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Measurement invariance (MI) entails that measurements in different groups are

comparable, and is a logical prerequisite when studying difference or change across

groups. MI is commonly evaluated using multi-group structural equation modeling

through a sequence of chi-square and chi-square-difference tests. However, under the

conventional null hypothesis testing (NHT) one can never be confident enough to claim

MI even when all test statistics are not significant. Equivalence testing (ET) has been

recently proposed to replace NHT for studying MI. ET informs researchers a size of

possible misspecification and allows them to claim that measurements are practically

equivalent across groups if the size of misspecification is smaller than a tolerable value.

Another recent advancement in studying MI is a projection-based method under which

testing the cross-group equality of means of latent traits does not require the intercepts

equal across groups. The purpose of this article is to introduce the key ideas of the

two advancements in MI and present a newly developed R package equaltestMI for

researchers to easily apply the two methods. A real data example is provided to illustrate

the use of the package. It is advocated that researchers should always consider using

the two methods whenever MI needs to be examined.

Keywords: equivalence testing, measurement invariance, minimum tolerable size, projection method, scalar

invariance

1. INTRODUCTION

Reliable and valid measurements are key to social and behavioral sciences. When studying
difference across groups, an equally important concept is measurement invariance (MI) or
equivalence (Mellenbergh, 1989; Meredith, 1993; Millsap, 2011; Kim et al., 2012), which entails
that measurements in different groups are comparable. Equivalent measurements are logical
prerequisites to the evaluation of substantive hypotheses, regardless of whether the interest is as
simple as a test of mean difference between groups or as complex as a test for possible changes of
theoretical constructs across groups (Vandenberg and Lance, 2000). In particular, the observed or
estimated cross-group difference can be simply due to different types of attributes being measured
across populations, rather than the difference in the same attribute. Then, the observed cross-group
difference is not interpretable nor valid for quantifying the cross-group difference on the target
attribute.
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The most widely used approach to examine MI is multi-
group structural equation modeling (SEM) which relies on a
sequence of chi-square and chi-square-difference tests (Sörbom,
1974; Horn et al., 1983; Meredith, 1993). With multi-group SEM,
the test of MI typically starts with the equality of population
covariance matrices across groups. Rejection of this equality
does not imply that the groups are not comparable. A series
of tests are then conducted to identify the source of non-
equivalence (e.g., factor structure, factor loadings, etc.) and also
to determine the degree of equivalence. Equality constraints are
added in a logical order, and the models being tested also become
increasingly more restrictive (Byrne, 2010). Two models are
connected by each set of equality constraints: a base model and
a nested (constrained) model. The normal-distribution-based
maximum likelihood (NML) is typically used to estimate the
models, and we also have a test statistic that approximately
follows a chi-square distribution. The difference between the
values of the test statistic at the base and restricted models is
called the chi-square-difference statistic, which is commonly used
to evaluate the plausibility of the constraints. The most widely
used statistic is the likelihood ratio test statistic corresponding
to NML estimation, which is also what we use in this
article.

Twomajor concerns exist over themulti-group SEM approach
to MI. First, there is a logical issue when the conventional null
hypothesis testing (NHT) is used to establish equivalence of
measurements. In every step of MI tests, whenever the chi-square
or chi-square-difference statistic is not significant at a given level
(e.g., α = 0.05), we move to the next step of the analysis
by assuming that the current model under the null hypothesis
holds. However, a non-significant test statistic does not imply
that the involved model is correct or the involved components
are invariant across groups. This is because NHT is constructed
to reject the null hypothesis, and one can never be confident
enough to claim equivalence even when all the statistics are
not significant. Under such a practice, any violation against the
previous hypotheses will be carried over to the next test. Yuan
and Chan (2016) contains an example in which a sequence of
tests for endorsing MI yields a rather different conclusion from
that of testing the equality of covariance matrices across groups.
Yuan and Bentler (2004) also showed that nested chi-square
test is unable to control type I errors when the based model is
misspecified, and the power of the test can also become rather
weak.

Second, multi-group SEM approach for MI requires the
intercepts of the manifest variables to be equal across groups
before the means of latent constructs can be estimated (Sörbom,
1974). The cross-group equality of intercepts is commonly called
scalar invariance (Horn and McArdle, 1992). The review by
Vandenberg and Lance (2000) indicated that scalar invariance
is rarely satisfied in practice. Marsh et al. (2017) also noted that
“scalar invariance is an unachievable ideal that in practice can
only be approximated.” However, without scalar invariance, the
means of the latent constructs cannot be compared under the
conventional setup. Such a requirement greatly limits the use of
the multi-group SEM approach to mean comparison of latent
variables.

To address the first issue regarding the use of NHT, Yuan
and Chan (2016) recently proposed using equivalence testing
(ET) to replace NHT in multi-group SEM. In a sequence of
tests for MI under ET, researchers are informed about a possible
misspecification in every step, which enables them to effectively
control the size of misspecification. Researchers can evaluate
their results based on their own degrees of tolerance or using
the adjusted cutoff values in connection with established rules
of labeling the goodness of model fit in SEM. Yuan and Chan
(2016) illustrated their approach using a simulated example with
2 groups, 9 variables, and 3 latent factors. They also provided an
R program to compute the minimum tolerable size and adjusted
cutoff values of fit indices for evaluating the goodness of the
model under ET. However, one has to use a separate program
to estimate the SEM model under different constraints before
conducting ET using their R program. Thus, it is rather difficult
for substantive researchers to correctly perform or interpret
results at each step of the sequence of conducting the tests
for MI. Also, although ET has been used in many areas of
psychological and educational research, there is no self-contained
software for conducting ET using chi-square and chi-square
difference tests, especially for the purpose of MI. Our experience
indicates that a statistical package must be in place before any
new cutting-edge methodology can be applied by substantive
researchers. Thus, we have developed an all-in-one R package
equaltestMI that will be introduced in this article. Our
illustration of the package with real data will also contribute to
promoting ET in substantive areas where MI is routinely used in
group comparison.

To address the second issue with the multi-group SEM
approach to MI, Deng and Yuan (2016) proposed a new
projection method to circumvent the scalar-invariance
assumption by decomposing the observed means of the
manifest variables into two orthogonal components. One
component represents the means of the common scores and
the other represents the mean of the specific factors. These
two components are uniquely identified although the means
of specific factors have been ignored in conventional factor
analysis (Harman, 1976; Gorsuch, 1983). As we will see, the
projection method allows us to test the cross-group equality
of latent means independently from that of specific factors,
and there is no need to constrain intercepts to be equal in
this approach. In particular, only factor loadings are required
equal across groups for conducting mean comparison of latent
constructs. However, Deng and Yuan (2016) only presented the
projection method using conventional NHT, not ET. Thus, the
method still has the logical issues inherited from NHT, which
will be addressed in this article by putting the projection method
under ET.

The contributions of the current article are as follows: (1)
using plain language to introduce the key ideas of ET and the
projection method for examining MI; (2) combine ET and the
projection method to provide valid inference on the tests of
equality of latent factors and specific factors; (3) developing an
accompanying R package equaltestMI so that substantive
researchers can easily apply the two new methods as well as
combining them in conducting MI analysis; and (4) providing
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a detailed tutorial to illustrate the use of equaltestMI with a
real data example.

In the following sections, we first briefly review the types of
tests in the conventional approach to MI. Then, we introduce the
ET framework and the projection method. Next, we provide a
step-by-step tutorial to illustrate the use of the accompanying R
package equaltestMI with a real data example. We conclude
this article with some remarks on the two new methods and the
use of the R package.

2. METHODS

This section introduces two recentmethodological advancements
in examining MI. By avoiding the logical problem and unrealistic
assumptions with the conventional multi-group SEM approach,
the new methods provide a more valid platform for studying
MI. In particular, ET is proposed to replace the NHT framework
and the projection method is proposed to replace the tests
of mean structure under the conventional multi-group SEM
as developed in Sörbom (1974). To help introduce the two
new methods, we first review the models and notations
used in multi-group SEM and the sequence of tests for
examining MI.

2.1. Multi-Group SEM
Suppose a set of p variables are collected for each of m groups,
and they are obtained by administering the same instrument or
properly adjusted to be on the same scale. Let x(j) represent the
vector of variables in the population for group j, j = 1, ..,m, and
the following SEMmodel holds within each group:

x(j) = γ (j) +3(j)ξ (j) + ε(j), j = 1, · · ·,m, (1)

where the superscript (j) indicates the group membership; γ (j)

is a vector of p intercepts of the manifest variables, 3(j) is p × k

matrix of factor loadings, ξ (j) is a vector of k factor scores, and ε(j)

is a vector of p errors.We assume that errors are uncorrelated and
9(j) = Cov(ε(j)) is a diagonal matrix. The errors and the factors

are also assumed to be uncorrelated with E(ξ (j)) = τ (j) and
Cov(ξ (j)) = 8(j). It follows from Equation (1) that the model-
implied mean and covariance structures for the m groups are
respectively

µ(j) = γ (j) +3(j)τ (j) and

6(j) = 3(j)8(j)3
′(j) +9(j), j = 1, · · · ,m. (2)

Note that different groups might have different structures in
(2), and γ (j), 3(j), τ (j), 8(j), and 9(j) are free to vary. The
key point here is that the latent variables ξ (j) cannot be
directly observed and must be measured with a set of manifest
variables. These are standard assumptions in structural equation
modeling and factor analysis, not particular to MI. With these
notations, the steps of tests of MI (Vandenberg and Lance, 2000)
and their corresponding chi-square and chi-square-difference
statistics are given in Table 1. In the table, each subscript of the
letter H represents the hypothesis for the involved parameters;
and the subscripts of T represent the joint hypotheses under

TABLE 1 | Types and steps of tests with the conventional approach to

measurement invariance.

Step Hypothesis Name Test statistics

Overall

model

Nested model

1 Hσ :6(1) = · · · = 6(m) Tσ

2 Hc :6
(j) = 6(θ (j)) configural Tc

3 Hλ :3
(1) = · · · = 3(m) metric Tcλ Tλc = Tcλ − Tc

4a Hψ :9 (1) = · · · = 9 (m) Tcλψ T
ψ
cλ = Tcλψ − Tcλ

5a Hφ :8(1) = · · · = 8(m) Tcλψφ T
φ
cλψ = Tcλψφ − Tcλψ

4b Hγ : γ (1) = · · · = γ (m) scalar Tcλγ T
γ
cλ = Tcλγ − Tcλ

5b Hτ : τ (1) = · · · = τ (m) Tcλγ τ Tτcλγ = Tcλγ τ − Tcλγ

4c Hγ : γ (1) = · · · = γ (m) scalar Tcλγ T
γ
cλ = Tcλγ − Tcλ

5c Hψ :9 (1) = · · · = 9 (m) Tcλγψ T
ψ
cλγ = Tcλγψ − Tcλγ

6c Hτ : τ (1) = · · · = τ (m) Tcλγψτ Tτcλγψ = Tcλγψτ − Tcλγψ

which the statistic is computed; while the superscript of T
represents the hypothesis being tested by the nested chi-square
statistic.

Following the work of Sörbom (1974) and Jöreskog (1971), the
tests of MI usually start with a test of equality of the population
covariance matrices. Statistically speaking, the first step testsHσ :
6(1) = · · · = 6(m), where 6(j) is the population covariance
matrix of group j. A non-significant statistic of this test is
generally regarded as an endorsement of overall measurement
equivalence. However, a significant test statistic does not mean
that the involved groups are not comparable and it is necessary
to conduct subsequent tests to identify the sources of non-
equivalence. To test if any aspects of the groups are invariant,
a common SEM model is assumed and the equalities of its
components across groups are tested in an increasingly restrictive
fashion. In step 2, the SEM model is fitted to each group
separately and one examines if the same model structure holds
across groups (configural invariance). We denote configural
invariance as Hc : 6(j) = 6(θ (j)), j = 1, · · ·,m, implying

that the same structured model 6(θ (j)) holds in all the groups
but their parameters θ (j) can differ across groups. If Hc holds,
configural invariance is established, and one tests the equality of
factor loading matrices (metric invariance) in step 3. We denote
metric invariance as Hλ : 3(1) = · · · = 3(m), implying that
the factor loadings are invariant across all the groups. After both
configural (Hc) and metric invariances (Hλ) are established, one
next separately tests the equalities in covariance structure and
mean structure. For the covariance structure, one first tests the
equality of error variances 9(j) across groups; and if that holds,
one then tests the equality of factor covariance matrices 8(j)

across groups.
For the mean structure, two types of invariance have been

conceptualized (Meredith, 1993; Vandenberg and Lance, 2000).
Measurements satisfying Steps 2, 3, and 4b are called strong
invariance (Meredith, 1993), while those satisfying Steps 2,
3, 4c, and 5c are called strict invariance. For either of the
invariances, the equality of intercepts of manifest variables (scalar
invariance, Hγ ) is tested first. If scalar invariance holds, strong
invariance is achieved, and one continues to test the equality of
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latent means (Hτ ). To achieve strict invariance, one needs to test
the equality of error variances 9(j) after scalar invariance and
then tests the equality of latent means. In summary, the steps
to examine MI of covariance structure is 1 → 2 → 3 →

4a → 5a, the sequence for testing mean structure and achieving
strong invariance is 1 → 2 → 3 → 4b, and the sequence
for achieving strict invariance is 1 → 2 → 3 → 4c → 5c.
Step 5b or 6c might not be needed if the interest of the MI
analysis is to compare individuals. But the test of Hτ will be the
ultimate goal if the interest is to compare groups, as in ANOVA
or t-test.

To test the hypotheses mentioned above, chi-square and chi-
square-difference statistics are computed in the last two columns
of Table 1 with the superscripts and subscripts denoting the
involved hypotheses. In any of the three sequences above, a
model with more constraints is nested in a model with fewer
constraints and the additional constraints can be tested using
the chi-square-difference statistic. For example, the statistic Tcλγ

in step 4b of Table 1 evaluates the joint hypothesis Hcλγ =

Hc + Hλ + Hγ , and the model under Hcλγ is nested in
the model under Hcλ. The corresponding chi-square-difference
statistic T

γ
cλ evaluates the additional constraints under Hγ , and

it is computed as the difference between Tcλγ and Tcλ, i.e.,
T
γ
cλ = Tcλγ − Tcλ.

2.2. Equivalence Testing
ET was proposed to address the logical issues with NHT to
establish equivalence of measures across groups (Yuan and
Chan, 2016). A major distinction between ET and NHT is the
formulation of null hypothesis. The null hypothesis under NHT
is that the model or constraints hold in the population, whereas
the null hypothesis under ET is that the size of misspecification
in the model or constraints is greater than a tolerable value.
When the null hypothesis is rejected under ET at level α, we are
confident with probability 1−α that the size of misspecification is
less than or equal to the tolerable value. Consequently, the current
model or components are deemed1 as MI, and we continue with
testing the subsequent hypothesis. Otherwise, we declare that the
size of misspecification in the current model or hypothesis is not
tolerable and stop at the previous level of equivalence. We will
further discuss the specification of tolerable values using the fit
index RMSEA (root mean square error of approximation, Steiger
and Lind, 1980).

As with NHT, we need to have a statistic to work with under
ET. In this article, we use the likelihood ratio statistic Tml =

(N −m)Fml, where N is the total sample size across them groups
and Fml is the normal-distribution-based discrepancy function
proportionally weighted according to the sample sizes in the m
groups (e.g., Equations 23 and 4 in Yuan and Bentler, 2006). Let
Fml0 be the population counterpart of Fml, the null hypothesis
under NHT is H0 : Fml0 = 0 whereas that under ET is

He0 : Fml0 > ǫ0 (3)

1Even if MI does not hold literally, the violation against MI is small enough that

we can comfortably ignore it.

with ǫ0 being a small positive number that one can tolerate for
the size of misspecification. As for NHT, we need to assume that
Tml follows a central chi-square distribution χ

2
df

when Fml0 = 0

and a non-central chi-square distribution χ2
df
(δ) when Fml0 > 0,

where δ = (N − m)Fml0 is the non-centrality parameter (ncp).
Let δ0 = (N − m)ǫ0 and cα(δ0) be the left-tail critical value of
χ2
df
(δ0) at level α. Then we reject the null hypothesis He0 in (3)

when Tml < cα(δ0) and the type I error is controlled at level
α. When the He0 in (3) is rejected, we conclude that the size of
misspecification of the current model is no greater than ǫ0 with
1− α confidence.

Similarly, when the chi-square-difference statistic is
formulated according to Tml, and our null hypothesis under
ET is

Heab : Fmla0 − Fmlb0 > ǫ0ab, (4)

where ǫ0ab is a tolerable value of misspecification due to the
additional constraints in modelA beyond that in the basedmodel
B. When the difference statistic is smaller than the left-tail critical
value corresponding to χ2

dfab
(δ0ab) with δ0ab = (N − m)ǫ0ab,

we reject Heab and conclude with probability 1 − α that the size
of misspecification due to the additional constraints in model A
(beyond that in model B) is smaller than the tolerable value or is
tolerable.

The specification of a tolerable value ǫ0 is crucial for ET.
Although any choice of ǫ0 cannot avoid an arbitrary nature, it is a
necessary element for conducting ET. Following Yuan and Chan
(2016), we specify ǫ0 by relating it to the population value of the
fit index RMSEA through

ǫ0 = df (RMSEA0)
2/m, (5)

where RMSEA0 = {mδ0/[df (N − m)]}1/2 with δ0 being the
ncp of the nominal chi-square distribution corresponding to
the statistic Tml with m groups (Steiger, 1998). With respect
to the use of the conventional2 RMSEA, MacCallum et al.
(1996) suggested cutoff3 values 0.01, 0.05, 0.008, and 0.10 to
distinguish between excellent, close, fair, mediocre, and poor
fit, respectively. As can be seen from Equation (5), when other
terms are held constant, the larger the value of ǫ0, the larger
the RMSEA0 is. This means that for a given model, a larger
tolerable value of misspecification ǫ0 implies that we allow for
a less ideal model as quantified by RMSEA0. There are two ways
to use the relationship in Equation (5) to evaluate the fit of the
current model. One can obtain the values of ǫ0 corresponding to
RMSEA0 = 0.01, 0.05, 0.08, and 0.10, respectively, and compare
Tml against the critical values cα(ǫ0) with those ǫ0 values. If
Tml is between the critical values corresponding to RMSEA0 =

0.01 and 0.05, then the model achieves a close fit for the
observed samples.

2The value of the conventional RMSEA is computed according to the value of the

observed test statistic Tml whereas RMSEA0 in Equation (5) is related to the value

of ǫ0 in Equation (3) or ǫ0ab in Equation (4), and is used for the purpose of ET.
3These cutoff values are necessary for labeling the goodness of model fit but may

be of limited scientific value (see Lai and Green, 2016).
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Alternatively, we can solve the equation

Tml = cα(ǫt). (6)

for the value of ǫt , which is an increasing function of Tml. Unlike
the ǫ0 in Equation (3) or (5) that is specified a priori, the ǫt in
(6) is data dependent. However, rejection of the hypothesis in
(3) is equivalent to ǫt < ǫ0. Yuan and Chan (2016) called the
ǫt in (6) the minimum tolerable size (T-size) of misspecification.
If one cannot tolerate the T-size ǫt , then hypothesis with any
prespecified ǫ0 that is less than ǫt cannot be rejected since Tml >

cα(ǫ0), and we will not be able to continue with the analysis
in the sequence of endorsing MI. Let RMSEAt be the value of
RMSEA defined at ǫt . ET can be equivalently conducted using
the established cutoff values of RMSEA and the values of RMSEAt

corresponding to the ǫt in (6). We will illustrate this procedure in
a later section via a real data example.

Compared with the conventional methods, ET informs us
the size of a possible misspecification at each step of endorsing
MI, and it is still up to the researcher to decide whether the
size is tolerable. Established values of RMSEA facilitate us to
make a decision on the size of misspecification according to
the values of RMSEAt . However, the conventional cutoff values
of RMSEA are too stringent to evaluate the model fit under
ET, and the cutoff values need to be modified accordingly.
Yuan and Chan (2016) developed formulas of adjusted cutoff
values for evaluating RMSEAt so that labeling of goodness of
fit is comparable to evaluating the conventional RMSEA by
existing cutoff values. These formulas are incorporated in our R
package and new cutoffs will be used in the real data example.
Technical details and formulas can be found in Yuan and Chan
(2016).

2.3. Projection Method
One major goal of MI is to test the cross-group equality of
means of latent traits, especially when our interest is to study the
effect of different experimental conditions or group difference.
However, with the conventional approach, the test of Hτ in
Table 1 or even the estimation of τ requires the hypothesis
Hγ to hold, which is theoretically unnecessary and practically
hard to achieve. In this subsection, we introduce a new setup
proposed in Deng and Yuan (2016) under which the means
of the latent traits can be compared even when the intercepts
of manifest variables are not equal across groups. A projection
method is used so that the means of manifest variables in
each group are decomposed into orthogonal components of
common scores and specific factors. The test of cross-group
equality of the means of the common scores is essentially the
test of cross-group equality of means of latent traits under the
conventional setup whereas the test of cross-group equality of
means of specific factors is related to but different from the test
of cross-group equality of the intercepts under the conventional
setup.

In the conventional setup of examining MI via Equation (1),
the mean structure involves the intercepts and the means of the
latent traits. The intercepts γ (j) need to be set as equal across
groups so that the means τ (j) = E(ξ (j)) can be identified and

estimated (Sörbom, 1974). Similarly, the means τ (j) of one group
need to be set at 0 as the baseline so that the τ (j) of the other
groups are the differences from those of the baseline group. To
circumvent this assumption, Deng and Yuan (2016) proposed to
decompose the observed variables into common scores, specific
factors, and measurement errors

x(j) = 3f(j) + u(j) + e(j), j = 1, · · ·,m, (7)

where 3f(j) represents the vector of p common scores, u(j)

represents the vector of p specific factors, and e(j) is a vector of
p measurement errors, with E[f(j)] = κ (j), E[u(j)] = ν(j), and
E[e(j)] = 0. There is no superscript on the factor loading matrix
3 because the decomposition in Equation (7) is a step following
metric invariance Hλ : 3(1) = · · · = 3(m) = 3. When metric
invariance does not hold, researchers have the option to identify
a subset of variables that satisfy metric invariance (Byrne et al.,
1989; Millsap and Kwok, 2004). Then the projection method can
be equally applied to the identified subset, as was discussed in
Deng and Yuan (2016).

Note that the new setup in Equation (7) is not a simple
reparameterization of the conventional setup in Equation (1). In
fact, the interpretation has changed entirely. With the projection
method, we assume that the space of common score is orthogonal
to that of specific factors, and the comparison of means of the
common scores or factors f(j) is conducted independently from
those of u(j). Under the new setup, the mean structure of x(j) is
decomposed as

µ(j) = µ
(j)
κ + ν(j), (8)

where µ
(j)
κ = 3κ (j) is the part of µ(j) = E(x(j)) that is projected

onto the space of common scores, and ν(j) is the part of µ(j)

that is projected onto the space of specific factors. The two
components are identified once 3 is identified. Regardless of

the values of κ (j), µ
(j)
κ is always the linear combinations of the

columns of3.
Let 3̂ be the estimated factor loading matrix and x̄(j) be the

sample means of the jth group. Then the space of the estimated
common scores consists of vectors of linear combinations of the
columns of 3̂, and is totally determined by 3̂. The estimated
means of the common scores are consequently obtained by
projecting x̄(j) onto the column space of 3̂, and we denote it

as µ̂
(j)
κ . Similarly, the estimated means of the specific factors are

obtained by projecting x̄(j) onto the space that is orthogonal to

that of 3̂, and we denote it as ν̂
(j). Details of the projection

matrix and examples are provided in Deng and Yuan (2016).

In particular, there exists x̄(j) = µ̂
(j)
κ + ν̂

(j). Also, an estimate

of κ (j) is uniquely obtained from µ̂
(j)
κ , and we denote it as κ̂

(j).
Thus, the estimates of means of common and specific factors
only depend on the sample means and estimated common factor
loading matrix, and do not involve estimating the intercepts in
Equation (1).

Two types of invariance tests on means can be conducted
under the new setup. One test is about cross-group equality of
means of common scores, which is equivalent to the test on
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cross-group equality of means of the latent constructs. The other
test is on cross-group equality of means of specific factors. The
corresponding hypotheses are

Hκ : κ
(1) = · · · = κ (m) or µ(1)

κ = · · · = µ(m)
κ , (9)

and

Hν : ν
(1) = · · · = ν(m). (10)

The two hypotheses can also be formulated as Hκ : κ
(j)

d
= κ (j) −

κ (1) = 0 and Hν : ν
(j)

d
= ν(j) − ν(1) = 0, j = 2, · · · , m.

Deng and Yuan (2016) showed that κ̂
(j)

d
and ν̂

(j)

d
asymptotically

follow normal distributions, and each of the two hypotheses can
be tested using a Wald4 statistic Tgls = NFgls that asymptotically
follows a chi-square distribution with degrees of freedom dfκ =

(m − 1)k and dfν = (m − 1)(p − k), respectively. In addition to
using the Wald statistics, the two hypotheses in (9) and (10) can
also be tested via the bootstrap methodology, especially when the
sample sizes are not large enough.

The interest of mean comparison in most studies might be to
find a significant difference across groups. If this is the goal, then
conventional NHT would be logically sufficient and ET is not
needed. However, it is hard to imagine that the population means
of different groups are literally identical. A non-significant result
might be due to a small sample size and/or a small effect size.
Knowing the size of the difference would be more informative
even if one cares primarily about significant differences. The
framework of ET would not only inform researchers the size of
a possible misspecification but also provide a confidence level
to it. For ET, the two hypotheses in (9) and (10) need to be
reformulated, parallel to Equation (3). That is, the null hypothesis
for endorsing the equality of the κ (j), j = 1, 2, · · · ,m, becomes

Heκ : Fgls0 > ǫ0, (11)

where Fgls0 is the population value of Fgls corresponding to
the Tgls for testing Hκ . Then the critical value for judging

the significance of Tgls is the left-tail quantile of χ2
dfκ

(δ0)

corresponding to level α, where δ0 = Nǫ0. We reject Heκ when
Tgls is smaller than the critical value. Similarly, we can test Heν

under ET, although there might be less interest in comparing
the means of specific factors. As with the chi-square-difference
statistics in the previous subsection, we can specify the value of ǫ0
via RMSEA0 = (ǫ0/dfκ )

1/2 as well as by testing Heκ using the T-
size RMSEA5 corresponding to theWald statistic. In our package
equaltestMI, we compute the T-size RMSEAt corresponding
to the value of the Wald statistic instead of reporting the critical
value χ2

dfκ
(δ0). Researchers can compare the value of RMSEAt

against the adjusted cutoff values, which are printed out in the
output of the R package.

4Wald statistics are typically formulated via generalized least squares (GLS), and

are commonly called GLS statistics in the psychometric literature.
5Note that the ncp δ0, RMSEA0 and RMSEAt corresponding to the Wald statistic

Tgls might be different from that corresponding to Tml for a given condition

of misspecification. But their difference is tiny unless the model is severely

misspecified.

A key feature of the projection method is a validity index. Let

µ
(j)

dκ
= 3(κ (j) − κ (1)), j = 2, · · · , m, and µ

(d)
κ is the vector of

length p(m − 1) formulated by stacking the µ
(j)

dκ
; and ν(d) is the

vector of length p(m−1) formulated by stacking the ν
(j)

d
, j = 2, 3,

· · · , m. Deng and Yuan (2016) defined a validity index for mean
difference as

ρ2c =
|µ

(d)
κ |2

|µ
(d)
κ |2 + |ν(d)|2

, (12)

where |µ
(d)
κ |2 and |ν(d)|2 denote the sums of squares of the

elements in µ
(d)
κ and ν(d), respectively. This validity index gives

the percentage of the mean differences of the manifest variables
that is due to the differences in means of the common scores. If
the sample estimate ρ̂2c is not large enough, say less than 0.5, then
items in the test might need to be modified or the administration
of the data collection process might not be conducted properly.
We will call ρ2c the validity index for mean differences, because
elaboration on the observed mean differences might be off
the target when ρ̂2c is not sufficiently large, say greater than
0.70. In particular, when most of the mean differences in
the manifest variables are not due to those in the latent
traits, the validity of the measurements might be questionable.
Then the empirical meaning of the observed differences will
be different from the truth, which will create interpretational
confounding. The extent to which the observed mean differences
reflect the mean differences of the latent variables is not
available following the analysis of the mean structures in the
conventional setup, where cross-group equality of intercepts
is a prerequisite for estimating mean differences of latent
variables.

3. REAL DATA EXAMPLE

In this section, we introduce the R package equaltestMI

and illustrate its use via a real data example. Both ET and
the projection method are implemented in the R package,
which is available on CRAN and can be used on any R
platform with version 3.1.0 or above. The development of
equaltestMI relies on R packageslavaan (Rosseel, 2012) for
obtaining chi-square statistics of invariance tests and semTools
(semTools Contributors, 2016) for computing chi-square-
difference tests and fit indices. The function for computing
adjusted RMSEA cutoff values for ET is adapted from the R codes
available at http://www3.nd.edu/~kyuan/mgroup/Equivalence-
testing.R. The input to equaltestMI can be either raw data
sets with group membership indicator or sample means and
covariances.

3.1. Data Set
Literacy-related difficulties for many children are due to lack
of exposure to print or instructional resources, and thus
socioeconomic status (SES) is an important demographic
variable that strongly relates to academic achievement. The
data we use for the illustration are from Lee and Al Otaiba
(2015), and their Table 1 contains sample statistics (sample
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sizes, means, covariances) on early literacy skills from 2
sociodemographic groups of kindergartners, with N1 = 78
boys ineligible for free or reduced-price lunch (FRL) and
N2 = 174 boys eligible for FRL. The interest of Lee and Al
Otaiba is whether measurements on literature proficiency are
invariant when compared students with lower SES (eligible for
FRL) against those with higher SES (ineligible for FRL). There
are six manifest variables in measuring literacy constructs: (1)
letter-name fluency, (2) letter-sound fluency, (3) blending, (4)
elision, (5) real words spelling, and (6) pseudo-words spelling.
Following from Snow’s (2006) definition of componential skills
and the work of Schatschneider et al. (2004) on National
Early Literacy Panel (NELP), the six variables aim to measure
three aspects of literacy constructs: (1) alphabet knowledge,
which refers to children’s familiarity with letter forms, names,
and corresponding sounds; (2) phonological awareness, which
encompasses the ability to detect, manipulate, or analyze sounds
in spoken language in varying complexities such as words,
syllables, and phonemes; and (3) spelling, which measures the
ability to spell words with letters (Piasta and Wagner, 2010).
As indicated in Figure 1, alphabet knowledge, phonological
awareness, and spelling are the three latent constructs behind
the six variables. Lee and Al Otaiba (2015) examined the MI
issues using the conventional methods. Let the boys who are
ineligible for FRL be group one and those eligible for FRL be
group two. We will use the six-variable-two-group model to

illustrate the application of the new methods via the package
equaltestMI.

3.2. Package equaltestMI
To use equaltestMI for the first time, one needs to download
the package fromCRAN and load it into R environment. This can
be done by entering the following commands in R:

1install.packages(equaltestMI)

2library(equaltestMI)

The line numbers in the right margin are for convenience
of explaining the codes in our illustration, not part of the R
commands. After loading the package equaltestMI into R,
there is no need to load lavaan and semTools separately
since they are listed as dependent packages of equaltestMI.
However, one does need to have the two packages installed
before the library command on line 2, otherwise equaltestMI
cannot be successfully loaded.

The package equaltestMI has multiple R functions. The
one that is routinely used is eqMI.main(). Other functions can
be used to test the cross-group equality of population covariance
matrices or to obtain adjusted RMSEA cutoff values in a
separate analysis. Interested users are referred to supplementary
material (http://www3.nd.edu/~kyuan/eqMI/Supplementary_
Material_MI.pdf) and the page of equaltestMI on
CRAN (https://cran.r-project.org/web/packages/equaltestMI/

FIGURE 1 | The path diagram for the model of Lee and Al Otaiba (2015).
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index.html), where details for using different functions are
documented.

Different arguments can be provided to eqMI.main() for
customized analysis. However, data input (raw data or sample
means and covariances) has to be in required format. For a
raw data set, column represents variables and row represents
observations, and an additional column of duplicated numbers
for group membership is needed for all the involved samples.
For either raw data or sample statistics, the first row needs to be
variable names, and including a group-membership indicator. If
input data are sample statistics, the sample means must be stored
in the format of vectors immediately following the variables
names; and sample covariance matrix stored in the format of
matrix are next, see Appendix A for the format. In particular,
the first row of each file must have a space before the first variable
name. The label’mean’must be included prior to the numerical
values of the mean vector. In addition, variable names are also
needed in the first column of the covariance matrix as required
by lavaan, these will be further used to in the model syntax, to
be presented below.

For conducting the tests of MI, we first need to import the
sample means and sample covariance matrices into R. This is
done by the following R codes for this example:

3setwd("C:/research/equaltestMI")

4Group1 <- read.table(’Group1.txt’, header = TRUE)

5Group2 <- read.table(’Group2.txt’, header = TRUE)

6Group1 <- as.matrix(Group1)

7Group2 <- as.matrix(Group2)

8M1 <- Group1[1,]

9M2 <- Group2[1,]

10Cov1 <- Group1[2:7,]

11Cov2 <- Group2[2:7,]

The code setwd("C:/research/equaltestMI") on
Line 3 sets the working directory as the folder where the data files
are stored. The read.table command on Lines 4 and 5 put the
sample means and sample covariance matrices of the two groups
in Group1.txt and Group2.txt into R environment. The
format of the two data files Group1.txt and Group2.txt

are provided in Appendix A. The argument header is set
to be TRUE in order to identify the variable names that are
needed to set the model. Lines 6 and 7 then use as.matrix
to convert the formats of Group1 and Group2 to matrix as
required by lavaan, so that the sample means and covariance
matrices extracted from Group1 and Group2 are in the correct
formats. Lines 8 to 11 separate the sample means from the sample
covariance matrices for each group according to the positions of
the values in the data files.

Another argument that is needed by eqMI.main() is the
model statement. Since lavaan and semTools are used to
compute chi-square and chi-square-difference test statistics, the
model syntax is written following the convention of lavaan:

12model <- ’

13AlphabetKnowledge =~ Letter_Name+ Letter_Sound

14PhonologicalAwareness =~ Blending + Elision

15Spelling =~ Real_Words + Pseudo_Words

16’

where the single quotation marks (can also be double quotation
marks) enclose a model statement. The sign =~ is used to
indicate the relationship between a latent factor and its manifest
indicators/variables. On the left of each =~ is the label for
a latent factor and those following =~ are the corresponding
manifest variables that loaded onto the latent factor. Themanifest
variables that load onto the same latent factor are connected
by “+.” The names of the latent factors in the model statement
cannot duplicate any of the variable names in Group1.txt or
Group2.txt.

To perform ET and the projection method for MI
with two groups, we supply the following arguments to
eqMI.main():

17test <- eqMI.main(model = model,

18sample.nobs = c(78, 174),

19sample.mean = list(M1, M2),

20sample.cov = list(Cov1, Cov2),

21meanstructure = TRUE,

22output = ’both’,

23quiet = FALSE,

24equivalence.test = TRUE, adjRMSEA = TRUE,

25projection = TRUE, bootstrap = FALSE)

The model on Line 17 is the SEM model we defined using the
convention of lavaan on Lines 12 to 16. The sample.nobs
on Line 18 contains the numbers of observations for the two
groups, and more numbers are needed with more groups.
The sample.mean on Line 19 is a list of sample means
obtained on Lines 8 and 9, and sample.cov is a list of
sample covariance matrices. The meanstructure = TRUE

on Line 21 is needed if mean structures are involved instead
of saturated means. The output = ’both’ on Line 22
requires the results of tests of both the mean and covariance
structures (steps 1 to 6c in Table 1) be printed out. One can also
output the results of only the mean structure or the covariance
structure by specifying output = ’mean’ or output =

’covariance’. The quiet = FALSE on Line 23 tells the
program to print out a summary to R console that contains test
statistics and fit measures of all the involved tests as described in
Table 1. The arguments equivalence.test = TRUE and
adjRMSEA = TRUE on Line 24 tell the program to conduct
ET and print out T-size RMSEA and adjusted cutoff values.
The arguments projection = TRUE and bootstrap =

FALSE on Line 25 tell the program to conduct mean comparison
using the projection method. Bootstrap resampling is not
invoked in this example due to the absence of raw data.
However, bootstrap can be enabled to obtain empirical p-
values for the tests of equalities of common and specific factors
using the projection method once raw data become available,
and the details are documented in the online supplementary
material.
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3.3. Output

26---------- Equality of Population Covariance Matrices under NHT ----------

27Chisq Df pvalue

28fit.pop.cov 48.85008 21 0.0005261139

29

30---------- Chi-Square and Chi-Square-Difference Test under NHT ----------

31Chisq Df pvalue Chisq.diff Df.diff pvalue

32fit.pop.cov 48.850 21 0.001

33fit.configural.g1 4.408 6 0.622

34fit.configural.g2 10.641 6 0.100

35fit.combine.groups 15.049 12

36fit.metric 20.033 15 0.171 4.984 3 0.173

37fit.residuals 42.512 21 0.004 22.479 6 0.001

38fit.varfactor 54.175 27 0.001 11.663 6 0.070

39fit.scalar 23.732 18 0.164 3.699 3 0.296

40fit.strong.means 41.066 21 0.006 17.334 3 0.001

41fit.strict.residuals 45.968 24 0.004 22.237 6 0.001

42fit.strict.means 63.630 27 0.000 17.662 3 0.001

43

44-------------- T-size epsilon, RMSEA, and Adjusted Cutoff Values under ET --------------

45epsilon_t RMESA_t cut.01 cut.05 cut.08 cut.10 goodness-of-fit

46fit.pop.cov 0.209 0.141 0.076 0.097 0.121 0.139 poor

47fit.configural.g1 0.028 0.097 0.116 0.133 0.157 0.175 excellent

48fit.configural.g2 0.071 0.154 0.116 0.133 0.157 0.175 fair

49fit.metric 0.049 0.181 0.151 0.164 0.187 0.205 fair

50fit.residuals 0.140 0.216 0.116 0.133 0.157 0.175 poor

51fit.varfactor 0.078 0.161 0.116 0.133 0.157 0.175 mediocre

52fit.scalar 0.040 0.163 0.151 0.164 0.187 0.205 close

53fit.strong.means 0.125 0.289 0.151 0.164 0.187 0.205 poor

54fit.strict.residuals 0.138 0.215 0.116 0.133 0.157 0.175 poor

55fit.strict.means 0.127 0.291 0.151 0.164 0.187 0.205 poor

56

57------ Means of Latent and Specific Factors by the Projection Method and under NHT ------

58Chisq Df pvalue

59fit.mvmean 22.388932 6 0.0010292280

60fit.common 19.433779 3 0.0002223618

61fit.specific 4.015387 3 0.2598074102

62Validity Index is 0.9885648

63

64------ Means of Latent and Specific Factors by the Projection Method and under ET ------

65epsilon_t RMESA_t cut.01 cut.05 cut.08 cut.10 goodness-of-fit

66fit.mvmean 0.139 0.215 0.116 0.133 0.157 0.175 poor

67fit.common 0.137 0.302 0.151 0.164 0.187 0.205 poor

68fit.specific 0.042 0.168 0.151 0.164 0.187 0.205 fair

69

70---------- Cross-group Comparison of Latent Factor Means ----------

71latent_1 latent_2 latent_d SE_d z_d

72AlphabetKnowledge 39.20010 34.77505 -4.42505 1.87963 -2.35422

73PhonologicalAwareness 10.50104 8.29014 -2.21090 0.59194 -3.73503

74Spelling 22.14624 17.69643 -4.44981 1.11260 -3.99946

75

76---------- Cross-group Comparison of Common Scores ----------

77common_1 common_2 common_d SE_d z_d

78Letter_Name 39.20010 34.77505 -4.42505 1.87963 -2.35422

79Letter_Sound 45.65332 40.49980 -5.15351 2.18906 -2.35422

80Blending 10.50104 8.29014 -2.21090 0.59194 -3.73503

81Elision 7.11369 5.61597 -1.49772 0.40099 -3.73503

82Real_Words 22.14624 17.69643 -4.44981 1.11260 -3.99946

83Pseudo_Words 16.45361 13.14762 -3.30600 0.82661 -3.99946

84

85---------- Cross-group Comparison of Specific Factors ----------

86specific_1 specific_2 specific_d SE_d z_d

87Letter_Name 6.05990 6.54495 0.48505 0.92562 0.52403

88Letter_Sound -5.20332 -5.61980 -0.41649 0.79478 -0.52403

89Blending 0.40896 0.78986 0.38090 0.21495 1.77204

90Elision -0.60369 -1.16597 -0.56228 0.31730 -1.77204

91Real_Words 1.73376 1.54357 -0.19019 0.25533 -0.74490

92Pseudo_Words -2.33361 -2.07762 0.25600 0.34367 0.74490
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Running the R codes on Lines 17 to 25 generates the above output
that has eight parts. Part 1 (Lines 26 to 28) contains the results of
testing equality of population covariance matrices under NHT.
The package lavaan does not provide such a test so that we
developed an R function eqMI.covtest() to perform this
test using the method of Lagrange multiplier. Part 2 (Lines 30
to 42) contains the results of MI under the conventional NHT,
including the chi-square and chi-square-difference test statistics
along with their degrees of freedom and p-values. Part 3 of
the output (Lines 44 to 55) are the results of MI under ET,
consisting of the T-size ǫt , RMSEAt , adjusted cutoff values, and
labels of the goodness of fit by comparing RMSEAt against the
adjusted cutoff values. Note that the results on Line 49 to 55
are based on the chi-square-difference statistics whereas those
on Lines 46 to 48 are based on the Tml statistic as reported in
Parts 1 and 2.

Part 4 of the output (Lines 57 to 62) contains the results of
testing the cross-group equality of means using the projection
method and under NHT. The numbers following fit.mvmean
is the results of the Wald test of equality of means of the manifest
variables, those following fit.common and fit.specific
are the results of the Wald tests of the cross-group equality
of means of common and specific factors, respectively. Line
62 contains the value of the validity index according to
Equation (12). Part 5 (Lines 64 to 68) contains the results of mean
comparison by the projectionmethod and under ET, where the T-
size ǫt and RMSEAt are based on the Wald statistics reported in
Part 4. For each of the tests listed in the output, one can extract
details such as parameter estimates and standard errors from the
resulting R object test on Line 17.

Parts 6 to 8 (Lines 70 to 92) of the output of eqMI.main()
contain parameter estimates, standard errors and the
corresponding z-scores under the projection approach. Those
corresponding to the differences of the estimates across groups
are also included. These are the same under NHT and ET.

4. RESULTS

It follows from Line 28 that the equality of population covariance
matrices is rejected under NHT at level α = 0.05. According
to the results on Line 46, we cannot regard the two population
covariance matrices as equal under ET unless we can tolerate
a model with RMSEAt = 0.141. With the adjusted cutoff
value for poor model being at 0.139, the model under equal
covariance matrices is worse than poor. Consequently, we reject
the hypothesis and conclude that the two population covariance
matrices cannot be regarded as equal.

We next turn to the components of the measurement models
as represented by Figure 1. Under conventional NHT, Lines 33
and 34 indicate that the significance level of the statistic Tml for
group 1 (boys ineligible for FRL) is 0.622, and for group 2 (boys
eligible for FRL) is 0.100. One would conclude that configural
invariance holds in the population under NHT and move to the
next step of the analysis. In contrast, under ET, the goodness of fit
for group 1 (Line 47) is excellent with RMSEAt = 0.097; but that
for group 2 (Line 48) is fair with RMSEAt = 0.154. Configural

invariance is again established under the condition that we are
able to tolerate a model with fair fit or RMSEAt = 0.154.

Moving to the next analysis of metric invariance (cross-group
equality of factor loading matrices Hλ) under NHT (Line 36),
the p-value corresponding to the chi-square difference statistic of
4.984 is 0.173, and we conclude that metric invariance holds and
move to the next step of the analysis of MI. Under ET, the results
on Line 49 indicated that RMSEAt = 0.181 and the goodness
of fit is fair. Metric invariance is endorsed only we can accept a
model of misspecification with RMSEAt = 0.181 beyond that in
configural invariance.

Following metric invariance, we can next test cross-group
equality of variance components (error variances and factor
variances-covariances; steps 4a and 5a in Table 1). Alternatively,
we can also move to test scalar invariance and cross-group
equality of means of latent constructs (steps 4b–6c in Table 1).

Under conventional NHT, with a p-value of 0.001 on Line
37, the chi-square-difference statistic suggests that the hypothesis
Hψ is unlikely to hold. Under ET, results on Line 50 indicate
that error variances may not be regarded as equal across the
two groups unless we can tolerate a poor model with T-size
RMSEAt = 0.216.

Move to the mean structure under NHT (Line 39), with a p-
value of 0.296 for the chi-square-difference statistic, one would
conclude that scalar invariance holds in the population. Under
ET (Line 52), the T-size RMSEA corresponding to the chi-square-
difference statistic for scalar invariance is 0.163, and the model
achieved close fit when compared RMSEAt against the adjusted
cutoff values.

Under NHT, results on Lines 40 to 42 imply that we cannot
endorse the cross-group equality ofmeans of the latent constructs
(Hτ ) nor that of error variances (Hψ ). Thus, strong invariance is
achieved but not strict invariance. Results under ET (Lines 53 to
55) also suggest that strict invariance does not hold unless we can
tolerate poor models with RMSEAt being above 0.20.

Results on Line 59 is the Wald test for cross-group equality
of means of the 6 manifest variables. The results for testing the
cross-group equality of means of the common and specific factors
by the projection method under NHT (Lines 60 and 61) indicate
that the two groups have different means of common factors
but their means in specific factors might be equal. Consequently,
98.9% of the squared mean differences for manifest variables is
due to mean differences in the three latent constructs: alphabet
knowledge, phonological awareness, and spelling, indicating that
the six variables are good measures of the literacy skills. The
results following the projection method under ET (Lines 67 and
68) indicate that we can endorse Heν and regard the means of
the specific factors as being equal across the two groups if a
misspecification with RMSEAt = 0.168 is tolerable, or be able
to accept a fair model. However, we will have to accept a poor
model in order to endorse Heκ or to tolerate a misspecification
with RMSEAt = 0.302.

Lines 70 to 92 of the output are the results for the means of
the latent, common and specific factors, following the projection
approach. Those on Lines 70 to 74 indicate that boys eligible for
FRL have significantly smaller means of latent traits. As expected,
the two groups are significantly different in the mean of each of
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the six common scores, with those in the low-SES group being
uniformly smaller. In contrast, the two SES groups do not show
significant differences on any of the six specific factors, implying
that most of the cross-group differences in manifest variables are
due to those in latent traits.

For this example, the conventional method of NHT endorses
both metric invariance and scalar invariance. However, NHT
cannot claim that the two properties hold in the population,
since it is designed for rejecting the null hypothesis instead of
proving that the null hypothesis holds. In contrast, the method
of ET did not conclude cross-group equality of either the factor
loadings or intercepts. Instead, ET claims that, with probability
of 0.95, the difference between the two factor-loading matrices
is less than 0.049 as measured by Fml or less than 0.181 as
measured by RMSEA. Similarly, ET claims that, with probability
of 0.95, the difference between the two vectors of intercepts is less
than 0.040 as measured by Fml or less than 0.163 as measured
by RMSEA. With the projection method, ET claims that with
probability 0.95 the two vectors of means of specific factors differ
by less than 0.042 as measured by Fgls or less than 0.168 as
measured by the corresponding RMSEA. We are able to endorse
metric and scalar invariance only if we can tolerate models
with fair fit, and the endorsement is attached with a T-size and
a probability.

While the statistic Tml is not significant for the hypothesis of
scalar invariance Hγ in the example, it is rare in practice. The
projection method allows us to estimate and compare the means
of latent traits as long as metric invariance is endorsed, and a
validity index is also provided.

5. CONCLUSION

In this article, we introduced two recently proposed methods,
combined the projection-basedmethod and ET, implemented the
new methods in an R package, and illustrated the use of the R
package via a real data example. We believe that the development
will contribute to the use of the cutting-edge methodology in
substantive areas where MI is needed in group comparison. In
particular, we recommend that researchers report the results of
ET together with those under NHT even if they may not want to
abandon the method of NHT in studying MI.

We only illustrated ET in the context of MI in this article.
ET is equally applicable in other contexts where NHT has been

the dominant methodology, especially in areas where models
are needed to account for the relationship among the observed
variables (e.g., growth curve modeling, time series analysis, item
response models) rather than rejecting the null hypotheses.
Recent developments for ET in structural equation modeling
include Marcoulides and Yuan (2017) and Yuan et al. (2016),
where both RMSEA and CFI (Bentler, 1990) can be used for
determining the tolerable size of misspecification. ET can also be
used for parameter testing, especially when a particular value of
the parameter is of special interest (Wellek, 2010).

Throughout the article, we have used RMSEA to quantify the
cross-group difference in model parameters. However, Cohen’s
d or standardized mean difference is regularly used in t-test and

ANOVA.Wemight adopt Cohen’s d for ET when quantifying the
cross-group differences in the means of latent traits. However, it
is not clear how to generalize the standardized mean difference to
multiple groups when the covariance matrices of the latent traits
are heterogeneous. Correlated latent factors might also cause
difficulty with interpretation if we generalize d to a multivariate
version (Huberty, 2002). Vandenberg and Lance (2000) discussed
the pros and cons of different approaches to mean comparison
and recommend using overall model fit indices to assess the
appropriateness of imposed invariance constraints.

Like any statistical methodology, ET needs a statistic
that approximately follows a central/non-central chi-square or
another distribution of known form. When such a distribution is
not available, especially when conditions are not met (e.g., non-
normally distributed data, missing values), alternative statistics
other than Tml might be needed. Bootstrap methodology can
also be considered. Further developments are needed in these
directions.
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APPENDIX A

Data files Group1.txt and Group2.txt used in the real data example

Group1 . t x t :

Let ter_Name Le t t e r _Sound B l end ing E l i s i o n Real_Words Pseudo_Words

Mean 45 . 2 6000 40 . 4 5000 10 . 9 1000 6 . 5 1000 23 . 8 8000 14 . 1 2000

Let ter_Name 207 . 36000 159 . 09696 32 . 5 8864 25 . 8 0480 61 . 7 7600 45 . 0 7488

Le t t e r _Sound 159 . 09696 280 . 22760 42 . 8 8788 36 . 7 4765 76 . 1 2348 60 . 2 0374

B l end ing 32 . 5 8864 42 . 8 8788 18 . 2 3290 10 . 7 1258 19 . 0 5103 14 . 2 1910

E l i s i o n 25 . 8 0480 36 . 7 4765 10 . 7 1258 20 . 0 7040 20 . 3 7235 16 . 7 0861

Real_Words 61 . 7 7600 76 . 1 2348 19 . 0 5103 20 . 3 7235 73 . 6 1640 47 . 4 2852

Pseudo_Words 45 . 0 7488 60 . 2 0374 14 . 2 1910 16 . 7 0861 47 . 4 2852 44 . 3 5560

Group2 . t x t :

Let ter_Name Le t t e r _Sound B l end ing E l i s i o n Real_Words Pseudo_Words

Mean 41 . 3 2000 34 . 8 800 9 . 0 80000 4 . 4 50000 19 . 2 4000 11 . 0 7000

Let ter_Name 295 . 84000 232 . 2 000 38 . 995840 20 . 173880 67 . 5 9256 57 . 7 7136

Le t t e r _Sound 232 . 20000 324 . 0 000 43 . 164000 22 . 824000 77 . 9 5440 60 . 4 5840

B l end ing 38 . 9 9584 43 . 1 640 19 . 009600 9 . 2 60204 23 . 4 2802 16 . 2 7152

E l i s i o n 20 . 1 7388 22 . 8 240 9 . 2 60204 10 . 048900 15 . 2 5404 11 . 0 4174

Real_Words 67 . 5 9256 77 . 9 544 23 . 428024 15 . 254040 64 . 3 2040 38 . 4 1099

Pseudo_Words 57 . 7 7136 60 . 4 584 16 . 271520 11 . 041744 38 . 4 1099 38 . 6 8840
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