?

Second, this study did not assess students’ conceptual
knowledge, which has been found to be distinct from but related
to both flexibility and procedural knowledge (Rittle-Johnson and
Star, 2009; Rittle-Johnson et al., 2009; Star and Rittle-Johnson,
2009; Schneider et al., 2011).

Third, to verify the validity of our measure, we tested
criterion-related validity (strategy identification was regarded as
a criterion for potential flexibility), factorial validity, composite
reliability and convergent validity of our assessments. But these
indicators were insufficient to definitely conclude that this test
was valid. Future research can test concurrent validity and
discriminant validity to further explore the validity of our
measures.

Fourth, future research can adapt and refine the assessment
and protocol used here for studying practical and potential
flexibility in other mathematical domains. Here we created a
new technique for assessing potential and practical flexibility
by having students complete several passes through a set
of problems in order to both generate multiple strategies
as well as demonstrate knowledge of innovative strategies.
This approach yielded a promising and reliable assessment
for studying flexibility in linear equations. Additional work
is necessary to continue to explore this form of assessment,
including examining the relationship between students’
performance on the various phases of the assessment.
We hope that future work can verify the utility of this
assessment technique in other mathematical domains,
expanding our understanding of mathematical flexibility
more generally.
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Finally, the development of a reliable and promising measure
of potential flexibility and practical flexibility in this study offers
a measuring tool for future research to empirically confirm
some possible theoretical explanations of the distinction between
potential and practical flexibility. There were some plausible
theoretical explanations from the literature concerning why
students were not able to (or chose not to) implement innovative
strategies that they knew. For example, students may have
perceived that standard strategy was what their teacher wanted
to see, especially if the standard approach had been the primary
focus on instruction (Newton et al., 2010). There may have been
cognitive “costs” associated with switching between competing
strategies, particularly in terms of longer response times (Luwel
et al., 2009; Schillemans et al., 2011). We are currently engaged in
studies to address all of these limitations of the present work.
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APPENDIX

List of equations solved by students during the problem-solving sessions.

# Problem Standard algorithms Innovative strategies

1 3 (x − 1) = 27 3x − 3 = 27 x − 1 = 9

2 4 (x + 0.48) = 20 4x + 1.92 = 20 x + 0.48 = 5

3 3
(

x + 4
5

)

= 6 3x + 12
5 = 6 x + 4

5 = 2

4 2 (x + 3) + 3 (x + 3) = 20
2x + 6+ 3x + 9 = 20

5x + 15 = 20

5 (x + 3) = 20

x + 3 = 4

5 2
(

x + 4
7

)

+ 3
(

x + 4
7

)

= 10
2x + 8

7 + 3x + 12
7 = 10

5x + 20
7 = 10

5
(

x + 4
7

)

= 10

x + 4
7 = 2

6 4 (x − 0.29) + 3 (x − 0.29) = 14
4x − 1.16+ 3x − 0.87 = 14

7x − 2.03 = 14

7 (x − 0.29) = 14

x − 0.29 = 2

7 7 (x − 2) = 3 (x − 2) + 16
7x − 14 = 3x − 6+ 16

7x − 3x = 14− 6+ 16

4 (x − 2) = 16

x − 2 = 4

8 5
(

x − 2
3

)

− 10 = 2
(

x − 2
3

) 5x − 10
3 − 10 = 2x − 4

3

5x − 2x = 10
3 + 10−

4
3

3
(

x − 2
3

)

= 10

x − 2
3 =

10
3

9 4 (x + 2.5) + 4x = 4 (x + 2.5) + 8
4x + 10+ 4x = 4x + 10+ 8

4x + 4x − 4x = −10+ 10+ 8
4x = 8

10 2x−4
2 +

6x−12
3 = 3

6( 2x−4
2 +

6x−12
3 ) = 18

6x − 12+ 12x − 24 = 18
x − 2+ 2x − 4 = 3

11 x+2
2 +

2x+4
4 = 1

4
(

x+2
2 +

2x+4
4

)

= 4

2x + 4+ 2x + 4 = 4

x+2
2 +

x+2
2 = 1

x + 2 = 1

12 3x+3
3 +

4x+4
4 = 4

12×

(

3x+3
3 +

4x+4
4

)

= 12× 4

12x + 12+ 12x + 12 = 48
x + 1+ x + 1 = 4
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