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The functional connectome derived from BOLD resting-state functional magnetic
resonance imaging data represents meaningful functional organizations and a shift
between distinct cognitive states. However, the body of knowledge on how the long-
term career experience affects the brain’s functional plasticity is still very limited.
In this study, we used a dynamic functional connectome characterization (DBFCC)
model with the automatic target generation process K-Means clustering to explore the
functional reorganization property of resting brain states, driven by long-term career
experience. Taking sailors as an example, DBFCC generated seventeen reproducibly
common atomic connectome patterns (ACP) and one reproducibly distinct ACP, i.e.,
ACP14. The common ACPs indicating the same functional topology of the resting
brain state transitions were shared by two control groups, while the distinct ACP,
which mainly represented functional plasticity and only existed in the sailors, showed
close relationships with the long-term career experience of sailors. More specifically,
the distinct ACP14 of the sailors was made up of four specific sub-networks, such
as the auditory network, visual network, executive control network, and vestibular
function-related network, which were most likely linked to sailing experience, i.e.,
continuously suffering auditory noise, maintaining balance, locating one’s position
in three-dimensional space at sea, obeying orders, etc. Our results demonstrated
DBFCC’s effectiveness in revealing the specifically functional alterations modulated by
sailing experience and particularly provided the evidence that functional plasticity was
beneficial in reorganizing brain’s functional topology, which could be driven by career
experience.

Keywords: resting-state fMRI, brain plasticity, career experience, seafarer, dynamic functional connectome

INTRODUCTION

Functional Plasticity and Career Experience
One important issue in cognitive neuroscience concerns the relationship between brain’s functional
plasticity and individually extensive career training or long-term work experience. In recent years,
many studies have demonstrated that blood-oxygen-level-dependent (BOLD) functional magnetic
resonance imaging (fMRI) is a powerful modality to help reveal the neural correlates of cognitive
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processes in different conditions, such as undergoing a cognitive
task, resting-states (Calhoun et al., 2008; Wang et al., 2012,
2013, 2016b; Liu et al., 2013; Ren et al., 2014; Jing et al.,
2015; Shi et al., 2015a; Tang et al., 2015; Wang N. et al.,
2015) or mental disorders, including psychological subhealth
(Shi et al., 2015b), autism spectrum disorder (Ambrosino et al.,
2014), dementia (Rytty et al., 2013), and schizophrenia (Du
et al., 2015). Recently, it has also been shown that the resting-
state functional connectivity in specific regions is modulated by
individual behaviors (Hampson et al., 2006), extensive learning
(Albert et al., 2009; Tung et al., 2013), and experiences (Jeong
et al., 2006; Orr et al., 2014; Wang L. et al., 2015; Shen et al., 2016).
Specifically, Shen et al. (2016) noted that there is a significant link
between the changes in the time-dependent aspects of resting-
state functional connectivity within the vigilance network and
long-term driving experiences. Furthermore, Hervais-Adelman
et al. (2015) revealed that brain’s functional plasticity is
associated with the emergence of expertise in extreme language
control by exploring the functional response of participants
with simultaneous interpretation training. Recently, Yang et al.
(2016) demonstrated that the functional connectivity strength
among certain paired resting-state networks has the significant
changes regarding two resting-state conditions of the professional
composers’ brain states, i.e., the one before composition task, and
the other after composition task. Based on the aforementioned
studies, the brain’s functional plasticity, as revealed by BOLD
fMRI technique, has the potential to elucidate the impact of
different types of career training or work experience. However,
there is still a lack of knowledge concerning how career training
and experience is associated with the dynamics of resting-
state functional connectivity, which we seek to address in this
study.

Dynamic Functional Connectomes and
Brain States
Brain functional connectomes constructed using fMRI data
depict the macroscale functional connectivity within the brain
(Van Dijk et al., 2010; Sporns, 2011) and have been shown to
be powerful in differentiating brain conditions (Lynall et al.,
2010). A growing number of reports has also suggested that the
brain’s functional connectome under resting or task conditions
is not static but exhibits complex spatiotemporal dynamics as
the brain undergoes dynamic integration, coordination, and
responses to internal and external stimuli across multiple time
scales (Chang and Glover, 2010; Hutchison et al., 2013; Calhoun
et al., 2014). This phenomenon potentially implies that the
time-varying dynamic functional connectome (DFC) could offer
a more complete description of brain activity in comparison
to the static one. For example, Leonardi et al. (2013) used
principal component analysis to analyze the DFC in a healthy
control group and a disabled relapse-remitting multiple sclerosis
(RRMS) group and identified significant connections centered
in the default mode network (DMN) with altered contributions
in patients. Furthermore, taking advantage of the intrinsic
connectivity networks and the corresponding time courses
generated by the group ICA (Calhoun et al., 2001), Yu et al.

(2015) first constructed DFCs using the intrinsic connectivity
networks as nodes and the correlation of sliding time-windowed
time courses as edges; then, dynamic graph metrics, such
as connectivity strength, clustering coefficients, and global
efficiency (Rubinov and Sporns, 2010), were calculated for the
healthy group and the schizophrenia group, respectively. Their
results demonstrated that the aforementioned measurements
in the schizophrenia patients exhibited the lower variances
over time in contrast to the healthy group, which provided
a new perspective on the pathogenesis of schizophrenia. In
addition, based on the brain’s dynamic transition and the
Fisher discrimination dictionary learning (FDDL) technique
(Yang et al., 2014). Zhang et al. (2013) proposed a novel
dynamic brain functional connectome characterization model
(DBFCC), which successfully extracted the representative atomic
connectome patterns (ACP) for the resting and task-related
conditions, respectively. Similarly, Li et al. (2014) applied
DBFCC to characterize and differentiate the dynamic brain states
in the healthy group and the post-traumatic stress disorder
group, which also effectively generated two distinct ACPs for
the post-traumatic stress disorder group. All of the above
studies suggested that DFCs with time-varying information
could provide a more accurate description of the brain’s
activity.

Study Purpose
Inspired by the aforementioned studies, we inferred that the
spatiotemporal properties of the DFCs on a finer time scale
could potentially provide us with evidence of the relationship
between resting-state functional connectivity and career training
or long-term experience. The DBFCC model (Zhang et al.,
2013; Li et al., 2014) had the advantage of characterizing
and differentiating the brain states. However, DBFCC appeared
to be vulnerable to the random cluster center selection in
K-Means for the clustering of WQCP (whole-brain quasi-stable
connectome pattern) samples, which led to randomness and
instability in the clustered results. In order to overcome the
aforementioned deficiency in DBFCC, the automatic target
generation process (ATGP) (Ren and Chang, 2003; Chang
et al., 2011) based K-Means clustering for WQCP samples was
proposed. Then, to further investigate the relationship between
the brain dynamics of resting-state functional connectivity
and extensive career training or experience, taking the sailors
as an example, we applied the DBFCC with ATGP-K-Means
clustering to explore the association between the DFC and sailing
experience.

Generally, the seafarers are suitably used to explore the
relationship between brain dynamics and career experience due
to their occupational stability and professional particularity.
For example, a sailor’s occupation requires a certain degree
of particularity due to the following influencing factors: (1)
the marine working environment, a small working space with
machinery noise, single-sex colleagues (all male sailors), and long
periods of isolation from their families; (2) requirements for
good psychological health and strong environmental adaptability;
(3) the required maritime professional skills; and (4) strong
execution of behavior in a chain of command. Due to the
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particularity of a sailor’s occupation, we speculate that the long-
term sailing experience and career training of seafarers will alter
the temporal features of the functional connections among the
relevant brain regions, which help to characterize the intrinsic
neural substrates of career experience. Also, some common
functional connections among specific brain regions regardless of
sailing experience, are also maintained as the baseline of dynamic
brain function. Thus, we will test this hypothesis as described in
the following sections.

The remainder of this paper is organized as follows: the
materials’ information and framework of DBFCC with ATGP-
K-Means clustering are first presented; next, DBFCC is used
to explore the common/distinct ACPs between the sailor and
non-sailor groups. Finally, the results and analysis are presented
together with interpretations, discussion, and conclusions related
to the sailors’ career training and experience.

MATERIALS AND METHODS

Data Acquisition and Data Preprocessing
Twenty male seafarers [ages: 42–57 years, mean age = 49 years;
right handedness] with various positions, such as mate,
helmsman, and seaman, were recruited from a shipping
company in Shanghai, China. All sailors had approximately
10–20 years of sailing experience. For the non-sailor group,
20 male Chinese participants with matched ages in contrast
to the sailors [ages: 48–55 years, mean age = 51 years; right
handedness] who worked on land were recruited. All participants
were informed about the purpose of this study and signed
the written consent form according to procedures approved
by the IRB of East China Normal University (ECNU), and
none of the participants had a history of neurological and
psychiatric disorders. Additionally, all participants did not
exhibit abnormalities in the Symptom Checklist-90 (SCL-90)
evaluation (Derogatis et al., 1976). The education levels for all
the participants were junior college or equivalent, which were
matched for two control groups. In data acquisition stage, all

participants were instructed to wear ear plugs and to keep
their body motionless with their eyes closed, remaining relaxed
and awake. The corresponding resting-state BOLD fMRI data
for each subject was scanned at the Shanghai Key Laboratory
of Magnetic Resonance of ECNU. The concrete acquisition
parameters were listed as follows: GE 3.0 Tesla, gradient echo
EPI with 36 slices providing whole-brain coverage, number
of time points = 160, TR (time of repetition) = 2 s, matrix
size = 64 × 64, in-plane resolution = 3.75 mm × 3.75 mm, and
slice thickness= 4 mm.

The preprocessing steps for the resting-state fMRI data
included slice timing, head motion correction, nuisance covariate
(six parameters related to head movement, white matter, and
CSF signals) regression, spatial normalization, spatial smoothing
with Gaussian kernel of 4 mm, and temporal filtering (0.01–
0.08 Hz). After the preprocessing procedure, Craddock’s brain
atlas with 200 ROIs (region of interest) (Craddock et al.,
2012) was used to extract the time series of each ROI for
each subject; then, the mean time series of each ROI was
used as the reference for each ROI. Craddock’s brain atlas
is a whole-brain functional atlas established by fMRI data,
which seemed to be more suitable to accurately describe brain
function than the widely used structural brain atlas, e.g.,
automated anatomical labeling template (Tzourio-Mazoyer et al.,
2002).

Framework of DBFCC
The DBFCC with ATGP-K-Means clustering consisted of five
sub-procedures (see P1–P5 depicted in Figure 1). The first
procedure (P1) was the construction of DFCs, which was
based on the Pearson correlation for the sliding time window
constrained paired reference time series for any two ROIs
in two control groups, i.e., Group 1 and Group 2, depicted
in Figure 1. Then, the manual segmentation of DFCs (P2)
was involved, forming the WQCP sample set (Zhang et al.,
2013), which was described in detail in Section “Formation
of WQCP Samples.” Thirdly, the ATGP-K-Means clustering
was proposed to obtain the class labels for each sample in a

FIGURE 1 | The flow chart of dynamic functional connectome characterization (DBFCC) model with ATGP-K-Means clustering.
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WQCP set (P3), which eliminated the resulting randomness
of the clustering of K-Means in the original DBFCC (Zhang
et al., 2013; Li et al., 2014) (see Section “ATGP-K-Means
Clustering on WQCP Set”). Furthermore, the FDDL method
(Yang et al., 2014) and the sparse representation based
classification (SRC) (Wright et al., 2009) were utilized to
generate the ACPs and determine the distributions of the
WQCP samples corresponding to each control group under
each dictionary class (P4) (see Section “Sparse Learning and
SRC Classification”). Finally, the common ACPs and distinct
ACPs were classified, based on the ratio distributions of WQCP
samples from two groups under the sub-dictionaries generated
by FDDL (P5) (see Section “Formation of Common/Distinct
ACPs”).

Formation of WQCP Samples
The functional connectivity undergoes temporal dynamic
transitions (Chang and Glover, 2010; Majeed et al., 2011;
Smith et al., 2012; Hutchison et al., 2013; Calhoun et al.,
2014), implying that a DFC with more abundant information
is better to describe the brain’s functional topology than a
static one does. Thus, the DFC analysis was adopted in this
study. For convenience, we denoted the reference time series
for the ith ROI of a specific resting-state fMRI data from
Group 1 or Group 2 as TSi , 1 ≤ i ≤ 200. Specifically, for a
given time point t, the functional connectivity between the
temporal segments Wi and Wj regarding TSi and TSj was
defined as:

FCi, j, t = abs (correcoef (Wi,Wj)),

FCi, j, t = 0 if i = j, i, j ∈ [1, · · ·, 200], (1)

where Wi = [TSi, t,TSi, t + 1, · · ·, TSi, t + l− 1], Wj = [TSj, t,
TSj, t + 1, · · ·, TSj, t + l− 1], and l was the length of the sliding
time window (l = 15 with an empirical setting). As the
time window slid along the time axis, the DFC was formed
as a three-dimensional matrix DFC with dimensions of
200 × 200 × (L− l+ 1), in which L denoted the length of
TSi.

According to prior studies (Zhang et al., 2013; Li et al.,
2014), the functional cumulative connectome strength (FCS) was
defined as follow:

FCSi, t =
200∑
j = 1

DFCi, j, t, (2)

where FCS was a matrix with dimensions of 200 × (L − l + 1),
and one sample of FCS was depicted in Figure 2, in which
the horizontal axis represented the time points and the vertical
axis denoted the cumulative connectivity strength of each ROI
from Craddock’s atlas. As shown in Figure 2, we found that
the FCS consistently maintained a stable connectivity strength
in a short period along the horizontal axis. Considering this,
we manually divided the whole FCS for each resting-state
fMRI data along the time axis into quasi-stable segments (see
the dividing black line in Figure 2) as suggested in Zhang

FIGURE 2 | The FCS of the dynamic functional connectome (DFC) for a resting-state functional magnetic resonance imaging (fMRI) sample data.
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et al. (2013) and Li et al. (2014), forming the set of WQCP
samples.

ATGP-K-Means Clustering on WQCP Set
Each WQCP sample in the WQCP set from Group 1 and
Group 2 belonged to different classes, represented by ACPs,
which revealed both similar and different functional topologies
of the brain dynamics in two control conditions. In DBFCC, the
original K-Means clustering was firstly used to categorize the
WQCP samples into different classes and each WQCP sample’s
class label was further retrieved. However, the performance
of K-Means was greatly impacted by the randomness of the
initial cluster point selection. Thus, in this study, the ATGP
algorithm (Ren and Chang, 2003; Chang et al., 2011) was applied
to determine the initial cluster points, forming the ATGP-
K-Means clustering algorithm. The effectiveness of ATGP in
initialization was validated in our previous studies, overcoming
the randomness of FastICA (Hyvärinen, 1999; Yao et al., 2013)
and improving the accuracy of the separation of brain sources in
SDLS (Wang et al., 2016a).

Sparse Learning and SRC Classification
The sparse representation has applied for signal processing, noise
suppression (Elad and Aharon, 2006), pattern classification
(Huang and Aviyente, 2006), and signal reconstruction
(Bruckstein et al., 2009). However, for classification using
sparse representation, Huang and Aviyente (2006) noted that
reconstructing the signal accurately was not sufficient, while the
discrimination of the given signal classes was also important.
Based on this idea, the FDDL methodology (Yang et al., 2014)
was adopted in this paper to determine the ACPs of resting brain
states from the WQCP set. Generally, FDDL fully considered
the accuracy of signal reconstruction, the discrimination among
the sub-dictionaries and the discrimination of sparse coding
coefficients. According to Zhang et al. (2013), FDDL performed
better in the determination of ACPs in the WQCP samples
than the online sparse dictionary learning algorithm (Mairal
et al., 2010). Assuming that all the WQCP samples in two
control groups were arranged in a matrix, denoted X, and that
ATGP-K-Means clustering had separated the WQCP samples
in X into c classes, the FDDL was expressed mathematically as
follow:

J(D, S) = arg min
(D, S)
{r(X,D, S)+ λ1

∣∣∣∣S∣∣∣∣1 + λ2 f (s)}, (3)

where the first term r(X, D, S) was the constraint on
discriminative fidelity, the second term indicated sparsity
constraint, and the last term represented Fisher discriminative
constraint of the sparse coding coefficients. Furthermore, r(X, D,
S) was expressed as:

r(Xi,D, Si) =
∣∣∣∣Xi − DSi

∣∣∣∣2
F +

∣∣∣∣Xi − DiSii
∣∣∣∣2
F +

c∑
j= 1
j 6= i

∣∣∣∣DjS
j
i
∣∣∣∣2
F,

(4)

where Si = [S1
i ; · · ·; Sji; · · ·; S

c
i ], S

j
i denoted the coding coefficient

of Xi over Dj. In equation (4), the first term was used to
enforce the dictionary D with good representative ability for Xi;
meanwhile, the other two terms were utilized to showed that the
sub-dictionary Di expressed Xi and the other sub-dictionaries
were less to express Xi. Further, the constraint term f (S) was
formulated as follows:

f (S) = tr(SW(S))− tr(SB(S))+ η
∣∣∣∣S∣∣∣∣2F, (5)

SW(S) =
c∑

i= 1

∑
sk ∈ Si

(sk −mi) (sk −mi)
T, (6)

SB(S) =
c∑

i= 1

ni(mi −m) (mi −m)T, (7)

where mi and m represented the mean vectors of Si and S,
respectively, and ni indicated the sample number of class Xi.
The discriminative coefficient term f (S) here made the dictionary
discriminative for the training samples, and was achieved by
minimizing the within-class scatter SW(S) and maximizing the
between-class scatter SB(S) of S. The parameter η was set to 1 for
both algorithms’ convexity and maximizing the discriminability
as described in Yang et al. (2014). The values of the parameters
λ1 and λ2 were set to 0.01 and 0.02 according to Li et al. (2014),
respectively.

In DBFCC, the SRC algorithm (Wright et al., 2009) was
used to classify the testing WQCP sample, e.g., xtest , which was
expressed as

ŝtest = arg min
s

{∣∣∣∣xtest − Ds
∣∣∣∣2

2 + λ
∣∣∣∣s∣∣∣∣1} , (8)

ind = arg min
i
{ei}, (9)

where ei = ‖xtest − Di ŝi‖2, ŝ = [ŝ1; · · ·; ŝi; · · ·, ŝc] and ŝi represen-
ted the coefficient vectors under the ith sub-dictionary class.
Further, in both ATGP-K-Means and FDDL, the Bayesian
information criterion (BIC) (Schwarz, 1978) was used to estimate
the number of clusters (c), which was also formulated in previous
studies (for details, see Zhang et al., 2013; Li et al., 2014).

Formation of Common/Distinct ACPs
Using sparse learning with FDDL for the WQCP sample matrix
X, the corresponding dictionary D was extracted, including c sub-
dictionaries. Then, the SRC algorithm was used to classify the
WQCP samples for each control group, i.e., XG1 or XG2, which
classified each WQCP sample into a certain sub-dictionary Di
(1 ≤ i ≤ c). Furthermore, all of the DFCs corresponding to each
WQCP for each sub-dictionary (Di,1 ≤ i ≤ c) were retrieved,
and the corresponding mean functional connectome along the
time dimension was calculated, which formed the ACPs with a
dimension of 200 × 200 for each sub-dictionary Di (1 ≤ i ≤ c).
Finally, the c ACPs from Group 1 and Group 2 were generated,
respectively.
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FIGURE 3 | (A) The ratio distributions of WQCPs for the sailor and non-sailor groups under non-resample process; (B–I) The ratio distributions of WQCPs for the
sailor and non-sailor groups under eight instances of resampling process, respectively. The horizontal axis represents the index of each sub-dictionary, and the
vertical axis denotes the ratio distribution of WQCPs under different sub-dictionaries. The circled number on the x-axis represents the indexes of distinct atomic
connectome patterns (ACPs) between the sailor and non-sailor groups, while the rest denote the indexes of the common ACPs of the two groups.

All the above formed c ACPs could be divided into common
ACPs (representing the common brain states) and distinct ACPs
(denoting the distinct brain states) regarding two control groups,
based on the ratio distributions of WQCP samples from two
control groups under the sub-dictionaries generated by FDDL
(Li et al., 2014). Namely, some WQCP samples which formed
the distinct ACPs, only mostly existed in one certain group.
Furthermore, the ACPs should yield high reproducibility and
reliability among the resampled WQCP sample sets, i.e., the
resampled matrix Xres, which could validate effectiveness of
the division of common/distinct ACPs. The idea of validation
process was simple but heuristic: first, the multiple WQCP
subsets (Xres) with a half scale in contrast to the WQCP set
(X) were generated by the randomly repeated resampling of the
WQCP set; then, the FDDL and SRC algorithms were used to
perform the sparse learning and classification tasks, respectively,
which generated the ratio distributions of the WQCP samples
under the variant sub-dictionaries and the corresponding ACPs
for each control group; finally, the ratio distributions of the
WQCP samples under sampling process for each group could

be used to check the previous division of common and distinct
ACPs.

RESULTS AND ANALYSIS

The Ratio Distributions of WQCP Set
under Resampling Process
Figure 3 depicted the ratio distributions of the WQCP samples
corresponding to each control group (sailor group or non-
sailor group) under 18 sub-dictionaries generated by FDDL.
Specifically, Figure 3A showed the ratio distributions of the
WQCP samples corresponding to the sailor group or non-
sailor group using all WQCP samples for FDDL dictionary
learning, while the rest of the sub-figures (Figures 3B–I)
demonstrated the corresponding sailor group’s or non-sailor
group’s ratio distributions of WQCP samples under eight
randomly resampling process. As shown in Figure 3, we found
that the 18 sub-dictionaries determined by FDDL in both the
subsampled WQCP set (Xres) and the whole WQCP set (X)
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FIGURE 4 | Seventeen common ACPs with a full matrix view for the sailor and non-sailor groups.

exhibited very strong reproducibility and reliability. By observing
the ratio distributions of the WQCP samples of each control
group in Figure 3, we further found that there existed 17 common
ACPs and one distinct ACP. Among the 17 common ACPs,
the ratio distributions of ACP12 had most consistent difference,
implying that compared with the non-sailors, the sailors had
a better chance of staying a brain state related to ACP12 as
the brain activity went on. This phenomenon demonstrated
that the career training with a long period could possibly
shape the chances of the brain states where the brain activity
belonged to. Besides, the index of the distinct ACP was 14,
circled in red along the x-axis in each sub-figure of Figure 3, as
indicated by the significant difference in the ratio distributions
for sailor group and non-sailor group. It was noteworthy that
the distinct ACP14 exhibited a unique pattern only in the sailor
group, and had the potential to play a specific role in this
group.

Common/Distinct ACPs
Figure 4 showed the seventeen common ACPs with a full matrix
view for both sailor and non-sailor groups. Correspondingly,
the 17 common ACPs were projected onto a standard brain
surface, as shown in Figure 5. Specifically, the connective edges

in all common ACPs were retained with a strength larger than
0.75, where the threshold value was also applied in Li et al.
(2014).

Figure 6A depicted the distinct ACP14 with a full matrix
view, only for the sailor group, while Figure 6B showed the
connectivity patterns of the distinct ACP14 with strength greater
than 0.75, projected onto a standard brain surface. It was
noteworthy that ACP14 only existed in the sailor group, which
was possibly closely related to the career training and long-term
offshore operation of the sailors in contrast to the non-sailors,
which was discussed in Section “Distinct ACPs.”

DISCUSSION

Common ACPs
In this study, 17 networks were classified as the common ACPs
among the sailors and non-sailors (shown in Figures 4, 5), which
represented the common functional topology for both control
groups. A very important functional network, called DMN, was
found in the resting human brain, in which the abnormal or
disconnections were often observed with the neuropsychiatric
disorders. The DMN was regarded as the potential biomarkers of
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FIGURE 5 | Seventeen common ACPs for the sailor and non-sailor groups, projected onto a standard brain surface. Only the connective edges with strength greater
than 0.75 were retained.
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FIGURE 6 | Distinct ACP (ACP14) only existed in the sailor group. (A) ACP14
with a full matrix view; (B) ACP14 projected onto a standard brain surface.
Only the connective edges with strength greater than 0.75 were retained.

neuroimaging in many brain diseases, such as Alzheimer’s disease
(Greicius et al., 2004), mild cognitive environment (Petrella
et al., 2011), depression (Sheline et al., 2009), and schizophrenia
(Garrity et al., 2007). According to Raichle et al. (2001), the
involved regions include medial prefrontal cortex (MPFC),
posterior cingulate cortex (PCC), precuneus, and parietal cortex.
The superior frontal cortex, parahippocampal gyrus, inferior
temporal cortex, retrosplenial cortex, and cerebellar tonsils could
also be considered to be the seed regions for DMN (Fair et al.,
2008). On the whole, the common ACPs covered the regions of
DMN but there were differences among them, which implied
that the DMN functions as a network hub (Liang et al., 2013) in
dynamic brain transitions. ACP15 exhibited the highest degree
of complexity and the largest number of connections of all brain
regions, which justifies why the brain represents 2% of the body’s
weight but consumes approximately 20% of the calories for the
entire body (Raichle and Gusnard, 2002; Zhang and Raichle,
2010). We inferred that ACP15 may represent part of the brain’s
ongoing activity, which not only supports the maintenance of
the neurons’ responsiveness for the transient and ever-changing
functions of the brain but also initiates sustained functionality
(Raichle and Gusnard, 2002). ACP1 was the most similar to
DMN with direct connections among the PCC, temporal cortex,
precuneus, and MPFC, but was more sparse than ACP12, which
was also involved in many connections in the occipital cortex.

This provides possible evidence of the exchange of information
between DMN and visual network during scanning. Additionally,
ACP1 also showed that the DMN exhibited high reproducibility
in dynamic brain transitions. In ACP2, ACP3, ACP4, and ACP5,
the connections were mostly present in the areas of the parietal
lobe and occipital lobe, but ACP4 exhibited connections to the
inferior temporal cortex and MPFC. The connections of the two
hemispheres were not symmetrical, similar to ACP6, with more
connections on the right side. More connections were present on
the left side in ACP16 and ACP10. Furthermore, ACP6, ACP8,
and ACP16 exhibited more connections within these regions,
such as MPFC, precuneus, occipital, and temporal lobes, but
were more sparse compared to the rest ACPs. In addition, the
connections of ACP7, ACP9, ACP17, and ACP18 mainly covered
the sensorimotor, visual, and temporal networks. Finally, regions
in the cerebellum were mostly connected with regions in the
occipital lobe such as ACP3, ACP5, ACP6, ACP15, and ACP16,
while the others exhibited connections inside cerebellum itself.

Distinct ACPs
Using DBFCC model, we identified one distinct ACP, i.e.,
ACP14 (depicted in Figure 6), which obviously denoted different
functional topology for both control groups. ACP14 was a
characterized ACP of the sailors in contrast to the non-
sailors. Many sub-networks were involved in ACP14, such
as the auditory network, visual network, executive control
network (Beckmann et al., 2005; Damoiseaux et al., 2006;
Wang et al., 2012), and vestibular function-related network
(Highstein et al., 2004; Angelaki and Cullen, 2008), which
implied its complexity and the potential relationship to the
seafarers’ career experience and professional particularity as
discussed below. The auditory network may be associated with
the continuous noise disturbances of machines running and
ocean sounds. The visual network covered both the basic and
advanced visual regions, which possibly implied that the complex
sea conditions enforced the combination of the fundamental
visual cortex’s discovery function and the senior visual cortex’s
judgment function. The specific functional connections of the
basic visual regions and the advanced regions in contrast to
the non-sailor group may imply the high efficiency of the
dynamic information adjustment of visual circuits. The vestibular
function-related network was closely related to the seafarers’
occupational training and long-term offshore operations, in
which the co-regulatory role of the vestibular system and the
visual network allowed the sailors to maintain their body
balance and clear vision and improve the ability to determine
their own position in three-dimensional space in the maritime
environment (Highstein et al., 2004; Angelaki and Cullen, 2008).
The executive control network was possibly enhanced by the
semi-military training and management (e.g., obeying orders
from the captain) of the sailors in the career training stage
and the offshore operation stage, which consistently modulated
the brain activity of the executive related cortex regions. In
summary, the occupational training and long-term offshore
experience of the sailors could reorganize the topology of the
brain’s functional networks in order to accomplish the long-
term operation at sea in contrast to the non-sailors on land,
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which demonstrated the flexibility in the human brain’s
functional plasticity.

Limitations and Future Work
There are certain limitations to this study. First, we only
considered sailors with long-term sailing experience in excess of
10 years, limiting the number of subjects. Thus, future studies
with a larger number of sailors would more definitively explore
the functional plasticity driven by career sailing experience.
Further, the characterized ACP14 was identified in the sailors
with long-term sailing experience. However, whether this factor
depended on the duration of sailing experience should be further
investigated.

CONCLUSION

The DBFCC model with ATGP-K-Means clustering was effective
to characterize the common and different topology of the DFC
in sailors and non-sailors. Firstly, the reproducible common
ACPs shared by the sailors and non-sailors implied that
common dynamic transition states existed, possibly as the
functional transition baseline of the human brain. Furthermore,
we found that the brain’s functional plasticity could be
modulated by the longer-term career sailing experience. Stated
concretely, one reproducible distinct ACP of the sailors
in contrast to the non-sailors showed a close relationship
to long-term sailing training and experience, which was
the potential to be as a biomarker to characterize the

sailors’ functional brain. Our findings provide the evidence
of that how the sailing experience could influence the
dynamic functional reorganization in the healthy human
brain to satisfy the professional particularity. Also, this study
demonstrates the effectiveness of the revised DBFCC model,
which potentially has wide applicability in the exploration of the
functional plasticity driven by other types of career training and
experience.
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