
fpsyg-08-01748 October 4, 2017 Time: 16:17 # 1

ORIGINAL RESEARCH
published: 06 October 2017

doi: 10.3389/fpsyg.2017.01748

Edited by:
Eddy J. Davelaar,

Birkbeck University of London,
United Kingdom

Reviewed by:
Daniele Marinazzo,

Ghent University, Belgium
Alan C.-N. Wong,

The Chinese University of Hong Kong,
Hong Kong

*Correspondence:
Armand Mensen

research.mensen@gmail.com

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 20 April 2017
Accepted: 21 September 2017

Published: 06 October 2017

Citation:
Mensen A, Marshall W and

Tononi G (2017) EEG Differentiation
Analysis and Stimulus Set

Meaningfulness.
Front. Psychol. 8:1748.

doi: 10.3389/fpsyg.2017.01748

EEG Differentiation Analysis and
Stimulus Set Meaningfulness
Armand Mensen1,2*, William Marshall1 and Giulio Tononi1

1 Center for Sleep and Consciousness, University of Wisconsin-Madison, Madison, WI, United States, 2 Department of
Neurology, Inselspital Bern, Bern, Switzerland

A set of images can be considered as meaningfully different for an observer if they can
be distinguished phenomenally from one another. Each phenomenal difference must
be supported by some neurophysiological differences. Differentiation analysis aims to
quantify neurophysiological differentiation evoked by a given set of stimuli to assess its
meaningfulness to the individual observer. As a proof of concept using high-density EEG,
we show increased neurophysiological differentiation for a set of natural, meaningfully
different images in contrast to another set of artificially generated, meaninglessly different
images in nine participants. Stimulus-evoked neurophysiological differentiation (over 257
channels, 800 ms) was systematically greater for meaningful vs. meaningless stimulus
categories both at the group level and for individual subjects. Spatial breakdown
showed a central-posterior peak of differentiation, consistent with the visual nature of
the stimulus sets. Temporal breakdown revealed an early peak of differentiation around
110 ms, prominent in the central-posterior region; and a later, longer-lasting peak at
300–500 ms that was spatially more distributed. The early peak of differentiation was
not accompanied by changes in mean ERP amplitude, whereas the later peak was
associated with a higher amplitude ERP for meaningful images. An ERP component
similar to visual-awareness-negativity occurred during the nadir of differentiation across
all image types. Control stimulus sets and further analysis indicate that changes in
neurophysiological differentiation between meaningful and meaningless stimulus sets
could not be accounted for by spatial properties of the stimuli or by stimulus novelty
and predictability.

Keywords: event-related potentials (ERPs), differentiation, EEG, meaningfulness, images

INTRODUCTION

Consider seeing two images of particular person’s face; in one image the individual is smiling
and in the other frowning. Our experience of these images will be meaningfully different
although the physical properties of the images may only have changed marginally. Now consider
seeing two images of unique television noise. Our experience of these images will be essentially
identical despite there being no correlation between the images. This principle can be extended
to whole sets of images like those in Figure 1. While each image set will differ in some low-
level features (e.g., pixel-to-pixel correlation), only those sets with distinct higher-level invariants
(e.g., cat/octopus/eagle), would we consider to be meaningful. We therefore define meaningful
differences as any phenomenally distinguishable aspect of the images. Meaningfulness thus also lies
on a continuum whereby the more distinguishable ideas between stimuli, the more meaningfully
different they are. Assuming that phenomenal differences must be supported by some differences
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in the activity patterns of the brain, measures of
neurophysiological differentiation could be used to index
the meaningfulness of a set of stimuli for any individual subject.

Previously we assessed stimulus meaningfulness applying
this principle of neurophysiological differentiation using
functional magnetic resonance imaging (fMRI). Differentiation
of brain responses, measured as their Lempel-Ziv complexity
(compressibility), was significantly higher for meaningful
movie clips (Charlie Chaplin) than for television noise, despite
comparable levels of overall neural activity (Boly et al., 2015).
Here we further develop an index of neurophysiological
differentiation that can be applied to brain responses measured
using high-density electroencephalography (EEG). Moreover, we
analyze EEG differentiation for a much larger set of stimuli and
control conditions.

As a proof of concept for EEG differentiation analysis (DA), we
contrasted two trivial broad sets of images: natural, meaningful
images and artificial, and meaningless images. Meaningful stimuli
were taken from seven categories of natural images: animals,
buildings, cars, food, household objects, people, and sports.
Meaningless stimuli were constructed artificially within three
categories: television noise, phase-scrambled natural images, and
overlapping random disks, the latter two to control for the
lack, in television noise, of second-order spatial properties (e.g.,
lines and edges) to which EEG activity may be particularly
sensitive (Scholte et al., 2009; Groen et al., 2013). As the
example in Figure 1 illustrates, however, phase-scrambled images
are nonetheless appreciably meaningfully different with respect
to their low-level properties. Given the inherent variability
and low signal-to-noise ratio of EEG signals at the single-
trial level, responses to sets of meaningless images provide an
empirical baseline against which to compare the differentiation
elicited by meaningful stimuli. Finally, we employed several
additional controls to account for various potential confounds.
Since surprise can have a significant effect on EEG activity
(mismatch negativity; Fishman, 2014), we manipulated the
predictability of the upcoming image by presenting different

cue types prior to the target image presentation. Finally,
we manipulated the short-term novelty of stimuli through
prior habituation of a subset of images and the long-term
familiarity of the image through the collection of behavioral
ratings (Barto et al., 2013). Given the clear distinction between
meaningful and meaningless images used, we expect the
differentiation measure to be relatively higher in the former at
both the individual and group levels with similar spatio-temporal
patterns.

MATERIALS AND METHODS

Participants
In total, 9 male participants between 24 and 29 years of age
completed the experiment. All participants had normal or correct
vision and reported no neurophysiological or psychiatric history.
Participants were given a verbal description of the experiment, as
well as an information sheet and were required to sign a written
consent form approved by the Health Sciences Institutional
Review Board of the University of Wisconsin–Madison.

Stimuli
A total of 340 images were obtained for the experiment
(34 unique images per category). These were split equally
into 10 broad categories of which 7 were considered to be
meaningful and 3 generally meaningless. Meaningful categories
consisted of natural images of: animals, buildings, cars, food,
household objects, people, and sports. The remaining three
sets of images acted as meaningless control images. The
primary criteria for appropriate control images is minimal
phenomenal differentiability. To this end, images of random
pixel noise are a clear baseline as any two images are virtually
indistinguishable after brief presentations, especially with any
considerable temporal gap between presentations. Random
pixel noise was created using Matlab’s ‘rand’ function over
the three color layers of the image, producing noise images

FIGURE 1 | Example images from four categories. In total 34 unique images were used from 10 different categories. Examples are shown from the ‘animals,’ ‘noise,’
‘phase-scrambled,’ ‘food,’ ‘sports,’ and ‘disks’ categories. These categories were grouped into meaningless and meaningful sets of images. Meaningful categories
contain both high- and low-level features that are phenomenally distinguishable, whereas meaningless sets do not.
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FIGURE 2 | Task overview. Each trial began with a fixation cross (duration jittered in time), followed by a cue which provided potential information about the
upcoming image. This was followed by another fixation point (jittered duration). The target image, from 1 of 10 categories, was then shown for 1 s. On 25% of trials,
the participant was required to rate the overall familiarity of the preceding target image from 1 to 3. Each participant completed a total of 400 trials.

within a range of colors as opposed to classic gray-scale
noise. This set of random noise images is, by design, absent
of higher-order image statistics and any neurophysiological
differences may be attributed to this basic distinction. Two
additional meaningless image sets were created with minimal
phenomenal differentiation, but which nonetheless displayed
some range of higher-order image statistics. ‘Dead leaves’ images
consisted of medium sized, opaque, three-dimensional spheres
overlaid on each other (Bordenave et al., 2006). This particular
configuration was chosen because they have high-order spatial
statistics in the same range as the natural images selected
(Groen et al., 2012). For the third meaningless image set
we took a random subset of the natural images and phase-
scrambled them. This was done by separating the phase and
magnitude of the images, adding a random phase between 0
and 2 pi, randomly rotating magnitude quadrants and mirroring,
then recombining magnitude and phase to form the new
image (Honey et al., 2008). The resulting images had a low
contrast energy with blurred edges while maintaining some
clear spatial, higher-order image properties which contrasted
well with the high contrast energy dead leave image set.
While other forms of image distortion have been developed
which render the particular objects in an image unrecognizable,
they tend to still be readily phenomenally distinguishable
from one another (Stojanoski and Cusack, 2014). It is always
possible that some additional image statistic, not explicitly
explored here, could distinguish meaningful and meaningless
images and these should be the topic of future investigation.
However, care must be take due to the likely confound
between the order of image statistics present and phenomenal
distinguishability.

Predictability was controlled by displaying one of three visual
cues prior to the actual target image. This cue could either be
a “?” and thus uninformative, the name of the category from
which the image came, e.g., “car,” or a filtered version of the
target image showing only the detected edges. Edge detection
was performed using ImageMagick (tm), using a radius filter
from 0.5 to 1. The categorical cue (category name), should
in theory allow for the participant to generate a semantic
template of the target image, and thus recognition may be

improved. The edge-image cue allows for the near complete
prediction of the upcoming image, often including its high-level
category.

Short-term novelty was controlled by repeatedly showing a
subset of 20 images from the meaningful categories (chosen
randomly for each participant). Each habituated image was
shown to the participant a minimum of 15 times while preparing
the electrode net. The number of habituated images was set at 20
as a balance between having sufficient images, and thus event-
related potentials, for reliable comparisons while also ensuring
that the number of images was not too many to prevent perfect
recognition. Finally, long-term novelty was measured by asking
the participants to rate the familiarity of the target image on a
scale of 1 to 3. In order to induce a range of familiarity values
the selection of the experimental images attempted to find both
common and rare category representatives; e.g., a dog versus a
camel, a pick-up truck versus a concept car.

Task
See Figure 2 for an overview of the task. Each trial began
with a black fixation cross over a white background for 700 ms
(jittered to 600–800 ms); followed by 1 of the 3 cue types for 1
s; then the fixation cross again for another 1 s (jittered to 900–
1100 ms); the target image was then presented for 1 s. On a
quarter of the trials (randomly selected), after the presentation
the participant was asked to rate the familiarity of the preceding
image. This was only done on a quarter of the images for two
reasons. Firstly we wanted to minimize the impact of this task
on the attention given to each image such that the presentation
of the target image remained fairly passive. Furthermore, given
this was not the main aim of the study, reducing the number
of ratings allowed for the presentation of a larger number of
total images. The habituated images were repeated four times
and the novel images only once, leading to a total of 400 images
which, on average, required the attention of the participant for
about 40 min. The cues and images were presented in a fully
randomized sequence. The cue images were balanced across the
experiment and equally likely to occur for any particular category.
The task sequence was programmed and images were presented
using Psychtoolbox (Brainard, 1997), within the Matlab (version
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2012a) environment to ensure precise timing of the stimulus
onset. Participants were seated comfortably at a viewing distance
of 60–70 cm in front of a 19′ monitor. Each picture had a
set resolution of 1280 by 720 pixels which fully occupied the
horizontal space of the screen. Participants were instructed to
maintain fixation at the center of the screen and to try to
refrain from blinking during the target image. Following each
familiarity rating, the participants were encouraged to take a
quick break from the task, even just for a few seconds, to regain
focus and attention as well as ask questions or comment on the
experiment. A longer break was enforced after 200 pictures were
presented.

At the end of the experiment, participants were asked to
rate how distinct the individual images within a category
were. This was done for each category based on their low-
level and high-level features. Examples were given to indicate
the kind of features that defined low and high-level aspects
of the images such as hair color/head shape for low-level
and age/gender for high-level. This rating was taken as an
estimate of the behavioral differentiation of each category to
compare to neurophysiological differentiation measures from the
EEG.

EEG Recording and Processing
Electroencephalography activity was recorded using a high-
density, 256 channel (with central reference and posterior
ground channel), electrode net from EGI Geodesics (Tm), and
the NetAmp-300 amplifier sampled at 1000 Hz. Impedance
was kept below 50 ohms for all electrodes. Triggers from
the experimental computer were sent directly to the amplifier
using the parallel port and EGI supplied cable to ensure
a constant low latency in event trigger placement in the
data. Preprocessing of the time series data was done using
a combination of EEGLAB (Delorme and Makeig, 2004) and
custom scripts in Matlab. Each recording was first down-
sampled to 250 Hz, then bandpass filtered from 0.5 to 40 Hz.
Data was then segmented around the target images, initially
from 500 ms prior to image onset to 2 s after. The data was
then manually inspected for bad channels (mean number of
removed channels = 5.2, SE = 1.3) and bad epochs which
were then subsequently removed from that data (mean number
of trials = 365.8, SE = 11). Independent components were
then manually examined using their topography, temporal
evolution for each trial, averaged ERP, and frequency spectra for
components. Components relating to eye blinks, eye movements,
muscle artifacts, and heart beats as well as any other technical
artifact were removed (mean components removed = 88.1,
SE = 4.8). Once these components were removed the epochs
were further cropped to 200 ms prior to image onset to 1000 ms
after, and again manually inspected for any remaining bad
epochs. Finally, any channels that had been removed were
re-introduced using topographic spline interpolation, and the
data was re-referenced to the average activity of all channels;
and the original reference channel (Cz) re-introduced to the
dataset.

Statistical comparisons between the ERP waveforms of the
various factors were performed using a mass-univariate approach

of repeated measures analysis of variance (ANOVA) or for single
factor comparisons paired t-tests conducted independently for
each channel and sample between conditions. The threshold-
free cluster-enhancement (TFCE) procedure combined with
the maximum permutation technique was then used to
determine whether these values were significantly different
for conditions across the participant while controlling for
multiple comparisons. This approach examines the individual
values based on their surrounding neighborhood, in both
time and space, such that those values which are well
supported by their neighbors are enhanced and those that
are not are suppressed (Smith and Nichols, 2009; Mensen
and Khatami, 2013). To test for statistical significance, the
same procedure was applied to randomly permuted datasets
of the original datasets 5000 times. For each permuted
dataset the maximum statistically enhanced value was taken
from the entire dataset, regardless of channel or sample,
to form an empirical distribution of maximum permutation
statistics from which to compare the original dataset. A p-
value is obtained for each channel-sample pair by determining
the proportion of the empirically derived statistics which
is greater than the value for that particular channel-sample
pair. This procedure has been shown to be statistically valid,
robust to various signal shapes, and more powerful than
traditional methods (Mensen and Khatami, 2013; Pernet et al.,
2015).

Differentiation Analysis
Figure 3 outlines the principle steps involved in DA. This
novel analytical technique, introduced here, aims to quantify
the differences in neurophysiological activity evoked by a set
of stimuli. It is a multivariate analysis, where the relationships
between several dependent variables are captured but left
unspecified (Sandberg et al., 2014). EEG activity across channels
and time, time-locked to the onset of a stimulus is considered
as a single state of the brain. The differences between each
of these states are then compared using some distance metric
in this high-dimensional space. These distances can be placed
in an n-by-n matrix generally referred to as a representational
dissimilarity matrix (RDM). DA defines neurophysiological
differentiation to a set of stimuli as the mean distance
in the RDM between stimuli within that set. In this way
it differs from representation similarity analysis (RSA), as
this primarily focuses on differences between categories and
the comparisons of multiple RDMs from distinct sources,
such as neurophysiological activity, behavioral, computational
models, etc. (Kriegeskorte et al., 2008; Kriegeskorte and Kievit,
2013).

Distance measures can be broken down into two broad
categories: measures that emphasize the absolute distances in
these high-dimensional state-spaces, such as Euclidean distance,
and measures that are sensitive to the pattern of the signals such
as correlational distance. As with previous EEG studies using
RDMs, we use the Euclidean distance to compare EEG state-
spaces (Groen et al., 2012, 2013; Walther et al., 2015). This is
because EEG signals are primarily driven by the synchronized
activity of large groups of neurons within local patches of the
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FIGURE 3 | Differentiation analysis overview. The evoked responses from each presented image is compared to every other. Distances were computed using the
Euclidean distance in the multi-dimensional space of channels and samples. The resulting representational dissimilarity matrix can then be split into separate
categories; here into the 10 predefined image groups shown in Figure 2. Differentiation to each category is the mean Euclidean distance across trials from within
that category. The categorical differentiation index (CDI) is a summary measure between any two categories which is normalized by between-category distances. For
example, here CDI is the comparison between meaningful versus meaningless image sets.

cortex, the general pattern of the ERP is likely to be very similar
across the stimuli, whereas the differences between images will
likely be subtler amplitude and/or topographical changes riding
on top of this common ERP (see Supplementary Figure 1 for
comparison of Euclidean vs. correlational distance measures).
The point-to-point comparison between states in DA increases
specificity compared to variance, while requiring fewer samples
to estimate than entropy (Shannon, 1948); the additive nature
of even small distances in the multivariate space increase its
sensitivity compared to the binarization required for Lempel-Ziv
complexity measures (Casali et al., 2013).

We applied DA to this dataset by considering all 800 post-
stimulus time points over the 257 recorded channels as the
single states to be compared, and measuring the differences
using classic Euclidean distance. We then split the RDM into
10 categories based on image content without presupposing
which types of images were meaningful to the participants.
Furthermore, a single, summary measure was calculated by
subtracting the differentiation values to artificially generated,
meaningless images (disks, noise, and phase-scrambled), from
the real-world, meaningful categories (animals, buildings, cars,
food, objects, people, and sports). This value was normalized
by dividing it by the mean between-category differentiation
values. Positive values of this measure, dubbed the category
differentiation index (CDI), indicate higher differentiation to
meaningful stimuli sets.

Significance at the individual level was calculated using
a permutation approach applied to the dissimilarity matrix.
The CDI was calculated for the original dissimilarity matrix,
then the image labels were randomly shuffled to create a new
dissimilarity matrix and the CDI was calculated again. This re-
sampling process was repeated 5000 times to obtain an empirical
distribution of CDI values against which to compare the observed
value. The p-value is equal to the proportion of values in the
empirical distribution that are more extreme than the observed
value.

RESULTS

Neurophysiological Differentiation and
Spatio-Temporal Breakdown
Figure 4 shows the group-average distance matrix across
all categories. The significance of group level effects was
assessed using non-parametric permutation statistics (1000
permutations), on the linear mixed model with meaningfulness
used as the predictor to individual categorical differentiation. The
meaningful categories had a higher, normalized, differentiation
value compared to the meaningless categories (mean
difference = 0.436, SE = 0.05; T = 7.56, p = 0.001). The same
test using the individual category label revealed a significant
omnibus effect (F = 8.243, p = 0.001). Post hoc comparisons
were performed using a permutation analysis of the mean
difference between each pair of categories. Here, the number
of unique permutations possible is 512 (2ˆ9), thus limiting the
p-value to 0.002. Since this lower bound is already above the
alpha level needed to determine significance after correction for
the 45 unique comparisons (0.05/45 = 0.011), we are unable to
make definitive statements about which specific categories were
significantly different from which other. The results of these post
hoc permutation tests are shown in Supplementary Figure 1.

We then examined both the spatial and temporal breakdown
of differentiation to determine whether there were particular
channels or time ranges that contributed most markedly to
differentiation. For the spatial breakdown (see Figure 5),
individual RDMs were constructed for each channel over
the entire time course of the stimulus presentation and
CDI was calculated as before. Significance was measured
using the non-parametric TFCE procedure. Two clusters of
channels had significantly positive CDI values, indicating higher
neurophysiological differentiation to the meaningful stimulus
sets. The largest channel cluster included 65 channels spread over
the central-posterior region of the head. The peak of this region
was found at channel E124 (central-posterior; mean CDI= 0.103,
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FIGURE 4 | Neurophysiological differentiation to image categories. (A) The representational dissimilarity matrix (RDM) showing the mean distances across the trials
within that category, averaged over all participants (n = 9). The diagonal of this averaged matrix is the differentiation value given to each category. Note the last three
phenomenally meaningless categories show the lowest overall differentiation. (B) Mean differentiation to each category across all participants (equal to the diagonal
of the averaged RDM in (A); with error bars indicating the standard error and individual markers for each participants differentiation level for each of the stimulus sets.
Phenomenally meaningful image sets show significantly higher differentiation compared to meaningless image sets at the group and individual levels. Moreover, the
specific pattern of differentiation across the 10 categories correlated with the participants behavioral ratings of perceived similarity.

FIGURE 5 | Neurophysiological differentiation for individual electrodes. To investigate whether any electrodes contributed to differentiation in particular, the averaged
RDM was calculated at each individual electrode (using the Euclidean distance across trials for all time points). (A) All channels showed a positive CDI; indicating
higher differentiation to phenomenally meaningful image sets compared to meaningless ones. Electrodes in the central-posterior region showed particularly high
values and were chosen as a region-of-interest for further analyses (marked with a white overlay). (B) Individual differentiation values for the posterior region of
interest indicated in (A). All phenomenally meaningful image categories showed higher differentiation values than meaningless images sets.

t = 9.545, p < 0.001). A smaller, frontal set of 36 channels
also had significantly higher differentiation for the meaningful
stimuli (peak channel: E224; mean CDI = 0.034, t = 8.836,
p = 0.007). A region of interest was created using a subset of the
most significant channels (p < 0.005). This ROI consisted of 20
channels from the central-posterior region.

To examine the time domain, a unique RDM was created
for consecutive short time windows of 20 ms spanning both
the baseline and full second of image presentation. For each
RDM the differentiation value for each category was calculated
along with the CDI and significance using the same permutation
approach applied to the spatial domain. When all the channels
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FIGURE 6 | Temporal breakdown. To investigate whether certain time ranges contributed to the overall differentiation effects found, the averaged RDM was
calculated for consecutive windows of 20 ms. (A) When all electrodes were examined three later time ranges were found to have significantly higher differentiation to
phenomenally meaningful images compared to meaningless ones. (B) When only the channels for the posterior region of interest (shown in Figure 5), were used to
create the RDM, an early time range around 110 ms, and another later period between 350 and 480 ms were found to have significantly different levels of
differentiation between the meaningful and meaningless image categories. On the right side is the time series of the CDI (difference between the within-category
differentiation of meaningful and meaningless image categories normalized by the between differences), at both the group (thick black line), and individual levels (thin
gray lines).

were considered together (Figure 6), there were three time ranges
where the CDI was significantly different from zero: from 385 to
405 ms (t = 5.763, p = 0.015); from 465 to 510 ms (t = 5.720,
p= 0.023); and from 630 to 670 ms (t = 5.006, p= 0.043). When
examining the temporal breakdown in the posterior ROI we again
found significant time points around the 385 ms mark (t = 8.631,
p < 0.001), but also an earlier peak at 115 ms (t = 5.179,
p= 0.039).

Individual Differentiation and Behavior
Focusing on the central-posterior region of interest, all
participants showed significantly higher differentiation for
meaningful stimuli across time and also for the group temporal
peak at 385 ms (p < 0.05). At this ROI, the earliest temporal
peak (90–130 ms) showed significant individual results in 7 of
9 participants. When examining all channels and time points
together, of the 9 participants, 6 showed significantly higher
neurophysiological differentiation (p < 0.05), for meaningful
images while 2 showed trend levels (p < 0.1). In the time
domain over all channels, 7 of the 9 participants showed
significant CDI at the 385 ms mark, while 5 showed significant
CDI at later time points. These results are crucial as they

demonstrate the feasibility of applying DA at the individual
level.

To examine whether the differentiation of individual
categories was related to participants’ behavioral judgments,
we performed permutation analysis using the individual
participants ratings as predictors. Both the low and high-level
behavioral estimates were significantly predictive of the overall
differentiation (T = 5.403, p = 0.001; and T = 7.928, p = 0.001).
Even when the low-level ratings were regressed out of the
differentiation measure, the high-level behavioral ratings still
significantly predicted the remaining differentiation values
(T = 3.318, p = 0.003). At the individual level, the behavioral
ratings for high-level features correlated significantly with
neurophysiological differentiation in 7 of the 9 participants, and
in 3 of the 9 participants for low-level features.

We also examined whether measures of stimulus
differentiation of the images correlated with neurophysiological
differentiation. Stimulus differentiation was estimated by creating
RDMs using three different distance measures: pixel to pixel
correlation; mean luminosity; and Weibull statistics of spatial
coherence and contrast energy (Scholte et al., 2009; Groen et al.,
2012). The relationship between stimulus and neurophysiological
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differentiation was assessed using non-parametric permutation
statistics as above. Pixel correlation was found not to be a
significant predictor of differentiation (T = −1.485, p = 0.067).
Stimulus overall luminosity differentiation was related to
differentiation (T = 5.130, p= 0.001). Also, the Weibull distances
within image categories also significantly predicted subsequent
differentiation (T = 5.856, p = 0.001). Crucially, however, when
this relationship was regressed out of the differentiation values,
the meaningful versus meaningless distinction remained a
significant predictor (T = 3.539, p= 0.002). In other words, even
when stimulus differentiation is allowed to capture the initial
variance, the basic phenomenal split accounts for a significant
portion of the remaining variance. The same was found for the
additional effect of the behavioral measures over and above the
stimulus differentiation (T = 3.918, p= 0.001). At the individual
level only 2 of 9 participants showed significant correlations to
any of the stimulus differentiation measures.

Novelty and Surprise
We calculated the differentiation with respect to predictability
and novelty to examine whether the results found between the
meaningful and meaningless images could be accounted for by
these control factors. Two distinct categories were available for
the analysis of short-term novelty: either the item was habituated
to prior to the experiment start, or the image was a novel one.
We could therefore measure the CDI based on this categorical
distinction. For the case of predictability and familiarity there
were three distinct conditions, so a single CDI is not possible.
However, since the conditions can be ordered from low-to-
high predictability or familiarity, we tested for monotonically
increasing values using the spearman correlation coefficient. That
is, we test for whether the intermediate levels of predictability
or familiarity also have intermediate levels of differentiation.
As before, these measures were also taken for 5000 permuted
datasets to examine individual significance while one-sample
t-tests over these values tested for group significance. At the
group level, neither the habituation vs. novel (mean CDI= 0.007,
SE = 0.008; t8 = 0.8191, p = 0.436) or levels of familiarity
(mean CDI = −0.006, SE = 0.018; t = −0.3266, p = 0.752) were
found to have significant effects on levels of differentiation. At
the individual level, two participants showed significant CDI for
short-term novelty, however, in different directions.

For the different levels of predictability, we found a
significant effect on differentiation at the group level (mean
correlation = −0.099, SE = 0.041, t = −2.435, p = 0.041). The
negative value indicates that when the images were the least
predictable the neurophysiological differentiation was highest;
whereas when the image was most predictable, following the
prior exposure to the edge detected version of the image, the
neurophysiological differentiation was significantly lower. At
the individual level, only two participants showed significant
effects, and two more showed trend levels. However, all but
one participant had negative overall correlation values. In order
to determine if this effect of predictability overlapped with the
effects of meaningfulness we further broke down the EEG into its
spatial and temporal parts and re-calculated the differentiation
values. As Figure 7 shows, there were some peak time points of

the effect, particularly around 200 ms and again around 550 ms,
however, none of these time points were found to be significantly
different (e.g., mean CDI at 210 ms = −0.058, SE = 0.016;
t=−3.545, p= 0.287). On the other hand, the spatial breakdown
showed two clusters of channels with significant effects. The
largest cluster consisted of 30 channels of the fronto-central
electrodes (peak channel E20: t = −5.601, p < 0.001), while the
second smaller cluster consisted of just five channels over the
left-parietal area (peak channel E107: t = −7.230, p = 0.012).
Therefore, there was no specific effects of differentiation for either
factors involving stimulus novelty or familiarity. Moreover, the
significant effects of differentiation with respect to predictability
show different spatial and temporal properties compared to those
for meaningful versus meaningless stimulus sets.

Event-Related Potentials
To establish the novelty of the DA analysis, it is important to
contrast the observed changes in differentiation with changes in
the ERP. ERP differences between images from the meaningful
and meaningless stimulus sets showed essentially two large
clusters of significant channels (p < 0.05), one posterior and the
other fronto-central spanning much of the time course from 202
to 870 ms. The posterior cluster peaked at 710 ms at channel E137
(central-posterior; t = 12.511, p < 0.001), and corresponded to
higher positive amplitudes for meaningful images. The fronto-
central cluster peaked at 246 ms at channel E45 (just left of Cz;
t = −12.101, p = 0.005), and corresponded to larger negative
amplitudes for meaningful items. These differences arose from
two fairly consistent topographies which showed an abrupt
change at 530 ms (see Figure 8).

A three-way ANOVA (corrected using TFCE), examining the
effect of the predictability of each image found two time ranges
of significant differences. The largest difference in the ERPs was
found during the baseline period, prior to the presentation of
the image between 250 and 26 ms in right posterior channels
(peak channel E140; f = 31.314, p = 0.002) where the highly
predictive cues showed a stronger negative amplitude than either
of the other two conditions. The other significant cluster was
found between 160 and 240 ms for central-posterior channels
(peak channel E136 at 194 ms; f = 38.642, p = 0.009). Here,
stronger negative amplitudes were found for images preceded
by the categorical cue, with intermediate amplitudes for no cue
and the lowest amplitudes for the most predicable images. The
ANOVA examining only the images rated for their familiarity
showed only a single significant channel over two samples at 390–
394 ms (f = 20.224, p = 0.048). Here, familiar images showed a
significantly lower amplitude compared to the either unfamiliar
or only partly familiar items which showed no differences.
Analysis of the effect for short-term novelty found no significant
differences between images that were seen immediately prior to
the experiment and those that were novel to the participant.

DISCUSSION

The aim of this study was to develop an analysis technique
to quantify the meaningfulness of sets of stimuli through the
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FIGURE 7 | Differentiation to predictability levels. To investigate potential effects of image predictability we examined differentiation to images that were preceded by
no cue, the categorical word cue, or the edge detected image. (A) Generally, images in which the content was highly predictable (edges images), showed the lowest
differentiation when all channels and samples defined the state. (B) This effect was localized to fronto-central electrodes (significant electrodes shown with a white
overlay); this region did not overlap with the posterior region of interest shown in Figure 5A. (C) The temporal breakdown of differentiation revealed no time ranges
where there was a significant difference between the predictability levels of the target image.

FIGURE 8 | Event-related potentials and topographies. (A) The ERP time courses from −250 to 1000 ms at two electrode sites Cz and Oz (central and occipital,
respectively). Significant differences emerged from 200 ms onward. Early differences were due to larger amplitudes for meaningful images compared to meaningless.
Later differences were due to a shift in topographies between the two conditions. (B) Predictability of the target image lead to significant effects during the baseline
period and around 200 ms. (C) Only a narrow time range around 390 ms showed a significant effect of familiarity; images rated as partly familiar showed lower
posterior amplitudes. (D) No significant differences were found between habituated and novel images.

analysis of neurophysiological differentiation – the distance
between neural states triggered by different stimuli. We assume
that a stimulus set is meaningful for a particular subject if
different stimuli within the set elicit different phenomenal
concepts, typically high-level ones (phenomenal differentiation),

and that neurophysiological differentiation is a prerequisite
for phenomenal differentiation. We used HD-EEG to analyze
responses to several categories of meaningful natural images and
artificially generated meaningless images. The results show that
neurophysiological differentiation was higher for the meaningful
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set of images than for a less meaningful set of images both at
the group level and for individual subjects. We also analyzed
the characteristic spatio-temporal profile of neurophysiological
differentiation as a marker of meaningfulness, and examined the
role of potential confounding factors such as novelty, familiarity,
and predictability.

Meaningfulness, Phenomenal
Differentiation, and Stimulus
Differentiation
A key premise of this work is that phenomenal differentiation
can be high or low, for the same level of stimulus differentiation,
depending on the meaningfulness of different stimuli to the
subject. The phase-scrambled images employed in the present
study are a case in point. While at the stimulus level each phase-
scrambled image is just as different from the others as is each
natural image, for each subject phenomenal differentiation was
high for natural images and low for phase-scrambled images,
as indicated by behavioral ratings. Crucially, neurophysiological
differentiation as measured by HD-EEG responses mirrored
phenomenal differentiation. This is supported by recent evidence
from MEG showing that perceptual similarity judgments
predicted neural activity better than stimulus properties as
early as 80 ms after image presentation (Wardle et al., 2016).
Or that combined models of image statistics and semantic
models can account for the neurophysiological response better
than either alone (Clarke et al., 2015). Our results support
these notions in that even the simple and trivial distinction of
meaningful versus meaningless image categories is a significant
predictor of neurophysiological differentiation beyond what the
differentiation of the stimulus properties can account for.

A dissociation between stimulus differentiation and
phenomenal differentiation is also suggested by certain
perceptual illusions. For example, visual metamers and change
blindness illustrate how substantial changes in the physical
stimuli may not be perceived (Busch et al., 2010; Freeman and
Simoncelli, 2011). Conversely, in the checker shadow illusion,
two identical shades of gray are perceived as different due to their
background (Adelson, 1995). Thus, DA provides a tool to assess
subjective meaningfulness by measuring the neurophysiological
differentiation that supports phenomenal experience. Thus,
one can say that the relationship between the physical stimulus
properties and neurophysiological differentiation is determined
by whether the stimulus leads to a different subjective experience.

Spatio-Temporal Breakdown
Spatial breakdown of CDI showed that electrodes in the central-
posterior region were more likely to show higher differentiation
to meaningful images. This localization is consistent with the
visual nature of the stimuli used in this study, suggesting that
the different images within meaningful categories evoke distinct
activation patterns in high-level visual cortical areas, while
different images within less meaningful categories tend to evoke
similar activation patterns. No channel displayed a negative CDI,
indicating that the pattern of underlying neural activity was
always more diverse (significantly or not) for meaningful images,

no matter which region was examined. The topography of visual
differentiation obtained here is similar to that highlighted by
recent work using multivariate decoding for object recognition
and categorization (Simanova et al., 2010; Kaunitz et al., 2011;
Kaneshiro et al., 2015). Of note, Kaunitz et al. (2011) found that
decoding was only able to discriminate between image sets when
they had been perceived (in a flash suppression paradigm).

Temporal breakdown found two peaks in differentiation and
CDI: an early peak (110 ms) and a late one (300+ms). A possible
interpretation of the two peaks is provided by the distinction
between phenomenal and access consciousness (Block, 2007;
Lamme, 2010). The high values of differentiation and CDI
at 110 ms would be compatible with the idea that different
phenomenal contents are experienced for different meaningful
images during this time, in line with other studies that show
content-related activations in posterior cortex at similar latencies
(Pitts et al., 2014; Tapia et al., 2014). The differentiation peak after
280 ms could be related to the subsequent access and reflection
about the experienced content through attentional mechanisms
(Lamme, 2003). Thus, prefrontal regions may reactivate the
posterior region thereby amplifying the different activity patterns
supporting the distinct phenomenal experiences (Ro et al., 2003;
Chambers et al., 2013). Reflection on particular features of each
experience would then be likely to evoke higher-level, abstract
concepts supported by additional cortical regions.

Relationship to Event-Related Potentials
A dissociation is demonstrated between of DA and ERP analysis,
and these differences start at the conceptual level. In ERP analysis,
many trials are averaged together to identify the time-dependent
amplitude of an underlying evoked potential, and deviation from
this waveform is seen as ‘noise’ within the trial. On the other
hand, DA is specifically interested in the differences between
trials without reference to the common underlying signal. In
our approach, these differences are not seen as noise, but rather
unique neurophysiological states that support differences in
subjective experience.

A conventional amplitude analysis of the ERP associated
with meaningful and meaningless images highlighted two
time intervals that were significantly different. The amplitude
difference at 250–500 ms over central channels may be related
to the visual-awareness-negativity (VAN) (Pitts et al., 2014;
Shafto and Pitts, 2015). The VAN is obtained by contrasting
the conscious perception of an image with an unperceived,
masked variant of it (Railo et al., 2011). This contrast resembles
aspects of the meaningful and meaningless images used in the
present study. In these types of experiments, one could say the
target stimuli have generally higher phenomenal differentiation
(e.g., faces), while the unperceived masks have low phenomenal
differentiation. Thus, the ERP differences we find here (i.e., VAN)
are consistent with such a reframing of the classical perception
paradigms. In the future, applying DA to perception tasks may
provide more direct evidence for this observation.

The VAN has been related to possible top-down effects
of object-based attention (Shafto and Pitts, 2015), which may
indicate later attentional access amplifying earlier phenomenal
distinctions. This interpretation would fit with the observation
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of a second differentiation peak (after 280 ms), suggesting that,
if images are phenomenally perceived as different, they may
trigger top-down attentional facilitation that enhances the overall
response and subsequently amplifies their differentiation. By
contrast, the lack of ERP changes at the time window of the first
peak in differentiation (at 110 ms) is consistent with the idea
differences in pattern of activity are not necessarily accompanied
by differences in amplitude, yet they may underlie differences
in phenomenal perception. Indeed, previous research has shown
that even for basic contrasts between face and house stimuli, level
of neural activity is insufficient to classify the stimuli, and that the
patterns of activity are crucial (Hanson and Halchenko, 2007) but
see (Roeber et al., 2008; Clarke et al., 2013).

Later ERP differences (500–800 ms) show different
topographies for each condition and thus likely represent
distinct neural sources, possibly related to the late-positive-
potential (LPP; Koivisto et al., 2009). The LPP has been
associated with post-perceptual activity, such as task-related
activity or reportability of target stimuli (Railo et al., 2011;
Dehaene, 2014). However, the observation that CDI values are
also high during this later time range suggests that these late
responses may also correspond to phenomenal differentiation, or
at least to highly differentiated post-perceptual processes.

Differentiation vs. Novelty, Familiarity,
and Predictability
An explicit goal of this study was to investigate whether the results
of DA would be confounded by other factors, such as novelty,
familiarity, and predictability of stimuli. We found no effect for
the short-term novelty of stimuli, as response differentiation was
not affected by whether the image had already been presented or
not. The long-term familiarity of stimuli, as assessed by subjective
ratings, also had no effect on response differentiation, although
it did affect the amplitude of late ERP responses. While our
paradigm does not rule out the possibility that other forms of
novelty and familiarity, for example the sequential presentation
of the same image, or the presentation of highly personal images
(Charest et al., 2014) could have some effect, they clearly indicate
that measuring response differentiation reflects primarily the
extent to which meaningfully different stimuli trigger different
neural activity patterns underlying phenomenal differentiation.

Highly predictable images (edge version of the image),
showed reduced neurophysiological differentiation; irrespective
of image category. However, spatially the effect of predictability
was strongest in fronto-central regions and did not overlap
with the centro-posterior regions involved in differentiation to
meaningful vs. meaningless images. Moreover, there was no
specific time range for the effects of image predictability on
differentiation, suggesting a weaker and dispersed influence.
With respect to ERP, predictability had an impact at around
200 ms (Figure 7), suggesting a link to the VAN and object-based
attention (Horstmann, 2015).

Our current experimental setup cannot rule out some
potential confound of the imbalance in the stimulus types,
with the majority of images being of the generally meaningful
sort (7 categories compared to 3 meaningless). This may have

led to a certain general unexpectancy of seeing a meaningless
image as the experiment went on. However, given the explicit
findings of short-term predictability described above, our data
suggests that the effect would be higher differentiation, rather
than lower, for the meaningless categories. This imbalance
could nevertheless have led to a bias in attention for the more
abundant meaningful images. The potential modulating effect of
attention on neurophysiological differentiation, whether explicit
or implicit, is of great interest and should be explored in future
work.

Potential Impact and Future Work
The present findings using HD-EEG, together with previous
results with fMRI (Boly et al., 2015), establish the feasibility of
DA as a tool to investigate neurophysiological differentiation
as an index of phenomenal differentiation and thereby of the
meaningfulness of set of stimuli for an individual subject.
Importantly, DA can provide an objective measure of
meaningfulness without requiring a priori knowledge about
which aspects and categories of a stimulus set may be meaningful
to a subject, without the need for a priori specification of regions
or time points of interest, and without depending on behavioral
reports. These features of DA makes it potentially relevant for
investigating stimulus meaningfulness in subjects with cognitive
skills that deviate from the norm and in non-human species.
DA might also be useful as a neurophysiological correlate of
learning, to the extent that learning implies an increasing ability
to differentiate a set of previously undifferentiated stimuli
through the development of new concepts and associated activity
patterns. DA may also prove useful in investigating the presence
of consciousness in unresponsive subjects, such as patients in a
vegetative state (unresponsive wakefulness syndrome; Gosseries
et al., 2014). In such patients, the finding of substantial levels
of neurophysiological differentiation in response to meaningful
but not meaningless sets of stimulus would strongly suggest
the presence of accompanying phenomenal differentiation and
therefore of consciousness (Marshall et al., 2016). In this respect,
DA can be distinguished from measures of stimulus-induced
complexity (e.g., Casali et al., 2013; Gosseries et al., 2015).
While these responses may be complex in their spatio-temporal
evolution, they can nonetheless show low differentiation if
different stimuli produce similar responses. DA may also be
helpful in identifying the neural substrate of consciousness in
healthy subjects, under the assumption that spatio-temporal
regions of high neurophysiological differentiation for meaningful
stimuli will also mark the boundaries of the cortical regions that
support their phenomenal perception. In this respect, a wide,
multi-modal stimulus set, such as movies, would be well-suited
for examining the boundaries of the neural structures supporting
conscious experience as a whole.

CONCLUSION

Differentiation of EEG activity, as measured by the within-
category Euclidean distance, provides a novel way to measure to
what extent a particular stimulus set elicits distinct patterns of
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neural activity, which we argue reflect its overall meaningfulness
to a particular subject. Here we show that neurophysiological
differentiation is high for meaningful images and low for
meaningless ones, both at the group level and at the level of
individual subjects, and that neurophysiological differentiation
correlates with each subject’s behavioral rating of meaningful
differences among the images. Crucially, these results are not
better explained by the stimulus properties of the image set,
the novelty or familiarity of the images, or the degree to which
the images are predictable. Moreover, changes in differentiation
doubly dissociate with respect to ERP changes. Future work
should examine neurophysiological differentiation with stimuli
that go beyond the visual modality as well as with streamed,
naturalistic inputs, such as movies.
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