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The combination of sports sciences theorization and social networks analysis (SNA)

has offered useful new insights for addressing team behavior. However, SNA typically

represents the dynamics of team behavior during a match in dyadic interactions and in

a single cumulative snapshot. This study aims to overcome these limitations by using

hypernetworks to describe illustrative cases of team behavior dynamics at various other

levels of analyses. Hypernetworks simultaneously access cooperative and competitive

interactions between teammates and opponents across space and time during a

match. Moreover, hypernetworks are not limited to dyadic relations, which are typically

represented by edges in other types of networks. In a hypernetwork, n-ary relations

(with n > 2) and their properties are represented with hyperedges connecting more

than two players simultaneously (the so-called simplex—plural, simplices). Simplices

can capture the interactions of sets of players that may include an arbitrary number

of teammates and opponents. In this qualitative study, we first used the mathematical

formalisms of hypernetworks to represent a multilevel team behavior dynamics, including

micro (interactions between players), meso (dynamics of a given critical event, e.g., an

attack interaction), and macro (interactions between sets of players) levels. Second, we

investigated different features that could potentially explain the occurrence of critical

events, such as, aggregation or disaggregation of simplices relative to goal proximity.

Finally, we applied hypernetworks analysis to soccer games from the English premier

league (season 2010–2011) by using two-dimensional player displacement coordinates

obtained with a multiple-camera match analysis system provided by STATS (formerly

Prozone). Our results show that (i) at micro level the most frequently occurring simplices

configuration is 1vs.1 (one attacker vs. one defender); (ii) at meso level, the dynamics of

simplices transformations near the goal depends on significant changes in the players’

speed and direction; (iii) at macro level, simplices are connected to one another, forming

“simplices of simplices” including the goalkeeper and the goal. These results validate

qualitatively that hypernetworks and related compound variables can capture and be

used in the analysis of the cooperative and competitive interactions between players

and sets of players in soccer matches.
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INTRODUCTION

Coaches, players, and scientists have long tried to understand
team behavior dynamics during a game, aiming to develop
interventions and training plans that may increase team
performance (Araújo and Davids, 2016; Passos et al., 2017).
Broadly speaking, research in performance analysis in team
sports searches for variables describing game dynamics that are:
(i) useful and accessible to coaches and athletes; (ii) obtained
automatically or semi-automatically from game observation;
and (iii) related to team outputs, such as, match results. For
finding such variables it is necessary to capture the multi-leveled
dynamics emerging from differential interactions between many
heterogeneous parts (e.g., players), while considering potential
adaptations to changing environments. In this way, teams and
athletes can be seen as co-evolving subsystems that self-organize
into new structures and behaviors (Johnson, 2013), i.e., they form
team synergies (Araújo and Davids, 2016). Such team synergies
emerge from physical and informational constraints (Schmidt
et al., 1998, 2011). Importantly players are perceptually linked
mainly by informational constraints, since physical links among
them are very rare (e.g., when forming a wall of players; Riley
et al., 2011). Several studies have analyzed the coupling among
performers based on interpersonal distance measures (Passos
et al., 2011; Fonseca et al., 2013; Rio et al., 2014), with a higher
emphasis on the distance between a player and the immediate
opponent (e.g., Headrick et al., 2012). In the present study, we
extend this player-immediate opponent distance to the closest
player (opponent or not).

These interactions, based on informational and physical
constraints have been studied by network theorical approaches,
like social network analysis (SNA). SNA is a powerful tool
to capture and study interpersonal relations in team sports
(Araújo and Davids, 2016); however, this method can only be
used for representing binary (2-ary) relations (Johnson, 2006;
Criado et al., 2010; Boccaletti et al., 2014). The most common
graphical representations of SNA depict players as nodes in fixed
positions in the pitch (the field of the match), with edges between
them representing the cumulative “ball flux,” i.e., ball passes,
over time (Duch et al., 2010; Fewell et al., 2012; Grund, 2012;
Clemente et al., 2015; Araújo and Davids, 2016; Travassos et al.,
2016). This is a fundamental limitation of typical SNA in sport
context, as it restricts its application to the attacking phase of
team dynamics. Typically, all other relevant types of interactions,
either cooperative or competitive, are not considered. In this
study, we investigate how cooperative (e.g., between players of
the same team in order to create a scoring opportunity) and
competitive interactions (e.g., between players of different teams
competing for ball possession) may be captured and analyzed
via multilevel hypernetworks. On the one hand, according to
Boccaletti et al. (2014), multilevel networks constitutes the new
frontier in many areas of science since it describes systems that
are interconnected through different categories of connections
(e.g. relationship: teammate vs. opponent; activity: increasing
vs. diminishing interpersonal distance; category: attacker vs.
midfielder) that can be represented in multiple layers, including
networks of networks (e.g., interactions between teams). On the

other hand, in a hypernetwork, a hyperedge can connect more
than two nodes, thus directly representing n-ary interactions
occurring among small sets of nodes, 〈pi, . . . , pj〉 (Johnson,
2006, 2008, 2013, 2016; Criado et al., 2010; Boccaletti et al.,
2014). This generalization provided by hypernetworks enables
the representation of cooperative and competitive interactions
that occur during the game and that involve an arbitrary number
of players (teammates or opponents).

In the present study, we have extended the approach by
Johnson and Iravani (2007) by introducing compound variables,
e.g., local dominance, which capture the structure and dynamics
of cooperative and competitive interactions in the following
ways:

i. By considering the domain specificity of soccer matches to
tag the sets of players formed (e.g., 2 vs. 1 corresponds to a set
with two attackers and one defender) as these tags describe
local dominance (Duarte et al., 2012);

ii. By including the spatiotemporal occurrence of the different
sets of players by counting their frequency and location;

iii. By analyzing and relating the dynamics of the sets
with players velocity in specific events (goal scoring
opportunities);

iv. By studying, for the same events of interest, the formation
and dynamics of higher level simplices; notably, the relations
between simplices of simplices.

The present approach is applied to a set of matches in order
to investigate how the proposed compound variables can be
useful on characterizing the behavior of players and teams at
different levels and the relationships between these levels and
match context, e.g., team local dominance and current match
result.

As a first step in this approach, it is necessary, at each
level of analysis, to identify the meaningful relations for the
match dynamics, and represent them using different criteria for
selecting the players in each set (i.e., connected by a hyperedge;
Johnson, 2008, 2016). According to Passos and colleagues the
analysis of the interpersonal distances is adequate for complex
systems modeling (Passos et al., 2011). As we are interested in
cooperative and competitive behavior in the pitch, geographical
proximity between players (Headrick et al., 2012) can capture
whether an interaction between players exists or not (e.g.,
functional couplings). Also, in the investigation of the relation
between higher (macro) level of analysis and players’ individual
actions (micro), it is important to consider the velocity of each
player, as well as the velocity of the set of players, represented by
the set’s geometric center and obtained through the computation
of each players’ velocity. For example if such set is expected
to maintain its structure or if it is about to split when a
player’s velocity vector is moving away from the other players.
Operationally, we have defined that a player does interact with
his closest player; this interaction is cooperative when that
closest player is a teammate, and competitive when it is an
opponent. Thus, time and space are highlighted in the present
approach using hypernetworks because it uses geographical
proximity criteria, and also because it captures temporal changes,
by considering the players’ geographical positions over time
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(t1, t2, ..., tn). The compound variables adopted in this study
reflect and capture this space and temporal features, e.g., local
dominance and the dynamics, i.e., changes on, players’ sets.

In Figure 1, we show an example of a set of nodes identified
at Level N: two attacking players (a1 and a2,), a defender (d1), a
goalkeeper (d0), and a goal (Ga). These nodes are connected by
two hyperedges at Level N+ 1, corresponding to sets 〈a1, a2, d1〉
and 〈d0,Ga〉 in one time frame, and 〈a1, d1〉 and 〈a2, d0,Ga〉 on
the next.

For a more complete description of the system’s dynamics,
each tuple identified in the hypernetwork can be extended by an
element, R, that describes the relationships in the set (Johnson,
2013). Each of these extended sets is called a simplex (Johnson
and Iravani, 2007; Johnson, 2013). For example, R is the path
to understand why the sets 〈a1, a2, d1〉 and 〈d0,Ga〉 on one
frame lead to the sets and 〈a1, d1〉 and 〈a2, d0,Ga〉 on the next.
When a player observes the game searching for the best action
possibilities offered by the other players’ positioning, the entire
configuration of team-mates and opponents has to be perceived.
Such sets of players, either in 1vs.1, 2vs.1, or 2vs.2, or any other
set, may be related to one another, regarding the players’ general
configuration. Thus, when one player decides to move, the entire
configuration is affected. Johnson and Iravani (2007) propose
naming the “2 attackers vs. 1 defender” structure, the defenders’
dilemma, since the defenders can opt to tackle the ball or intercept
the pass between attackers. In a similar situation involving the
goalkeeper, the goalkeepers’ dilemma, the options are moving

to the right or left of the goal, or moving toward the attacker
leaving the goal behind. The goal can therefore be considered
as a constraint that attracts the opponents and instigates the
defenders to position as if it were an opponent. For this reason,
we have included goals in the definition of simplices, because they
show similarities to an “attacking player” (e.g., in the goalkeepers
dilemma).

In this study, we propose several compound variables to
describe the players’ cooperative and competitive behavior
dynamics during a soccer match. The simplest of these variables
depicts the dominant interactions in each set, and is expressed by
two values representing the number of attacking and defending
players, for example, 2 vs. 1 corresponds to a set with two
attackers and one defender. In Figure 1, the two dominant
relationships are R1 = (2 vs.1) and R2 = (0 vs.1), and the
corresponding simplices are σ1 = 〈a1, a2, d1; (2 vs.1)〉 and σ2 =

〈d0,Ga; (0 vs.1)〉. The behavior of a team during a match can
then be described by other compound variables that characterize
the relative frequencies of the aforementioned relationships. For
example, the minimal structure (simplex) of players’ interactions
occurring more frequently in a match can be assessed.

At higher complexity levels, the hypernetwork can represent
the interactions between related simplices, or simplices of
simplices (see Figure 1, Level N + 3; Johnson, 2006, 2013;
Johnson and Iravani, 2007). In what regards the study of
dynamics: less dynamic structures (e.g., number of players,
players’ roles, etc.) are called backcloth, and higher rate changes

FIGURE 1 | Multilevel hypernetwork representation (from bottom to top). Each level corresponds to a different abstraction level (Level N, players in the pitch; Level

N + 1, proximity-based simplices; Level N + 2, local dominance relation; Level N + 3, dynamic analysis via simplices of simplices). Also represented, the

displacement in a soccer game of 2 sequential time frames (from the left to the right hand side) (Adapted from Johnson and Iravani, 2007).
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(e.g., players positioning in relation to opponents, teammates
and the goal or the ball) are called traffic (Johnson, 2013) and
represent dynamics within the backcloth. Thus, one important
feature of hypernetwork analysis in the sports context is the
representation of players’ moves, across time and space, and
between structured sets (i.e., from one simplex to another).
As shown in Figure 1, this multilevel approach allowed us to
capture the number of players and their moves and the players
in the match-day squad (Level N), the coordinated sets of players
along the match (Level N + 1), the local advantage of one team
over the other (e.g., numerical dominance; Level N + 2), and
the relationship between the sets (Level N + 3). Moreover, by
using this approach different compound variables, e.g., local
dominance, may explain distinctive aspects of the competitive
and cooperative behavior of players and teams.

In this study we put forward the hypothesis that
hypernetworks and compound variables over these
hypernetworks can capture relevant features of soccer team
dynamics during a match. We validate qualitatively this
hypothesis by applying the proposed method to a set of matches
of a focal team within different contexts and by analysis the
results thus obtained. The aim of this study was therefore
to operationalize a method addressing different levels of
hypernetworks on soccer matches and by providing a study case
for tackling the following questions:

i. At Level N: Has the backcloth (players) changed during the
match, as expressed by events such as, substitutions, sent-offs
and injuries? Typical notational analyses answer this question
directly.

ii. At Level N + 1: What are the most frequently occurring
simplices in soccer matches? A histogram with the relative
frequencies of occurrence of every type of simplices (e.g.,
1vs.1, 2vs.1...) can be computed.

iii. At Level N + 1: Are there any differences in simplices’
structure and occurrence between home or away matches for
Team A? A heat map (2D spatial frequency map) for each of
the relationships can be computed to show their location in
the pitch.

iv. At Level N + 1: Are there any changes in simplices structure
and field position as the match score changes? Instead of
considering the entire match, the heat maps can address
specific periods of the match. These periods are bounded by
relevant match events, e.g., a goal being scored.

v. At Level N + 2: What are the dynamics of the simplices’
interactions near the goal, immediately before the score
changed? Instead of examining the results for the entire
match, or for given periods, it is possible to perform a
frame-by-frame analysis to assess which simplices formed
and how they changed, and also to identify the players who
contributed to those changes.

vi. At Level N + 3: Is there any interaction between simplices
leading to the emergence of new team configurations that, in
turn, can lead to scoring a goal? To answer this question, it is
necessary to evaluate how the different simplices relate to one
another, how they aggregate into higher-level simplices, and
how they recombine into different simplices.

METHODS AND MATERIALS

Five matches were analyzed from a pool of 11 matches of
the English Premier League season 2010–2011 provided by
STATS (formally Prozone). This data set was selected because it
contained no errors, such as, missing or duplicated positioning
data, and because the backcloths were equivalent (i.e., there were
no differences between teams regarding the number of players
due to sent-offs or injuries without substitutions). Participants
included all the players in the field from Team A (our focal
team), and the players from five teams playing against team
A (teams B, C, D, E, and F). The matches included three
home matches, against teams B, C, and D, and two away
matches, against teams E and F. The players’ substitutions
were considered but not analyzed in detail in this study (i.e.,
data for both initial squad and substitutes are used but the
implications of substitutions in the backcloth are not taken into
consideration).

Matches and their score were: TeamA vs. Team B (1–0); Team
A vs. Team C (1–0); Team A vs. Team D (1–0); Team E vs. Team
A (2–1) and Team F vs. Team A (0–0). The details for each match
are presented in Table 1.

For each match, raw data consisted of two-dimensional player
displacement coordinates provided by STATS. These data were
obtained by a multiple-camera match analysis system whereby
the movements of the 22 players during the match were recorded
with eight cameras positioned at the top of the stadium. The
frames were processed at 10 Hz through an automated system
that synchronized the video files. The effective playing area
was 80m wide and 120m long, including the out-of-bound
locations such as, set-plays. A computer procedure for computing
the simplices’ hyperedges set with the proximity criterion was
implemented using GNU Octave version 4.2.0 and applied to
each frame. This criterion has the advantage of being non-
parametric; the corresponding pseudo-code for this algorithm is
provided in Figure A1.

Each simplex was represented graphically by the convex hull
computation (the minimum convex area containing all players
in the simplex) and included the velocity of each player (vector
velocity considering the instant t-1 and t), as well as the velocity
of the geometric center of the simplices.

To represent the field positioning of the different types of
simplices, we used heat maps for the frequency of simplices
occurrence. This type of graphical representation allowed us to
capture the most frequent type of simplices for each time period,
as well as their geographical position in the field.

TABLE 1 | Matches’ details indicating the result and changes in the team

structure due to sent-offs, substitutions, or injuries (without substitution).

Matches A vs. B A vs. C A vs. D E vs. A F vs. A

Results 1–0 1–0 1–0 2–1 0–0

Substitutions 3–3 3–3 3–3 3–3 2–2

Sent-offs 0–0 0–0 0–0 0–0 1–1

Injuries (without substitution) 0–0 0–0 0–0 0–0 0–0
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For analyzing specific time points, we represented simplices
(Level N + 2, Figures 5, 6) with two different colors: for players
in team A, vertices are in red, for players in team B, vertices are in
green. For the higher-level simplices in level N+ 3, Figure 6, the
blue o symbol represents the geometric center of the simplices.
Such representation facilitates the simultaneous identification of
players in both teams and the type of simplices in level N + 3.
Moreover, we also represented the proportion (local dominance
or balance) of each type of simplices in level N + 2, as well as
the type of relation that exists between the simplices, or simplices
of simplices in any instant of time at level N + 3. The velocity of
the simplices and players were also included, thus allowing for the
evaluation of simplices consistency, for example, transformations
such as, when a player entered or moved away from a given
simplice, or when all players moved simultaneously to the same
position, could be detected.

RESULTS

Our results revealed how the matches’ hypernetworks are
characterized from Level N to Level N+ 3.

We analyzed the structure at Level N of the five matches. As
expected, we found 11 players in each team, with some players
being substituted but with no sent-offs (with the exception
of match F vs. A) or injuries occurring after there were no
substitutions left (hence the total number of players remained
constant). At this level of analysis, individual player statistics
and heat maps of their positioning during the match are usually
performed. However, as this type of performance analysis is
widespread in sport (for a review see Passos et al., 2017), and
given that the focus of this paper is on team behavior, we do not
present such results here.

We computed the relative frequencies of the simplices
structures at LevelN+ 1 for players in both teams (Figure 2). The
most frequently occurring simplices structures in the 5 matches:
1vs.1; 2vs.1; 1vs.2; 2vs.2; 3vs.1; 1vs.3. These results reveal that
the most frequently occurring simplices structures are similar in
everymatch. Around 25% of the simplex structures corresponded
to 1vs.1, independently of the type of match (home or away) or
its final result. The second most frequently occurring simplices
structures were 2vs.1 and 1vs.2 (around 10%), followed by 2vs.2
(around 6%), and finally by 3vs.1 and 1vs.3 (around 3%). Among
other simplices structures, we could also often find interactions
between the goalkeeper and the goal, as identified in 0vs.1 or 1vs.0
structures (around 11%). However, these simplices structures do
not reveal a social interaction (i.e., cooperation or competition)
and are therefore not compared to other structures.

By computing the frequencies for the “local dominance tag”
compound variable it is possible to investigate for each game the
most frequent cooperation and competition interactions sets.

Level N+ 1 describes the geographical distribution in the pitch
of themost frequently occurring simplices structures, as shown in
heat maps (Figure 3).

Figure 3 shows that although 1vs.1 is the most frequently
occurring simplex tag in every match, the location in the
pitch where it can more often be found varies between
matches. Simplices, 2vs.1, indicating simultaneous cooperation
and competition, occurs mostly in the mid-field, and simplices
1vs.2 occurs mostly in the opponent side of the field.

By identifying the relevant events in a match, such as, changes
in the score, at Level N + 1 we can capture changes in collective
behavior across time. Figure 4 shows the results of this analysis
in heat maps corresponding to different sections of the E vs. A
match (final result 2–1). For example, these heat maps reveal that

FIGURE 2 | Histogram for the most frequently occurring simplices structures in the 5 matches: 1vs.1; 2vs.1; 1vs.2; 2vs.2; 3vs.1; 1vs.3. The matches (and score)

were: Team A vs. team B (1–0); Team A vs. Team C (1–0); Team A vs. Team D (1–0); Team E vs. Team A (2–1); and Team F vs. Team A (0–0).
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FIGURE 3 | Heat maps for field position of the most frequent simplices structures during the matches (when Team A, playing at home, attacks are represented from

left to right). The color gradient from red to blue represents the frequency of simplices in that location (from most frequent, red, to not occurring, dark blue).

the team with the lowest score shows a tendency for a decrease in
frequency of 2vs.2 near its own goal. Moreover, the next most
frequently occurring simplices, 3vs.1 and 1vs.3, can be found
more often close to the goal of the wining team.

Level N + 2 captures simplices dynamics, for example, before
changes in the score. Here we present an analysis of the simplices
having their geographical center closer to the goal. To answer
the question “what creates an opportunity for the attackers to
score?” simplices reveal how the defenders’ local dominance is
broken by the attackers. Figure 5 shows an example of local
dominance, in which team A (playing at home against B) scores
in a counter-attack sub-phase. The play was analyzed in a set of
consecutive frames (at 1 Hz) that captured the simplices nearer
the goal of interest. A velocity vector computed using consecutive
frames was associated to each player to show aggregation or
disaggregation, as a player moved toward or away from the
simplices geometric center.

The example in Figure 5 shows that, in the frames before
a goal is scored, some attacking players (e.g., 6, 7, and 10)
increase their speed to place themselves in a better position
either to create an invitation for a successful pass or to create a
scoring opportunity. On the other hand, defensive players try to
maintain or reduce interpersonal distance (e.g., 16, 19, and 22).
This is aligned with other studies (Fonseca et al., 2013) where
it was observed that attackers tried to increase the interpersonal
distance while the defenders tried to reduce it. The consequence
of these moves can be captured by simplices’ configuration. This
is more evident if a player stays in the same simplex or moves
to another simplex. Changes in players’ velocity leads to break

(disaggregate) or maintain (aggregate) the simplex’s integrity
when they move away or toward the simplex geometric center,
respectively.

Level N + 3 indicates how simplices interact between them,
thereby creating higher-order simplices. These simplices form by
aggregation of Level N + 1 simplices based on the proximity
criterion of their geographical centers (Figure 6). To uncover the
changes in simplex structures leading to goal scoring, higher-
order simplices (Figure 6, purple polygons) were analyzed for the
frames where significant changes occurred in the Level N + 3
structures (simplices of simplices).

The example of Level N + 3 analysis in Figure 6 also reveals
the connections between players before a goal was scored. The
simplex formed by the goalkeeper and the goal is connected with
other simplices, as the goalkeeper tries to align with the closest
simplice while maintaining the link with the goal. Figure 6 also
shows how the simplices furthest from the goal are connected
with simplices more directly involved in the attacking phase (i.e.,
closest to the goal). Other information that can be extracted from
Level N+ 3 is how fast changes in the link with the goal can occur,
and which simplices are “disconnected,” for example, on one side
of the field.

DISCUSSION

The different levels of analysis of a hypernetwork can capture
various degrees of team behavior dynamics, from player, to
simplices, and to interactions between simplices across space and
time.
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FIGURE 4 | Heat maps for the field position of the different simplices structures (visiting team A attacks from the right to the left hand-side). Each column corresponds

to a temporal section of the match bound by a score change. The color gradient from red to blue represents the frequency of simplices in that location (from most

frequent, red, to not occurring, dark blue).

At Level N + 1, we could identify the types of simplices
occurring more often in a match, independently of their score or
context (home or away). The most frequently occurring simplex
was 1vs.1, followed by 1vs.0 and 0vs.1. The latter represents
the link between the goalkeeper and the goal. Also occurring
frequently were simplices with an unbalanced number of players,
2vs.1 and 1vs.2 (∼10%), followed by the 2vs.2 simplices (∼6%),
and finally by the 3vs.1 and 1vs.3 simplices (∼3%).

Important interpretations can be inferred from the simplices
at Level N + 1 when space and time, or contextual variables
(home or away match) are considered. For example, team
A won three home matches (all with score 1–0) but tied
(score 0–0) or lost (score 2–1) in away games. The 1vs.1
simplices tend to occur in the mid-field and on the right
of the attacking direction of team A (Figure 3). However, in
the match lost against team E, 1vs.1 simplices were more
dispersed and toward the left side of the pitch. Another
frequently occurring simplex with a balanced number of
players was 2vs.2, for both teams (Figure 3). Interestingly, these
simplices also had a unique distribution in the match lost
against team E, as they occurred more toward the center of
the pitch and the opponent middle field. Additionally, these
structures differed from match to match, showing the emergent

properties of complex adaptive systems, specifically the context
dependency (opponents and scoring evolution; Araújo and
Davids, 2016).

Concerning simplices with an unbalanced number of players,
2vs.1 occurred more often in the center of the pitch and in
the opponent middle field (similarly to 2vs.2 in the match lost
against team E). The 1vs.2 simplices were also detected more
often in the middle fields. Simplices 3vs.1 were distributed in
the center of Team A’s middle field, however, in the match
against team E, they were more distant from their own goal (in
the middle field). In the opposite way, in the matches against
teams B and F, there were some notable occurrences of 3vs.1
simplices near team’s A goal. Moreover, in these matches, 1vs.3
occurred near the center but more toward team A’s middle field,
suggesting that team B and F “forced” team A players away from
their goal.

The results obtained considered both geographical placement
and context dependency, and showed that the use of simplices
formation captured match properties, such as, local dominance.
These properties emerge in each match event resulting from
the local interaction between players of both teams. Multilevel
hypernetworks proved to be a useful method in answering
to chief problems such as, the relation among micro (e.g.,
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FIGURE 5 | Simplices in a sequence of nine frames (58′23′′ to 58′31′′) leading

to a goal by Team A. Visiting players are attacking from right to left

(represented in green), while home players are attacking from left to right

(represented in red, including the opponents’ goal). A simplex is represented

by the polygon (or a line when there are only two players) defining the convex

hull (or envelope) that links the nodes (players or goal). A velocity vector for

each player is also presented.

players’ positions), meso (e.g., local dominance), and macro
levels (e.g., match result). Moreover, the use of hypernetworks
allows that the analysis can consider more than the typical (in
SNA) 2-ary relations between players. These contributions fulfill
previous gaps in interpersonal coordination research (Passos
et al., 2016).

The analysis of the dynamics of simplices interactions at Level
N + 2 revealed abrupt changes in the speed and direction of
player vectors near the goal. These changes showed a tendency
to be associated with transformations in simplex structure, for
example, when an attacker passed through the defenders to score,
or when a player disconnected from one simplex to interact with
another (to balance or unbalance the simplex). The example in
Figure 5 analyzed a change in the score that resulted from a ball
lost by team B in team A’s middle field that led to a successful
counter attack (with a goal scored). This event was characterized
by transformations in the simplices’ structure occurring within
the short duration of the counter attack (9 s, from 58′23′′ to
58′31′′). Next we present the set of simplices (σ ) and their
evolution for these 9 s leading to a goal being scored by Team
A (at 58′31′′). Simplices containing the player who scored the
goal are identified with (S). Simplices containing the goal are
identified with (G).

σ1, 58′23′′ 〈a3, a5〉 + σ2, 58′23′′
〈

a9, a6, a10, d24
〉

+ σ3, 58′23′′
〈

a7, d22, d16, d19, d21; (G, S)
〉

σ1, 58′24′′ 〈a3, a5〉 + σ2, 58′24′′
〈

a9, a6, a10, d24, a7, d22, d16,

d19, d21; (G, S)
〉

σ1, 58′25′′ 〈a3, a5〉 + σ2, 58′25′′
〈

a9, d24
〉

+ σ3, 58′25′′
〈

a6, a10, a7, d22, d16, d19, d21; (G, S)
〉

σ1, 58′26′′
〈

a3, a5, a9, d24
〉

+ σ2, 58′26′′
〈

a6, d22
〉

+ σ3, 58′26′′
〈

a10, a7, d16, d19, d21; (G, S)
〉

σ1, 58′27′′
〈

a3, a5, a9, d24
〉

+ σ2, 58′27′′
〈

a6, d22
〉

+ σ3, 58′27′′
〈

a10, a7, d16, d19, d21; (G, S)
〉

σ1, 58′28′′
〈

a3, a7, a9, d24; (S)
〉

+ σ2, 58′28′′
〈

a6, d22
〉

+ σ3, 58′28′′
〈

a10, d16, d19, d21; (G)
〉

σ1, 58′29′′
〈

a3, d17, d26
〉

+ σ2, 58′29′′
〈

a9, a7, d24; (S)
〉

+ σ3, 58′29′′
〈

a6, d22
〉

+ σ2, 58′29′′
〈

d21; (G)
〉

σ1, 58′30′′
〈

a3, d17, d26
〉

+ σ2, 58′30′′
〈

a9, d24
〉

+ σ3, 58′30′′
〈

a6, a7, a10,d16, d19, d22; (S)
〉

+ σ2, 58′30′′
〈

d21; (G)
〉

σ1, 58′31′′
〈

a9, d24,
〉

+ σ3, 58′31′′
〈

a6, a10,, d22
〉

+ σ2, 58′31′′
〈

a7, d16, d19, d21; (G, S)
〉

The results show that certain moves performed by the player
who scored the goal (player a7) had significant impact on
some simplices transformations, for example, at instants 58′27′′,
58′28′′, 58′29′′, 58′30′′, and goal scored. Player a10 had an
important role in promoting balance in the simplex that scored
the goal (with player a7), by maintaining defender d19 distant
from his teammate d16. Moreover, player d19 appeared to be
facing the defender’s dilemma, hesitating between defending
his opponent (player a10) and supporting his teammate (player
d16). Player d24 was also essential in the attack play leading
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FIGURE 6 | Higher-order simplices (simplices of simplices) in a sequence of five frames before team A scores a goal. Higher-order simplices are represented by the

polygon (and lines) forming the convex hull (−) that connects the geographical centers of the N + 1 simplices. See Figure 5 legend for the codes for players, their

velocity, and simplices.
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to the goal scored, as he lost the ball but kept pursuing it,
almost reaching player a7 and thereby including him into
his simplex. Finally, player a6 broke the central simplex
(containing teammate a7) by attracting a defender toward him
and hence reducing the number of players in the central middle
field.

Results showed that by considering the temporal sequence
of simplices transformations during critical events of the match
(e.g., from ball recovery to scoring a goal) the dynamics of
interaction among players is captured. Moreover, it is possible
to analyze how interactions among players led to changes in
simplices’ structures and, consequently to such critical events
(e.g., a goal scoring opportunity). Multilevel hypernetworks offer
a fine temporal grain of analysis of how the micro-meso-macro
level relationships emerge.

Level N + 3 clarified the dynamics of team behavior by
considering the entire set of simplices, including the interactions
between them (which form simplices of simplices). This level
of analysis revealed the connections of players with simplices
during a match. We found that the goal has an “anchoring effect”
toward the goalkeeper, however, this simplex also connected with
the nearer simplex (0vs.1 represents the home team and 1vs.0
the visiting team). Some simplices seemed to disconnect during
critical situations, for example, when other simplices were close
to the goal. This may be explained by an intentional reduction
in speed by the attacking players to try and maintain the nearest
defenders away from teammates (Figure 6).

This study showed that the hypernetworks’ analysis by
considering simplices of simplices reveal the degree of
connection between sub-sets of players.

CONCLUSIONS AND LIMITATIONS

We have applied multilevel hypernetworks analysis, and a set
of associated compound variables, to selected soccer matches by
using positional variables for all players involved.

The interactions between players, as well as the sets of these
interactions (simplices), were assessed based on interpersonal
distance, more specifically spatial proximity and instant speed
relational variables. Each player is therefore linked to his closest
player (or goal, for the goalkeeper) and at higher levels, simplices
are also linked to their closest simplices. The vectors representing
the players’ speed can represent the emergent moves from the
players in order to search for new interactions or escape from
others. These two “interaction variables” allowed for a deeper
analysis of the structures and coordination levels emerging from
the game.

Our results revealed a pattern in these interactions’ dynamics
that was independent of the type (home or away) and score
of the match. Specifically, in every match analyzed the most
frequently occurring simplices structures were, by decreasing
order of frequency, 1vs.1, 2vs.1 and 1vs.2, 2vs.2, and finally, 3vs.1
and 1vs.3.

However, these simplices show differences in their
distribution on the pitch, and this is particularly evident
for unbalanced simplices such as, 2vs.1, 1vs.2, 3vs.1, and

1vs.3. These differential distributions are consistent with
the match result (wins vs. losses) and the opponent team’s
strength.

We analyzed the changes in local dominance at Level N +

2 associated with critical events (e.g., score changes) and found
that dramatic speed changes can be detected in the players of
simplices directly linked to the event (goal scored). Velocity
is therefore the variable that allows players to improve their
positioning to score or to unbalance the situation.

Finally, our last and global analysis level revealed how all the
simplices were connected, but most importantly, it enabled to
permanently connect all the simplices into larger hypersimplices,
including the goal and goalkeeper simplex, and also the defenders
and attackers who were distant from the goal.

These results may significantly contribute to improve
training and playing strategies. We highlight the importance
of mastering 1vs.1 situations (with and without the ball), as
this structure occurs more frequently in all types of matches.
For example, coaches could design exercises to train players
to rapidly transform any structure into a 1vs.1 structure.
Unbalanced situations such as, 2vs.1 and 3vs.1 typically reveal
which team is dominating the match, particularly when those
structures occur on the attacking side of that team’s field.
Thus, designing training exercises that create an overload
for the attacking team may allow players to better adapt
to such situations in a match. Finally, we found that as
an attacking team moves closer to the goal, changes in
player speed become more pronounced. It is therefore likely
that encouraging such speed changes during training may
facilitate the players’ positioning inside finishing areas during a
match.

Moreover, when players are connected with other players
(in cooperation or competition) forming simplices, where the
smaller simplices are also connected with other simplices, team
coordination develops due to attunement to shared affordances
and the creation of team synergies (Araújo and Davids, 2016).
Training sessions may benefit from using the present analysis
(e.g., most frequent cooperation/competition tag sets) and
consequently design training activities that promote collective
learning among groups of players (Travassos et al., 2016).

In the context of this article the criterion, closest player, for
the formation of hyperedges was the only one used. The results
presented at different levels of analysis are therefore conditioned
and limited by this criterion. At the same time all these results
where possible with only this parsimonious criterion and without
any other assumptions.

Other limitation of the study is that there is no data about
ball positioning, nor about “ball flux” (e.g., passes between the
players). This type of interactions between players could be
included by extending the proposed method with additional
layers. In such layers, ball flux could be represented either as a link
between players’ or simplices, or alternatively as an additional
term in the relationship, R, of the simplices.

Multilevel hypernetworks is a promising framework for
soccer performance analysis that reveals important features
of cooperative and competitive interactions during attacking
plays. By considering space and time in multilevel analyses
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involving interactions between two or more players, we
can obtain a richer understanding of real-world complex
systems.
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APPENDIX

FIGURE A1 | Pseudocode for building the simplex hyperedge set.
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