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The respective roles of the approximate number system (ANS) and an access deficit

(AD) in developmental dyscalculia (DD) are not well-known. Most studies rely on

response times (RTs) or accuracy (error rates) separately. We analyzed the results of

two samples of elementary school children in symbolic magnitude comparison (MC) and

non-symbolic MC using a diffusion model. This approach uses the joint distribution of

both RTs and accuracy in order to synthesize measures closer to ability and response

caution or response conservatism. The latter can be understood in the context of the

speed-accuracy tradeoff: It expresses how much a subject trades in speed for improved

accuracy. We found significant effects of DD on both ability (negative) and response

caution (positive) in MC tasks and a negative interaction of DD with symbolic task

material on ability. These results support that DD subjects suffer from both an impaired

ANS and an AD and in particular support that slower RTs of children with DD are

indeed related to impaired processing of numerical information. An interaction effect of

symbolic task material and DD (low mathematical ability) on response caution could not

be refuted. However, in a sample more representative of the general population we found

a negative association of mathematical ability and response caution in symbolic but not in

non-symbolic task material. The observed differences in response behavior highlight the

importance of accounting for response caution in the analysis of MC tasks. The results

as a whole present a good example of the benefits of a diffusion model analysis.

Keywords: dyscalculia, diffusion model, approximate number system, access deficit, magnitude comparison, dot

set comparison, response caution, mathematics anxiety

Developmental dyscalculia (DD) is a specific learning disorder that affects the acquisition of
arithmetic facts (Landerl et al., 2004), arithmetic skills and number processing in children (Kuhn,
2015). Though terminology and definition vary slightly among authors, most definitions of DD
entail low mathematical achievement that can not be explained by inadequate schooling, low
intelligence, or age. Hence in this paper we mean by DD a score of 85 or lower in an age-
appropriate standardizedmathematical achievement test and score higher than 85 in a standardized
age-appropriate intelligence test and no prolonged interruptions of school education.
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In an academic context, children affected by DD display
longer solution times, higher error rates, and use immature
solution strategies (for example counting) for calculations (Geary
et al., 1992). Past research results include longer response times
(RT) and lower accuracy, i.e., higher error rate, in magnitude
comparisons (De Smedt et al., 2013; Schneider et al., 2016).

Despite a large body of results, the causal mechanisms of DD
are not fully understood. Amongst others (see Landerl et al., 2004;
Andersson and Östergren, 2012 for an overview) there are two
possible explanations:

The Approximate Number System (ANS) (see for example
Feigenson et al., 2004) is a system innate in humans and
many animals that allows for a quick approximation for the
number of objects. Even before the term ANS was used, Dehaene
and Changeux (1993) suggested that such a system forms the
basis of arithmetical skills. A connection between the ANS and
mathematical performance (or DD in particular) was for example
found by Feigenson et al. (2004) and more recently by Mazzocco
et al. (2011).

On the other hand, Rousselle and Noël (2007) could
only find a connection between mathematical ability and the
performance in numeral comparison. They suggested that not
an impaired ANS causes DD but a deficient access to magnitude
representation in the ANS from numerals, in short access deficit
(AD). Rousselle and Noël (2007) assume, that in order to
compare numerals regarding their associated magnitudes these
numerals have to be mapped to a cognitive representation of
associated magnitudes first and then these representations are
compared. We will stick to this model for the remainder of the
introduction. As this assumption is debatable (De Smedt et al.,
2013), we will interpret our findings in other contexts as well.

In this study we investigate to which extent an impaired
ANS or an AD underlie DD by using a diffusion model. The
next subsection elaborates why analyses of MC data based on
RT or accuracy alone are insufficient to answer this question,
the subsection thereafter gives a brief introduction to diffusion
models and relates their parameters to ANS and AD.

PAST RESEARCH AND ITS LIMITATIONS
REGARDING THE ROLE OF THE
APPROXIMATE NUMBER SYSTEM AND AN
ACCESS DEFICIT IN DYSCALCULIA

Magnitude comparison (MC) is a frequently used task paradigm
in DD research. In MC tasks subjects judge which of two
simultaneously displayed magnitudes is larger. The magnitudes
are either represented by numerals (symbolic MC; Moyer and
Landauer, 1967) or sets of dots (non-symbolic MC; Halberda
et al., 2008). Sample stimuli of both types are shown in Figure 1.
Sometimes only one magnitude is presented (as numeral or set of
dots) which has to be compared to a priorly memorized reference
magnitude (see for example Ratcliff et al., 2012, 2015). For a
detailed introduction to MC see De Smedt et al. (2013) and Kuhn
(2015).

Suppose a subject solves a symbolic MC (see Figure 1). The
image first has to be encoded into numerals, the numerals have to

FIGURE 1 | Screenshots of symbolic (Left) and non-symbolic (Right) MC. In

both tasks a subject has to decide which one out of two magnitudes (given by

numerals or number of dots) is larger.

be connected to their corresponding magnitudes, the magnitudes
will be compared, and finally a response corresponding to the
outcome of the comparisonwill be executed. Thus an impairment
of the ANS or an AD would affect the ability for symbolic and
non-symbolic MC differently:

1. An impaired ANS would affect both types of MC equally,
since an impaired ANS implies an impaired ability to compare
magnitudes, which is needed equally regardless of the mode of
presentation.

2. AD would affect symbolic MC, but not non-symbolic MC,
since in the latter nomagnitude information has to be accessed
from numerals.

If both hypotheses were true, it would affect both MC types
but more so symbolic MC, since in the latter two processes
introduce errors and slowdown, where in non-symbolic MC only
one such source exists. Indeed in a meta-analysis Schneider et al.
(2016) found a significantly stronger correlation between RT
in symbolic MC and mathematical achievement than between
the latter and RT in non-symbolic MC. On the other hand,
correlation of accuracy with mathematical achievement did not
differ significantly between symbolic and non-symbolic MC.
In order to draw conclusions regarding ANS or AD from
these findings one has to assume that RT or accuracy is a
measure of ability. After all, AD and an impaired ANS only have
implications regarding ability. However, any such assumption is
not straightforward:

Suppose there are two subjects solving symbolic MC that only
differ in their ability to compare magnitudes, for example due to
differences in the ANS, and they are equal in every other way
related to the task. The subject with lower ability either needs
more time for the comparison or makes more errors or both. So
when recording RT and accuracy for these two subjects in several
symbolic MC tasks, we expect to see either a higher mean (or
median) RT or a lower mean accuracy or both.

Now suppose there are two subjects solving symbolic MC that
only differ in their response behavior, in particular their response
caution, but are equal in every other way related to the task.
The subject with higher response caution takes more time and
commits less errors in return (that is in case there are any errors).
So when recording RTs and accuracy for these two subjects in
several symbolic MC tasks we expect to see a higher mean (or
median) RT and higher mean accuracy.
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As a conclusion, if one only looks at RTs, one cannot
distinguish a lower ability from higher response caution, and if
one looks only at accuracy, one cannot distinguish a lower ability
from lower response caution. As response caution varies between
people and situations, aggregating results over people and studies
and inferring high or low ability from that data is problematic in
general.

THE DIFFUSION MODEL

A cognitive process model that allows to separate ability and
response caution is the diffusion model (DM) that has been
introduced into psychology by Ratcliff (1978) as a model for
responses and RTs in a timed binary decision task. DMs have
been successfully applied to MC data by Park and Starns (2015),
Ratcliff et al. (2012), and Ratcliff et al. (2015). They are useful
whenever one is interested in the underlying mechanisms of
differences rather than just the differences themselves. Ratcliff
et al. (2006) could show for example that a difference in
performance between young and older adults, which was
previously attributed to general slowdown of cognitive processes,
could be better explained by just a longer motor reaction time
and higher response caution. A DM allows this by assuming an
underlying decision making process, the diffusion process, which
is thought of as a noisy accumulation of evidence in favor or
against an alternative over time. The evidence is thought to lie
on a one dimensional metric scale, that is to be a number.

Figure 2 depicts an example for evidence accumulation over
time according to a DM. The evidence toward one alternative at
a given time is given by the location on the y-axis while the time
point is given by the location on the x-axis. The solid horizontal
lines in Figure 2 represent two thresholds, one corresponding to
each possible answer (here in favor or against an alternative).
To stay in the context of MCs, suppose the upper threshold
corresponds to the correct alternative, say “the larger magnitude
is shown on the left hand side,” while the lower threshold

FIGURE 2 | Example of accumulation of evidence (gray) toward the thresholds

(solid horizontal lines) with an unbiased starting point according to a DM.

Underlying theoretical mean drift is represented by a dashed line.

corresponds to the incorrect alternative “the larger magnitude is
shown on the right hand side.” Once the amount of accumulated
evidence is lower than the lower threshold, the process stops and
the subject has reached the conclusion that the larger magnitude
is shown on the right hand side. Similarly the process stops once
the accumulated evidence is higher than the upper threshold but
the subject has reached the conclusion that the larger magnitude
is shown on the left hand side.

The accumulation of evidence (gray in Figure 2) can be
decomposed into an deterministic component, the average
amount of collected evidence (dashed line in Figure 2), and
a random fluctuation around 0. The average rate of evidence
accumulation is called drift rate (v) and depends on the subject
and the item. We assume that prior to the decision process a
subject does not favor one alternative over the other. This is
modeled by letting the decision process start equidistantly from
both thresholds as depicted in Figure 2.

We put Figure 2 in the context of MC: After a subject has
seen a stimulus, say the numerals 4 and 7, the subject encodes
it in such a way that a magnitude comparison is possible. Now
the decision process begins. Suppose the upper threshold, i.e.,
the solid horizontal line in Figure 2, corresponds to the correct
alternative, 7 > 4, and the lower threshold to the incorrect one,
4 > 7. The decision process starts on the left in between the
thresholds and follows on average (for the same item and subject)
the trajectory of the dotted line. The slope of the dotted line
depends on the ability of the subject, i.e., the rate at which the
subject can process information from magnitude representations
and the magnitude representations themselves, whose precision
depends on the precision of her or his ANS, but in our example
it also depends on how well the subject encodes the numeral
information into a magnitude representation. Additionally the
magnitude representations and thus the slope of the dotted
line varies between different stimuli, that is between items. A
comparison of 6 vs. 7 would yield a comparatively smaller slope
whereas 1 vs. 7 yields a larger slope.

With the assumption of no bias, the outcome of a diffusion
process, i.e., the response and the time spent, are determined
by randomness, drift rate (v), and the distance between the two
thresholds called boundary separation (a). Note that thus far
we have not talked about time that passes outside the decision
process, e.g., stimulus encoding and response execution, this
time is subsumed in a parameter called non-decision time. For
a thorough introduction to DMs we refer the reader to Voss et al.
(2013).

Before stating the relation of parameters a and v to response
and RT by Equations (4) and (5), we want to summarize the role
of a and v in non-technical terms:

• If the boundary separation, a, increases, both response
accuracy as well as RTs will increase; hence this parameter
is commonly interpreted as response caution or response
conservatism (Voss et al., 2013).

• If the mean drift rate, v, increases, response accuracy will
increase and RTs will decrease; hence this parameter is
commonly interpreted as ability or performance (Voss et al.,
2013).
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Keeping these interpretations in mind, we can rephrase our
previously stated implications of an impaired ANS and AD to
statements about v in both types of MC:

1. If an impairment of ANS underlies DD, then there will be a
negative main effect of DD (relative to healthy controls) on v
in both types of MC.

2. If AD underlies DD, then there will be negative interaction
effect of task type (symbolic relative to non-symbolic MC) and
DD (relative to healthy controls) on v.

We will test for these effects on v in a two-way ANOVA. Park
and Starns (2015) found a positive correlation of mathematical
performance and v in non-symbolic MC, such that we expect
to find a negative main effect of DD on v. The interaction
effect of DD and task type or more generally the relation of
mathematical performance or DD to v in symbolic MC has
not been studied so far. Our study is the first to test the
hypothesis of AD using a variable closer to ability than RT and
accuracy.

Boundary separation, a, in MC has not been looked at except
by Park and Starns (2015), who found no association between
mathematical performance and a in non-symbolic MC. If their
results generalized to DD subjects and symbolic MC, we would
indeed find nomain or interaction effects of DD on a. However, it
is not implausible that children with a learning disorder respond
more cautiously in a test situation; in particular children with
DD respond more cautiously when facing numbers. Hence we
will also test for effects of DD on a in a two-way ANOVA
(analogously to effects on v). A summary of implicated effects
on a, v, and classical measures (RT and accuracy) is given by
Table 1.

In the remainder of this section we will account for the more
technical details on DMs in general and the specific variant, that
we used.

RTs in a DM are split up in Td, time spent on the decision
process, that is the amount of time needed to reach a threshold
in Figure 2, and non-decision time, Ter , which subsumes all
time spent outside the actual decision process, for example
encoding the stimulus or executing a motor response. We have
the following equation for the total RT (T), decision time (Td),
and non-decision time (Ter):

T = Td + Ter (1)

TABLE 1 | Expected changes in measures depending on source in symbolic and

non-symbolic MC: Impaired ANS (ANS), access deficit (AD), and high(er) response

caution (HRC).

Symbolic MC Non-symbolic MC

RT Acc v a RT Acc v a

ANS + − − ◦ + − − ◦

AD + − − ◦ ◦ ◦ ◦ ◦

HRC + + ◦ + + + ◦ +

Direction of the effect is indicated by + and −; null effects are denoted by ◦.

An equation for the expected decision time (E(Td)) is given by
van der Maas et al. (2011):

E(Td) =
a

2v

1− eav

1+ eav
(2)

Ter varies uniformly between trials around a person specificmean
t0 with a person specific range of st0 , that is

Ter ∼ U(t0 −
st0
2
, t0 +

st0
2
) (3)

Hence by Equations (1–3) we obtain the following equation for
the expected RT (E(T)) :

E(T) =
a

2v

1− eav

1+ eav
+ t0 (4)

If t0 increases, RTs will increase, but the variability of RTs and
accuracy is unaffected. A higher st0 means higher variability in
RTs with everything else being unaffected.

For the sake of completeness we state the probability P of a
correct response in an unbiased diffusion process with boundary
separation a and mean drift rate v, which is given by

P(X = 1) =
eav

1+ eav
(5)

where X denotes the response which is either 0, incorrect, or 1,
correct (van der Maas et al., 2011).

There are numerous extensions of the model described here,
for example one can account for inter-trial variance of v and
the starting position (Ratcliff and McKoon, 2008), but these
parameters can only be reliably estimated with more than 5,000
observations per subject (Voss et al., 2013; Lerche et al., 2016).
Models including these parameters do not perform better in
terms of parameter estimation when applied to rather few data
points (Lerche et al., 2016). Hence we restrict ourselves to this
model and include only parameters for which we expect possible
effects (see Table 1), t0, and st0 , which is the model Lerche et al.
(2016) propose to counteract the influence of contaminant RTs.

METHODS

Participants
Our first sample (N = 279, 152 females, 126 males, 1 not
reported), Sample A, was part of a larger sample of elementary
school children from grades two to four, where subjects that
scored lower than 85 in an intelligence test were excluded. Apart
from intelligence (M = 105.85, SD = 11.44) subjects were tested
for reading fluency (M = 98.39, SD = 17.09) and mathematical
achievement (M = 104.76, SD = 14.71). The average age in
months was 98.39 (SD = 17.09).

Children from grades two and three received three sub-
tests of the Intelligence Scale 1-Revision (CFT 1-R; Weiß and
Osterland, 2012) (Series Completion, Classification, Matrices).
Fourth graders received four sub-tests of the Intelligence
Scale 2-Revision (CFT 20-R; Weiß, 2008) (Series Completion,
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Classification, Matrices, Topologies). Mathematical achievement
was assessed using four sub-tests of the Arithmetic Operations of
the Heidelberger Numeracy Test (HRT 1–4; Haffner et al., 2005)
(Addition, Subtraction, MC, Placeholder Tasks). Reading fluency
was assessed using the Salzburger Reading Screening (SLS 1–4;
Mayringer and Wimmer, 2003). These test were administered in
a classroom setting.

Since Sample A contained too little dyscalculic children
in order to test hypotheses specifically about dyscalculia, we
augmented it by another sample of second, third and fourth
graders, who either were previously diagnosed as dyscalculic or
scored below the 16% rank in another standardizedmathematical
achievement test. The only differences in testing procedure
between the two samples were the test setting, here single testing,
and the administered intelligence andmathematical achievement
tests; WLD sub-scale of WISC-IV (Petermann and Petermann,
2011) and ZAREKI-R (von Aster et al., 2006), respectively. Both
mathematical achievement tests cover basic numeric as well as
basic arithmetic skills. Both intelligence tests use figural content.
All tests (including Sample A) were administered by trained and
experienced test administrators and testing sessions lasted for
about 60 min.

The union of both samples will be referred to as Sample B.
Based on the score in the respective mathematical achievement
test, Sample B was split into two groups: con including all subjects
with a score higher than 85, and dys including all subjects with
a score of 85 or lower. Group sizes, age, and the results of each
group in IQ, mathematics, and reading tests are summarized
in Table 2. The lower reading fluency among dyscalculia group
should be noted. However, Raddatz et al. (2016) showed that a
lower reading fluency does not influence accuracy and RTs in our
task selection.

Materials
Computer based tests were administered on Samsung EEE
Netbooks with 19 inch screen diagonal during a separate testing
session, which lasted approximately 45min. Distance from screen
to eye was approximately 50 cm. Children had to use the
keyboard for their answers. Responses and RTs were recorded.
In addition to the two computer based tasks that are analyzed
in this article and which were used in the subsequent order, the
following tasks were also administered on the same computer
in the same session: Dot-enumeration, number transcoding,

TABLE 2 | Group size, mean and standard deviation of pre-study test scores, and

age in months by subject group in the combined sample B.

con dys

N 272 81

IQ† 106.58 (11.31) 99.69 (10.85)

Math. achievement† 107.81 (12.31) 78.89 (4.18)

SLS 100.31 (16.33) 82.07 (14.77)

Age (months) 105.61 (9.89) 111.11 (11.51)

†Two different tests were used.

reaction time, number line estimation, calculation, working
memory, and two tasks involving dot sets and numerals at the
same time.

In the symbolic MC tasks, two single-digit Arabic numbers
aligned horizontally were shown on screen (see Figure 1).
Subjects had to decide which of them was numerically larger.
Three practice trials and 24 test trials were administered.
Numerical distances between the two numerals followed
a balanced design with each distance between one and
six appearing four times. Each item was preceded by a
fixation cross lasting for 500 ms. The restriction to the
single-digit range allows for comparison with many existing
studies and avoids alternative solution mechanisms. For an
overview of the latter see Verguts and De Moor (2005) for
example.

The Panamath test (Halberda et al., 2008) was used as a dot
set MC task. Two sets of dots (colored yellow and blue) were
displayed next to each other on the screen and subjects had to
decide as fast as possible without counting which of the sets was
larger; see also Mazzocco et al. (2011). Following two practice
trials, subjects were given a total of 48 items with four different
groups of ratios between the two sets (each being approximately
1.2, 1.4, 1.6, or 2.6). Each ratio group was used twelve times. We
used similar ratios to Halberda et al. (2008) and Mazzocco et al.
(2011). As in the aforementioned studies, half of the trials were
controlled for average dot size, the other half was controlled for
total area. The number of dots in each set ranged from 5 to 21,
such that subitizing was unlikely (Rousselle and Noël, 2007).

Data Treatment and Diffusion Model
Estimation
An inspection of RTs and error rates on item level revealed that
the responses to the first symbolic MC item as well as to the first
three non-symbolic MC items were very slow; the third non-
symbolic item also had an overall error rate above fifty percent.
Since item difficulty could not explain these results, all these items
were regarded as additional practice trials and excluded from
analysis.

Common procedures to remove contaminant RT data fail
to remove all contaminant RTs and remove genuine data as
well (Lerche et al., 2016). Since we had comparatively little
data points for a DM analysis, we had to balance estimation
efficiency and robustness against RT outlier. We chose the
Kolmogorov-Smirnoff procedure as implemented in fast-dm
(Voss and Voss, 2007) for its robustness and fairly high efficiency
(Lerche et al., 2016). Another benefit of this procedure is
that it does not introduce a bias dependent on the number
of observed items (Lerche et al., 2016), i.e., our parameter
estimates will not be biased because of the different numbers of
items used in symbolic and non-symbolic conditions. The more
efficient maximum likelihood estimation introduces such a bias
in boundary separation estimates and is sensitive to fast guesses
(Lerche et al., 2016). We refrained from explicitly modeling RT
outliers (Ratcliff and Tuerlinckx, 2002), since it would introduce
new parameters and—given the low amount of data—would not
improve parameter estimation (Lerche et al., 2016).
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Following recommendations of Lerche et al. (2016) and the
procedures of Ratcliff et al. (2012) and Park and Starns (2015),
we chose fixed lower and upper cut-offs beyond which responses
were discarded. Responses faster than 250 ms (309 responses,
1.01% removed in total) as well as responses slower than four
seconds (384 responses, 1.25% removed in total) were removed
from analysis. Subjects that gave responses outside these time
limits tomore than half the items of any tasks were excluded from
analysis; one subject was excluded this way.

To assess global model fit, we compared the observed quartiles
of the RTs and accuracy for each person with the quartiles and
accuracy predicted by the model with the estimated parameters
following the graphical procedure described in Voss et al.
(2013). Prediction of RTs was very good (non-symbolic) to
exceptional (symbolic) while prediction of accuracy was decent

(non-symbolic) to fair (symbolic) and there was no systematic
bias for the whole sample nor any of the subgroups, con and dys
(see Figure 3 for non-symbolic and Figure 4 for symbolic MC).

The results of Lerche et al. (2016) regarding parameter
recovery allow for a rough estimation of the reliability of
the diffusion model parameters. However, since the reliability
depends on the selection of parameters, the parameter values,
and model fit, split-half reliability was computed for the diffusion
model parameters, boundary separation, mean drift rate, and
non-decision time, and the Spearman-Brown corrected results
are summarized in Table 3.

Descriptive Measures
Mean accuracy score and median RT of correctly answered items
were computed for every subject and task type. In order to
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FIGURE 4 | Predicted and observed accuracy and quartiles of RTs in seconds in symbolic MC separated by group membership: con depicted as circles, dys as

triangles.

TABLE 3 | Split-half reliability of boundary separation, mean drift rate, and

non-decision time in both types of MC after adjustment using the

Spearman-Brown prediction formula.

Parameter Reliability

Symbolic MC Non-symbolic MC

v 0.42 0.60

a 0.53 0.52

t0 0.75 0.96

compare our results directly with Park and Starns (2015) Weber
fractions were estimated despite their disadvantages compared
to other measures (Inglis and Gilmore, 2014). Weber fraction
was estimated for each subject within the interval [0, 3] using

a maximum likelihood estimator according to the formulae in
Halberda et al. (2008). See Table 5 for a summary of the results.

Weber fraction for non-symbolic MC is correlated with
r(277) = −0.96 with mean accuracy and thus correlations and
effect sizes are virtually identical (albeit with a different sign).
As the Bonferroni-Holm adjustment accounts for independent
multiple testing, Weber fraction was disregarded in subsequent
adjustments.

Correlations with Mathematical
Achievement
Correlations of DM parameters (a, v, t0), median RT, and
mean accuracy with HRT (mathematical achievement) score
in Sample A are displayed in Table 4. After a Bonferroni-
Holm adjustment we found significant correlations between
mathematical achievement and the following parameters:
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TABLE 4 | Correlations of dependent measures with HRT (curriculum based

mathematical achievement) scores.

Measure Correlation with HRT

Symbolic MC Non-symbolic MC

v 0.25 0.24

a −0.21 −0.03

t0 −0.13 −0.06

st0 −0.15 −0.16

Mean accuracy 0.05 0.20

Weber fraction – −0.21

Median RT −0.26 −0.10

Correlations that are significant (after a Bonferroni-Holm adjustment) are written in

boldface.

Median RT, r(277) = −0.26, p < 0.01, v, r(277) = 0.25, p < 0.01,
and a, r(277) = −0.21, p < 0.01, in symbolic MC and mean
accuracy, r(277) = 0.20, p = 0.01, and v, r(277) = 0.24, p < 0.01,
in non-symbolic MC. For each measure we compared its
correlation with mathematical achievement between both task
types using William’s test and found a significant difference only
for a, t(277) =−2.23, p= 0.03.

Comparison of Dyscalculic and Control
Children
For the group comparison of Sample B Cohen’s d was computed
using the pooled variance.We furthermore computed confidence
intervals for d and Bonferroni-Holm adjusted p-values based on
a two sample Welch’s t-test. These results are summarized in
Table 5.

In symbolic MC the results are comparable to the results of
just Sample A, i.e., there is a significant effect on v, t(186.65) =

5.91, p < 0.01, a, t(148.32) = −4.21, p < 0.01, and median
RT, t(123.38) = −4.89, p < 0.01. For non-symbolic MC only
the effects on st0 , t(92.55) = −3.25, p = 0.01, and median RT,
t(95.93) = −3.62, p < 0.01, remained significant. Effect sizes of
each measure did not differ significantly across task types, despite
differences in significance of the respective effects themselves. In
particular, all effects had the same sign and were significant prior
to adjustment except for mean accuracy (Weber fraction) and a
in non-symbolic MC.

ANOVA Results
A task type (symbolic/non-symbolic) × group (dyscalculic/
control) repeated measures ANOVA was conducted on mean
drift rate (v) and boundary separation (a). The dyscalculia
group showed significantly lower v and higher a, we found a
significant negative task type × group interaction effect on v
but no significant interaction on a. Significance did not change
after a Bonferroni-Holm adjustment. Results are summarized
in Figure 5 and Table 6. We also performed analog ANOVAs
with accuracy and median RTs as dependent variables and found
no task type × group interaction. These results did not change
in terms of significance in a linear mixed effects model, where
reading fluency was added as predictor for drift rate (respectively

boundary separation) above group membership, task type, and
their interaction.

DISCUSSION

In this study we applied a method that has seen little use in the
area of DD research, namely diffusion modeling. Alongside the
diffusion model results, we analyzed two measures most widely
spread in DD research, RTs and accuracy. The data were collected
from two samples, one representative of the general population of
elementary school children, and one sample suitable for group
comparison between DD subjects and healthy controls. These
data allowed us to compare our results to results of previous
studies, evaluate informational benefits, fit, and requirements of a
diffusion model analysis, and answer the question to what extent
an impaired ANS and/or an access deficit are associated with DD.

Before we address specific results, let us begin with the
technicalities of the diffusion model and the limitations of
our study, which arise from these. Our reliability is lower
than what could be expected by Lerche et al. (2016) and we
would recommend more than one hundred trials even for
very basic models if reliability is a concern. Since we used
less trials, we obtained attenuated correlations, when diffusion
model parameters are involved. This means, correlations close
to zero do not necessarily indicate the absence of an association.
However, correlations significantly different from zero indicate
a considerable effect, that should be investigated in more detail
in future studies. Similarly concerning group comparisons, there
is more unexplained variance due to unreliability. As such the
absence of effects or differences thereof should be viewed with
caution, however that doesn’t devalue the significant effects we
found.

We did not test in terms of significance for model fit, which
is a topic on its own (Ranger et al., 2017). However, we did not
specify amodel that could fit the data in this sense and completely
disregarded some aspects, such as fatigue or post error slowing.
Instead we chose a simple model that can be estimated with our
data and checked whether it predicts observed RTs and accuracy.
Ourmodel does this overall well and very well regarding RTs. The
fit of accuracy is not as good. However, there is neither an overall
bias nor bias on a group level.

Let us begin with the novel results of Sample A, a
representative sample in terms of IQ, mathematical ability and
reading fluency. We found a positive correlation of drift rate in
symbolic MC andmathematics achievement. This means that the
ability to compare numerals regarding magnitude is positively
related to mathematical achievement. Which was expected but
until now only tested using RTs or accuracy as proxies of ability.

We also found a negative correlation of boundary separation
in symbolic MC with mathematical achievement, i.e., subjects
with low mathematical achievement act more carefully in
symbolic MC or in other words they choose higher accuracy over
a faster response. Keeping in mind how response behavior and
ability interact with RTs and accuracy, our results indicate that
RTs in symbolic MC overestimate the deficits of subjects with
low mathematical ability, while accuracy underestimates deficits
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TABLE 5 | Means and standard deviations for all task types and measures separated by group.

Task Measure Con µ (sd) Dys µ (sd) d CIlow CIup

Symbolic MC v 2.44 (0.9) 1.92 (0.62) 0.62 0.36 0.87

a 1.5 (0.48) 1.73 (0.41) −0.49 −0.75 −0.24

t0 0.73 (0.17) 0.78 (0.18) −0.26 −0.51 −0.01

st0 0.23 (0.22) 0.33 (0.3) −0.38 −0.63 −0.13

Mean accuracy 0.97 (0.05) 0.96 (0.05) 0.08 −0.17 0.33

Median RT 1.00 (0.24) 1.15 (0.25) −0.64 −0.90 −0.39

Non-symbolic MC v 1.68 (0.7) 1.46 (0.69) 0.32 0.07 0.57

a 1.49 (0.47) 1.6 (0.43) −0.23 −0.48 0.02

t0 0.61 (0.33) 0.8 (0.57) −0.46 −0.72 −0.21

st0 0.26 (0.23) 0.43 (0.43) −0.57 −0.82 −0.31

Mean accuracy 0.88 (0.1) 0.87 (0.1) 0.10 −0.15 0.35

Weber fraction 0.77 (0.72) 0.85 (0.76) −0.11 −0.36 0.14

Median RT 0.93 (0.36) 1.19 (0.61) −0.60 −0.86 −0.35

Resulting effect sizes d with corresponding confidence interval. Significant effects (after a Bonferroni-Holm adjustment) are displayed in bold face. Median RT, t0, and st0 are displayed

in seconds.
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FIGURE 5 | Sample mean and Standard deviation of v and a in both MC and both subject groups (con and dys).

TABLE 6 | Results of the two-way repeated measures ANOVA of v and a.

Parameter Effect F η
2 p-value

v DD 23.81 0.039 <0.01

DD×task-type 5.64 0.006 0.02

a DD 14.40 0.023 <0.01

DD×task-type 2.43 0.003 0.12

Significant results (after a Bonferroni-Holm adjustment) are written in bold face.

of subjects with low mathematical ability. The higher response
caution and the reason for it should be addressed by future
studies. It could be an artifact of the test setting or it might
be mediated through mathematics anxiety (see Maloney and
Beilock, 2012 for an overview), which is present already in first

grade and associated with individual mathematical performance
(Ramirez et al., 2013).

We further found that correlation of boundary separation
andmathematical achievement was significantly higher (closer to
zero) for non-symbolic MC than for symbolic MC. This means
the contribution of the actual ability toward RTs and accuracy
differs between the two task types. This difference renders the test
setting as a cause of elevated response caution in symbolic MC
less likely. On the other hand the two types of MC differed not
only in the form of magnitude presentation but also in the range
of magnitudes. However, we chose common ranges for both tasks
to allow for comparability with existing research; in fact nearly all
studies reviewed by De Smedt et al. (2013) use the 1–9 range for
symbolic MC and the overall setup for non-symbolic MC in our
study was nearly identical to Halberda et al. (2008) andMazzocco
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et al. (2011). The main implication for future research is that
neither RTs nor accuracy can be interpreted as ability, when
both task types are involved. In particular, existing comparisons
between the two tasks types should be reevaluated.

In terms of existing results, we found a negative correlation
of median RTs in symbolic MC with mathematics achievement
and a slightly weaker correlation of mean accuracy in non-
symbolic MC with mathematics achievement. These results are
perfectly in line with the meta-analysis by Schneider et al.
(2016). Furthermore regarding non-symbolic MC we found
a significant correlation between drift rate and mathematics
achievement. In conjunction with the absence of a correlation
between boundary separation and the latter our results replicate
the findings of Park and Starns (2015) albeit with a younger
sample.

In Sample B, which contained Sample A as a subsample, we
directly compared subjects with and without DD. In the ANOVA
we found that DD children had a significantly lower drift rate
overall. Following the assumption of Rousselle and Noël (2007)
that the ANS is used in both tasks, this indicates that DD subjects
suffer from an impaired ANS.

Furthermore the significant negative interaction of symbolic
task type and DD on drift rate means that DD subjects have
an even lower ability in symbolic MC (compared to healthy
children). Still following Rousselle and Noël (2007), this indicates
that DD subjects suffer from an access deficit. In this context
our findings support the conjoint hypothesis of an impaired ANS
and access deficit in DD children. However, scores in symbolic
MC might alternatively reflect the symbolic representations
themselves (De Smedt et al., 2013). If the ANSwas not involved in
symbolic MC, we could still conclude, that the ability in symbolic
MC was more discriminative in the assessment of DD than the
ability in non-symbolic MC. Which in turn would imply that the
ANS was less relevant.

Contrary to our expectation we found an overall difference
in response caution between healthy and dyscalculic children
in the ANOVA. Since all computer based testing occurred at
the university, the testing environment might have intimidated
dyscalculic children (more than healthy children).

We also found a higher variability of non-decision time in
DD children. This could at least be partly attributed to attention
problems which are associated with DD (Shalev et al., 1995) or
lower mathematical ability (Tosto et al., 2015). Additionally, the
difference in IQ scores between the two groups should be noted.
We cannot account for IQ the way we could for reading fluency,
since two different tests were used with varying proportions in
the two groups. This means the difference of IQ scores can
be caused by the difference between the tests, the test settings,
or subjects. A difference between subjects regarding IQ likely
implies a difference between the diffusion model parameters and
thus should be as well considered as cause of the latter. However,
since no subject with IQ below 85 was included, our results
remain valid without limitations for the practical assessment and
treatment of DD.

We found that Dyscalculics were significantly slower in
both MC tasks, which is in line with current literature
(De Smedt et al., 2013). We did not find a significant
effect on accuracy or weber fraction for non-symbolic MC.
However, four out of six studies reviewed by De Smedt
et al. (2013) that report accuracy or weber fraction do not
find a significant effect either. This is in contrast to studies
regarding the general association of mathematical achievement
and performance in non-symbolic MC, where accuracy and
mathematical achievement are consistently associated (De Smedt
et al., 2013; Schneider et al., 2016).

In summary superficial differences in RTs and accuracy
between healthy and DD children (or children with lower
mathematical ability) acrossMC tasks can not be solely attributed
to differences in ability but should also be attributed to differences
in response behavior. As a conclusion future research should not
only account for cognitive confounders like attention problems
but also for possible behavioral confounders like mathematics
anxiety or better assess response behavior.

Despite the limitations of our study, which are primarily the
small number of symbolic MC items and the omission of the
aforementioned confounders, we could demonstrate the merits
of a diffusion model analysis for DD research. By using this
approach we could show that both ANS and an access deficit play
a role in DD and we found that response behavior influences
the performance and does so to varying degree depending on
the mode of stimulus presentation. All of which are relevant not
only for future research in numerical cognition and but also for
assessment and treatment of Dyscalculia.
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